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Abstract

An effective approach to obstacle detection and
avoidance for autonomous land vehicle (ALV) navigation in
outdoor road environments using computer vision and image
sequence techniques is proposed. To judge whether an object
newly appearing in the image of the current cycle taken by
the ALV is an obstacle, the object shape boundary is first
extracted from the image. After the translation from the ALV
location in the current cycle to that in the next cycle is
estimated, the position of the object shape in the image of the
next cycle is predicted, using coordinate transformation
techniques based on the assumption that the height of the
object is zero. The predicted object shape is then matched
with the extracted shape of the object in the image of the next
cycle to decide whether the object is an obstacle. We use a
reasonable distance measure to compute the correlation
measure between two shapes for shape matching. Finally, a
safe navigation point is determined, and a turn angle is
computed to guide the ALV toward the navigation point for
obstacle avoidance. Successful navigation tests show that the
proposed approach is effective for obstacle detection and
avoidance in outdoor road environments.

1. Introduction

Autonomous land vehicles are useful for many
automation applications both in indoor and outdoor
environments. Vision-based obstacle detection for ALV
navigation in outdoor road environments is a difficult and
challenging task because of the great variety of object and
road conditions, like irregular and unstable features on
objects, movin% objects, changes of illumination, and even
rain. Successful ALV navigation requires the integration of
the techniques of environment sensing and learning, image
processing and feature extraction, ALV location, path
planning, wheel control, and so on. This study is mainly
concerned with obstacle detection and avoidance for ALV
navigation in outdoor road environments using computer
vision and image sequence techniques.

Many research works have been reported for obstacle
detection in outdoor roads [1-33]. Most systems, such as the
CMU Navlab [1-8], the vehicle constructed by Martin
Marietta Denver Aerospace [9-11], and the navigation system
developed at the university of Maryland [12], use laser range
sensors to detect obstacles in outdoor roads or cross-country
terrain. The FMC Corporation [13] uses a sonic imaging
sensor and an infrared sensor for obstacle avoidance and
target detection.

As to vision-based approaches to obstacle detection,
they basically can be divided into three classes. In the first
class, obstacf:as are extracted directly from 2-D images [14-
21]. Only one camera and only the image in the current
navigation cycle are used, with certain a priori knowledge
and predefined assumptions being considered. In the second
class of approaches, motion information obtained from a
sequence of images are utilized to detect obstacles [22-26].
The most popular approaches in this class are based on
optical flow. In the third class of approaches, obstacles are
detected using stereo-vision techniques [27-32]. Besides, Xie
et al. [33] used a range finder cou (}ed with a CCD camera to
acquire 3D information of obstacles. Although the first class
in general takes less computing time and has better detection
results than the second and the third classes, in fact, it doss
not
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really detect obstacles because obstacles are extracted
directly from the 2D image. Shadows on roads may also be
regarded as obstacles in this class of approaches. On the
contrary, in the second and the third classes 3D computer
vision techniques are used to really judge whether objects on
roads are obstacles, though more computing time is required
in these two classes than the first class.

In this paper, an effective approach to obstacle
detection and avoidance for autonomous land vehicle
navigation in outdoor road environments using computer
vision and image sequence techniques is proposed. To judge
whether one object newly appearing in the image of the
current cycle is an obstacle, we first extract the object shape
boundary from the image. After the translation from the ALV
location in the current cycle to that in the next cycle is
estimated, the position of the object shape in the image of the
next cycle is predicted using coordinate transformation
techniques, based on the assumption that the height of the
object is zero. The predicted object shape is then matched
with the extracted shape of the object in the image of the next
cycle to decide whether the object is an obstacle. We use the
distance-weighted correlation (DWC) [34] as the similarity
measure between the two shapes for shape matching. Then a
navigation point is computed, and a turn angle is decided
accordingly to guide the ALV to follow the navigation point
for obstacle avoidance. Successful navigation tests show that
the effectiveness of the proposed approach for obstacle
detection and avoidance in outdoor road environments.

The remainder of this paper is organized as follows. In
Section 2, the details of the proposed vision-based obstacle
detection method is described. In Section 3, the proposed
obstacle avoidance method is introduced in detail. The
descriptions of the employed image processing techniques
and experimental results are included in Section 4. Finally,
some conclusions are stated in Section 5.

2. Proposed Vision-Based Obstacle Detection
Method

Basically, three types of objects may be extracted from
the road image in this approach, which are:
1) type-1 objects: the objects that newly apﬁ)ear in the
road image of the current cycle, which will be judged
to be obstacles or not in the next cycle;

(2) type-2 objects: the objects that aﬁpear in the road
image of the previous cycle, which are judged to be
obstacles or not in the current cycle; and

(3) type-3 objects: the objects that have been decided to

be obstacles or non-obstacles in the current or
subsequent cycles.
Initially, no objects appear in the road image, and we employ
the approach proposeéJ in Chen and Tsai [35], which utilizes
color information clustering and combined line and road
following techniques, to guide the ALV to follow the road.
When new objects appear in the road image, all of them are
regarded as type-1 objects and whether they are obstacles
will be judged 1n the next cycle. In the next cycle, these type-
1 objects become type-2 objects and whether they are
obstacles are judged in this cycle. After the judgment, the
type-2 objects become type-3 objects. Type-3 objects may
still appear in the images of several subsequent cycles. We
then compute a navigation point and drive the ALV toward
the point such that the ALV can avoid collision with the type-
3 objects that have been decided to be obstacles. The entire
process is repeated one cycle after another.
To judge whether one object is an obstacle or not in the

next cycle, we first extract the shape boundary of the object



from the road image of the current cycle. After the translation
from the ALV location in the current cycle to that in the next
cycle is estimated, the position of the object shape in the
image of the next cycle is predicted using coordinate
transformation techniques, based on the assumption that the
height of the object is zero. The predicted object shape is
then matched with the extracted shape boundary of the object
in the image of the next cycle to decide whether the object is
a non-obstacle, a static obstacle, or a moving obstacle. We
use the distance-weighted correlation (DWC) [34] as the
similarity measure between the two shapes for shape
matching.

