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ABSTRACT 

A vision-based vehicle system for security patrolling 
in indoor environments using an autonomous vehicle is 
proposed. A small vehicle with wireless control and a 
web camera which has the capabilities of panning, tilting, 
and zooming is used as a test bed. The vehicle navigates 
according to the node data in a path map created in the 
learning phase, and monitors concerned objects by a 
simplified scale-invariant feature transform algorithm 
proposed in this study. Accordingly, the features of each 
monitored object are extracted from acquired images, 
and are matched with the corresponding learned data by 
the Hough transform. Furthermore, a vehicle location 
estimation technique for path correction utilizing the 
monitored object matching result is proposed. Good 
experimental results show the flexibility and feasibility 
of the proposed methods for the application of security 
patrolling in indoor environments. 

Keywords: Vehicle, patrolling, security surveillance, 
location, SIFT. 

1. INTRODUCTION 

In recent years, studies on vision-based autonomous 
vehicle navigation are in high prominence because of its 
great potential in various applications and the 
developments of computer vision techniques [1-13]. 
Autonomous vehicles are becoming more capable to 
perform a great variety of dangerous or dreary works in 
replacement of human beings, for example, interoffice 
document delivering, unmanned transportation, house 
cleaning, security patrolling, etc. 

To develop autonomous vehicle systems for indoor 
security patrolling applications, the most critical issue is 
to guide the vehicle smartly to navigates in indoor 
environments. Facing this challenge, learning artificial 
landmarks or specific scene features in the environment 
and locating the vehicle by landmark or feature matching 
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are feasible solutions. Although many works based on 
this idea have been developed in the past decade, most 
of them can only learn landmarks with special shapes or 
in ideal backgrounds like pure-colored ones, resulting in 
unreasonable restrictions on environments in which the 
vehicle can navigate. Therefore, it is desired in this study 
to design a method utilizing the technique of monitored-
object image matching for vehicle location estimation. 
The idea, simply speaking, is to analyze the 3D 
geometric transformation of different monitored object 
views to estimate the vehicle location. 

More specifically, in a traditional vision-based 
autonomous vehicle navigation system, the vehicle is 
usually equipped with a fixed pinhole camera, and the 
view of the vehicle is restricted to be at a lower area. 
Instead of using a fixed pinhole camera, we equip the 
vehicle with a pen-tilt-zoom camera (PTZ camera) in 
this study. With the PTZ camera and its movement, the 
view of the vehicle may be extended to a wider range. 
Then we can monitor both objects located higher than 
the camera and obstacles placed lower than the camera, 
by the images taken with the PTZ camera. 

For object recognition and matching, Lowe [14] 
proposed the scale-invariant feature transform (SIFT) to 
extract features from given images as descriptors and 
used a best-bin first algorithm for SIFT descriptor 
matching, as mentioned previously. Since in the 
navigation phase, the position of the same monitored 
object will be just close to, instead of exactly at, the one 
found in the learning phase, resulting in a slight 
variation on the scale of the taken images, we propose in 
this study a simplified SIFT which reduces the 
difference of Gaussian scale layers. It is faster than the 
original SIFT to meet real-time security monitoring 
needs. 

In the remainder of this study, we first describe the 
vehicle learning and guidance principles in Section 2. 
Then we describe the proposed method for detecting 
monitored objects by object image matching in Section 3. 
The proposed vision-based vehicle location estimation 
by object image matching results to correct the odometer 
records in the vehicle is described in Section 4. Some 
experimental results are described in Section 5, followed 
by conclusions in Section 6. 



2. LEARNING AND GUIDANCE PRINCIPLES 

The appearance of the vehicle used as a test bed in 
this study is shown in Fig 1. We use the odometer to 
provide the position of the vehicle and analyze the image 
captured by the PTZ camera equipped on the vehicle to 
monitor higher-located objects as well as the 
surrounding environment. We divide the work 
conducted by the system into two phases: the learning 
phase and the navigation phase. 

 
 

 
(a) (b) 

Fig. 1 The test bed used in this study. (a) The vehicle. 
(b) The PTZ camera. 

 
In the learning phase, the user drives the vehicle to 

navigate in indoor environments and move to the front 
of concerned objects. The main recorded data include 
two categories, namely, path-related data and object-
related ones. As soon as the learning process ends, all 
data are saved in a learning database, such that the 
learning process is only executed once and the data can 
be used repeatedly. 

More specifically, while the vehicle navigates in an 
open space by the control of a user, it records the path 
data provided by the odometer, and denotes them as 
navigation nodes. When the vehicle arrives at the front 
of a concerned object, the user can control the PTZ 
camera to move toward the object and select the object 
in the image captured by the camera. Then, the features 
of the object are computed automatically from the 
images by performing the simplified SIFT. And the 
relative position between the vehicle and the monitored 
object is also computed automatically from the image 
subsequently. In such manners, the user can specify 
concerned objects continuously along the path until 
finishing a learning process. A navigation map, which 
consists of the path and the monitored objects data, is 
then created and saved into a text file for use in the 
navigation phase. 

In the navigation stage, the vehicle moves 
sequentially from one node to another according to a 
selected path in the navigation map. When the vehicle 
reaches the next node, it checks first whether the node 
includes the monitored object data. If the node includes 
the monitored objects data, the vehicle uses the learned 
data to detect whether the object still exists or not. If the 
detection or matching process of the object fails, the 
system will issue an alarm message to the user. 

Otherwise, the vehicle uses the learned vehicle 
locations’ data to adjust the vehicle’s current location. 

With such a navigation process, the vehicle can 
navigate alone the learned path to accomplish specified 
security patrolling works. 

3. DETECTION OF MONITORED OBJECTS BY 
2D OBJECT IMAGE MATCHING 

While the vehicle patrols in the navigation phase, it 
stops in front of the monitored object by the use of 
learned path nodes. But the stop position at a monitored 
object may not be precise every time, mostly just close 
to the one recorded in the learning phase. This results in 
a slight change in the viewing angle of the monitored 
object from the camera. And the image of the same 
monitored object will be different in the scale, 
orientation, or position with respect to the one taken in 
the learning phase. Thus, a method with the ability to 
match corresponding objects in images taken with 
different camera poses and illuminations is needed. 

In the past years, the scale invariant feature 
transform (SIFT) has been proven to be one of the most 
robust methods which use local invariant feature 
descriptors with respect to different geometrical changes 
[15]. In order to allow efficient matching between 
images, all images are represented as a set of vectors, 
called SIFT features. Each SIFT feature consists of local 
image measurements invariant to image translation, 
scaling, and rotation, and partially invariant to 
illumination and 3D viewpoint changes. In this study, we 
take advantage of the SIFT to match monitored object 
images and propose a simplified-SIFT which is faster 
than the original one, by reducing the difference of 
Gaussian scale layers to meet real-time security 
monitoring needs. 

The time consumption of the process of the original 
SIFT algorithm can be divided into two parts: the 
processing time for feature localization and the 
processing time for feature descriptor generation. The 
first part is bounded by the size of the input image and 
the process layers specified by the number of intervals 
and octaves, and the second part is bounded by the 
number of features and the dimensions of each feature 
descriptor. In this study, the image captured by the 
camera of the proposed system is of a fixed resolution of 
320×240 pixels. Hence, in the first part, we can only 
control the number of intervals and octaves to reduce the 
processing time. In the second part, because the number 
of features is uncontrollable, and the low dimension may 
result in unstable matching results, so we do not simplify 
the process of the feature descriptor generation. 

For security monitoring, while the vehicle navigates 
to the monitoring node which is learned in the learning 
phase, the position of the monitored object will be close 
to the one found in the learning phase. Hence, the scale 
of the monitored-object image will not change too much. 
Therefore, while adapting the SIFT algorithm, we 



propose a simplified version by reducing the number of 
octaves to omit unnecessary process layers. 

After the captured image of the monitored object is 
transformed into a set of simplified-SIFT features, we 
adopted a matching algorithm based on the Hough 
transform according to Lowe [14, 16]. For the given 
feature set, the best candidate match for each feature is 
firstly found by identifying its nearest neighbor in the 
other feature set. The nearest neighbor is defined as the 
feature with the closest Euclidean distance for the 
feature. After discarding the outliers, the Hough 
transform is used to identify the best subsets of matches. 
Let the given feature set which is found in the navigation 
phase be denoted as Fnavi and the one which is learned in 
the learning phase be denoted as Flearn. Each simplified-
SIFT feature specifies 4 parameters: two coordinates of 
the feature location in the image, scale, and orientation. 
By applying the affine transform model, as shown in the 
following equation: 
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where m = s cosθ, n = s sinθ, and (x, y) and (u,v) specify 
the locations of Fnavi and Flearn, respectively, the 
unknown similarity transform parameters between each 
match pair are collected as tx, ty, s, and θ by the 
following equations: 
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Fig. 2 Experimental results of monitored object 

matching process. (a) Monitored object 
learned. (b) Locations of features marked as 
green crosses. (c) Successful matched result 
specified by the blue region. 

A Hough transform entry is then created to predict 
the model location, orientation, and scale from the match 
hypothesis, and each feature votes for all poses that are 
consistent with the feature. Then, a peak cluster found in 
the Hough space is regarded to specify the best subsets 
of matches. An experiment result is shown in Fig. 2. 

4. VEHICLE GUIDANCE BY LOCATION 
ESTIMATION BASED ON 2D OBJECT IMAGE 

MATCHING RESULTS 

Let (X, Y, Z) denote the reference coordinate system 
(RCS). A horizontal line is given in the learning phase to 
specify X-axis of the RCS. A start point of the given 
horizontal line also specifies the origin R0 of the RCS. 
Because the X-Y plane is parallel to the floor, we can 
treat the RCS as a virtual house corner. The X- and Y-
axes specify the two perpendicular lines on the ceiling of 
the virtual house corner, as shown in the left-top of Fig. 
3, and the Z-axis specifies the virtual line of the virtual 
house corner. 

 
 

Fig. 3 A diagram of a virtual house corner specified by 
a given horizontal line (the cyan line on the top 
of the poster), and a start point (the red point on 
the left-top of the poster). 

 
 
The equations of the edge line through the corner 

point in terms of image coordinates (u, v) are described 
by up + bvp + c = 0. The desired vehicle location can be 
described by three position parameters Xc, Yc, and Zc and 
two direction parameters θ and ψ, where Zc is the 
distance from the camera to the ceiling and is assumed to 
be known; θ is the pan angle between the optical 
direction of the camera and the Y-axis of the RCS; and ψ 
is the tilt angle of the optical direction of the camera 
with respect to the RCS and is also assumed to be known 
by solving the equation ψ = 90˚ − φ, where φ is the tilt 
angle provided by the PTZ camera. The five vehicle 
location parameters can be derived in terms of the two 
coefficients b and c of the edge line equation and the 



start point (u1, v1) in the image taken by the camera. 
Finally the vehicle location can be estimated by 
computation of these parameters, as described in the 
following. 

At first, we transform the reference coordinates into 
the camera coordinates. The transformation consists of 
four steps. 
Step 1. Translate the origin (−Xc, −Yc, −Zc) of the RCS to 

the origin of the camera system in the following 
way: 
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Step 2. Rotate the X-Y plane about the Z-axis through 
the pan angle θ using the following equation 
such that the X-Y plane is parallel to the U-V 
plane: 
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Step 3. Rotate the Y-Z plane about the X-axis through 
the tilt angle ψ using the following equation 
such that the X-Y plane is parallel to the U-V 
plane: 
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Step 4. Reverse the Z-axis using the following equation 
such that the positive direction of the Z-axis is 
identical to the negative direction of the W-axis: 
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Let P be any point in the 3-D space with reference 
coordinates (x, y, z) and camera coordinates (u, v, w). 
Then the above coordinate transformation can be 
described as follows: 
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Let P be any point on the X-axis with reference 
coordinates (x, 0, 0). Then its camera coordinates (ux, vx, 
wx) can be derived to be: 
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Let (up, vp) be the image coordinates of the 
projection of P. Then, according to the triangulation 
principle, we have the following two equations: 
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where f is the camera focus length. 
Substituting the values of ux and vx above into the 

previous equation and eliminating the variable x, we can 
get the equation for the projection of the X-axis in the 
image plane in the following: 
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After substituting up into up + bvp + c = 0, we obtain the 
following two equalities: 
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Then, we can use the two equations above to derive 
the variable θ. The two equations above can be trans-
formed into the following two equations, respectively: 

( ) ψψθθ sincoscossin cc YbZ =+−⋅ , 
( ) ψψθθ coscoscossin cc fYfcZ −=+−⋅ . 

By eliminating Zc and Yc from above equations, we can 
get: 
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Because the value ψ can obtain from the use of the 
tilt angle φ provided by the PTZ camera and the 
following equation: 

φψ −= 90 , 

we can apply the above equations with known values ψ, 
θ, Zc and the start point (u1,v1) to obtain the values θ, Yc, 
and Xc. 

After we compute the estimated vehicle location 
between the vehicle and the origin R0 of the RCS, the 
next step is path correction by the use of the estimated 
results. The relation among the vehicle, the camera, and 
the RCS is illustrated in Fig. 4. 

The direction angle of the vehicle can be derived by 
substituting the θ into the following equation: 

( ) cv θθθ +−−°= 90  

where the angle θ is negative because the angle of the 
clockwise rotation is positive and the X-Y plane is 
rotated through a pan angle –θ to be parallel to the image 
plane, and θc is the pan angle of the PTZ camera. As 
soon as the direction angle θv of the vehicle is obtained, 
we can compute the vehicle location in the RCS by 
substituting the angle θv and the distance between the 
camera and the center of the vehicle into the following 
equations: 
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Fig. 4 Relation among the vehicle, the camera, and the 
RCS. 

 

 
Finally, the location (Xv, Yv) and the direction angle 

θv of the vehicle are acquired. If the vehicle is in the 
learning phase, these parameters are saved as the 
calibration information data. While the vehicle navigates 
in the navigation phase, we can utilize the parameters 
obtained above and the learned ones to correct the 
navigation path. 

Let the learned location parameters including the 
location and the direction angle of the vehicle be 
denoted as L(Xl, Yl, θl) in the RCS, and the estimated 
ones as V(Xv, Yv, θv). Utilizing these parameters above 
and the corresponding learned path node (Lx, Ly) and the 
direction angle Θl of the vehicle at this path node in the 
GCS, we can compute the corrected location (Nx, Ny) and 
the adjustment angle θadj of the vehicle by transforming 
the relative location between (Xv, Yv) and (Xl, Yl) in the 
RCS into the GCS and computing the adjusting angle 
between θv and θl. The relation among the RCS, the VCS, 
and the GCS, and the corresponding angle is illustrated 
in Fig. 5. And an experiment result is shown in Fig. 6. 

 

 

 

Fig. 5 Relation among reference coordinate system 
(RCS), vehicle coordinate system, and global 
coordinate system, and corresponding angle of 
vehicle. Learned vehicle location is denoted as a 
pastel vehicle with location (Xl, Yl) in global 
coordinate system, and current vehicle location is 
denote as the colored vehicle with location (Xv, 
Yv) in RCS. 

 



In order to conduct experiments about the ability of 
path correction, we set up a navigation path including a 
monitoring node and a path node, as shown in Fig. 6. 
With the successively learned navigation path, we firstly 
put the vehicle at an identical start position to start the 
navigation. The experimental result shows that the 
vehicle navigated correctly on the navigation path, as 
shown in Figs. 7(a) and 7(b). And we also tested another 
case with artificial path deviations. We put the vehicle at 
a different position to simulate the condition that the 
vehicle navigates outside the learned path. The 
experimental result shows that the vehicle can self-
correct the navigation path successfully by estimating 
the location with respect to the monitored object, as 
shown in Figs. 7(c) and 7(d). 

   

Fig. 6 Diagram of an experimental navigation path 
including a monitoring node and a path node. 

 

5. EXPERIMENTAL RESULTS 

Our test bed is an agile, versatile intelligent vehicle 
named Pioneer 3-DX made by MobileRobots Inc. At 
first, a user controls the vehicle to learn a path and some 
monitored objects on the walls. In this study, monitored 
objects are paintings and posters. Whenever the vehicle 
arrives at a spot, the user controls the system to record 
the monitored-object features and the calibration 
information. After the learning process, a navigation 
map is created. An illustration of the learned data, the 
navigation map, and the actual navigation path of one of 
our experiments is shown in Fig. 8. 

The vehicle starts security patrolling according to the 
created map. The navigation process is shown in Fig. 8. 
Whenever the vehicle arrives at a learned monitoring 
node, it performs the security check of the existence of 
the monitored object. If the check is successful, the 
vehicle adjusts its location to continue its navigation on 
the right way according to the matching result; otherwise, 
a message is issued. For each monitored object shown in 
Fig. 8, the experimental results are shown in Fig. 9. The 
vehicle performed security monitoring to monitor 7 
monitored objects. The vehicle arrived at the learned 
monitored node, as shown in Fig. 9(b). Then, it extracted 
the features of the image and matched them with the 
corresponding learned data. The matching results are 
shown in Fig. 9(c) and the learned monitored objects are 
shown in Fig. 9(d). 

(a) (b) 

(c) (d) 
Fig. 7 Experimental result of path correction. (a) The 

vehicle arrived at a monitoring node and 
performed the matching and path correction. 
(b) The vehicle navigated to the next path 
node after correcting the navigation path. (c) 
The vehicle arrived at a wrong place which is 
a monitoring node, and performed the 
matching and path correction. (d) The vehicle 
navigated to the next path node after 
successfully matching the monitored object 
and correcting the navigation path. 

 
 
 
 
 

 

 

 

 

Fig. 8 An illustration of learned data and navigation 
map. 
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(a) (b) (c) (d) 

Fig. 9 Experimental results of object monitoring and 
navigation path correction. (a) Monitored object 
labels. (b) The vehicle monitors the monitored 
objects. (c) The matching result and the horizontal 
line used for path correction. (d) The image of 
learned monitored objects. 

6. CONCLUSIONS 

Several techniques and strategies have been proposed 
and integrated into an autonomous vehicle system for 
security patrolling in indoor environments with 
capabilities of specific-object monitoring and self-
adjustment of navigation paths. Satisfactory navigation 
results have been obtained by this system. 

At first, a security patrolling method by vehicle 
navigation with security monitoring capability has been 
proposed. The vehicle navigates according to the node 
data of the path map which is created in the learning 
phase and monitors the concerned objects by a 2D object 
image matching technique proposed in this study, the 
simplified-SIFT algorithm. Accordingly, we can extract 
the features of the monitored object from acquired 
images and match them with the learned data. The 
matching technique is based on the Hough transform. 
We construct a Hough transform histogram to predict the 
model location, orientation, and scale from the match 
hypothesis, and find the best match by finding the peak 
in the Hough space. 

Next, a vehicle location estimation technique by 
utilizing the monitored object matching result has been 
proposed. The coefficients of the equation of a 
horizontal line and the location of the start point in the 
image are used to estimate the vehicle location. Also 
proposed is a path correction method, which compares 
the estimated location and the learned one to compute 
necessary path adjustment and transform it into the 
global coordinate system to correct the navigation path. 
The experimental results have revealed the feasibility 
and practicality of the proposed system. 
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