In the following, we state first the estimation of the
translation between two continuous ALV locations, then the

prediction process of the object shape in the image of the
next cycle, followed by the shape matching process.

2.1 Estimation of Translation between Two
Continuous ALV Locations

When the ALV keeps driving on a road, we use the
approach proposed in [35] to guide the ALV to follow the
road. In this approach, the ALV location on the road in cycle

i is represented by two parameters (d,,0,), where d, is the
distance of the ALV to the central path line on the road and

0, is the pan angle of the ALV relative to the road direction
(positive to the left). Let P, denote the obtained ALV
location (d;,0,) in cycle i and P,,, denote the obtained
ALV location (d,,,,0,,,) in cycle i+1. What we desire to
know is the translation vector from P. to P, , denoted by
T, which can be derived in terms of d,, O,, d,,,, and
0.,, . Without loss of generality, we first assume that the
ALV turns to the right from P, to P, , ie, 6, <0,.
Then as shown in Fig. 1, where 6, >0, 6, <0, and
d; <d, <0,theangle U CBD can be expressed as

D&m=g—5—mBE

T T
=—-90—-(—-U0UDEB)
2 2
=—0+0 + y
=y, M
where O is the turn angle of the front wheels. Alternatively,
U CBD can be expressed as

OCBD =0CBK + OKBD
=-0,, +6,. @)

So, angle Y can be determined by

y=6-6.,. 3)

The length of vector T can be solved to be
/. = i —d,;

" cos(u+6)

By the basic kinematics of the ALV, the rotation radius R can
be found to be
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where d is the distance between the front wheels and the rear
wheels, and ¢, can be expressed as

l; =R\J2(1 —cosy) 6)
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according to [36]. From Egs. (4) and (6), we get

d, —d, _ dy2(1-cosy)

cost+0) T, v
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Replacing ¥ by 6, — 8., , the direction of T is determined

by the angle
Hi cos@, - B cos@ HE
U=tan” B U = ®)

ﬁAsinBi —BsinMEﬁ
o 2 0

A= \/2d2(1 - COS(GI- _9i+l))’
B = di+l _di'

Similarly, if the ALV turns to the left from P, to P, , i.e.,
if 8,, >0,, the direction of T can be determined by the

angle
AcosO, + B coségi;& HE

D% (10)

Asin@, + Bsin JL ~bi HE
o 2 0

Then the components of the translation vector
T =(x,,y, ) are solved to be

where

©

i
u=tan™ a— 1)
]

xXp =4, cos U,

: (11)
Yy =L, sinl.

The above vision-based kinematic model is used only
when no location error exists during ALV navigation. If
location error exists during ALV navigation, the vision-based
kinematic model may be unsuitable for use and an additional
control-based kinematic model is used to compensate for the
deficiency of the original vision-based model. The location
error mainly results from the wheel slippage, the unflatness
of the road surface, and/or the coordination transformations,
etc. Fig. 2 illustrates one case of the location error, where the
ALV location in cycle i and i+1 are (0, 0) and (d,0),
respectively, for d #0 . Since the ALV trajectory between
two continuous navigation cycles is assumed to be a circle,
the ALV can never reach the location (d, 0) in cycle i+1
and location error will exist in cycle i+1. If the two
continuous ALV locations (0, 0) and (d, 0) are used to
find their translation based on the vision-based kinematic
model described above, an unreasonable solution will be
produced. For this, the following navigation checking rule is
used to decide whether the vision-based kinematic model is
applicable.

Navigation checking rule:

if 6, <0,thenif §<0,then 6, <6, and d,,, >d,
elseif >0,then 6, >0,
else(6=0) 6,,, =0, and d,,, >d,
elseif 8, >0,thenif §>0,then 6, >0, and

d, <d

elseif 0 <0,then 6, <6,
else(0=0) O,,, =6, and d,,, <d,
else (6, =0)if 0<0,then 6, <6, and d,,, >d,
else if 0>0, then 68,,>6, and

d,. <d

i+1 i

else(0=0) O,,,=0and d,,, =d,, (12)



where the distances d, and d,,, are positive to the right
relative to the central path line, the pan and turn angles 0,

0., ,and O are positive to the left relative to the road
direction, and the value of J can be obtained by checking
the ALV control system.

If the values of d,, 0,, d,,,, 8, ,and O satisfy
the above navigation checking rule, they are used to compute
the translation vector from P. to P,,, based on the vision-
based kinematic model. Otherwise, the ALV location

(d;.;,6.,,) in P, is unreasonable and a control-based

kinematic model is proposed, which uses the ALV control
information to compute the translation vector. The
con(liputation process based on the control-based kinematic
model is described as follows. As shown in Fig. 1, let S
denote the travelled distance from P, to P, , which can
obtained from the counter of the odometer in the ALV control

system. Then, angle Y can be expressed by

Yy=S/R.

Since R can be determined by Eq. (5), where O can be
obtained by checking the ALV control system, angle Y can

be determined accordingly, and the length £, of vector T

expressed in Eq. (6) can thus be solved. Since the direction of
T is determined by

mo. Y
:_—5—_’
H 2 2

the components of the translation vector expressed in Eq. (11)
can be solved. . .
The computed translation vector is then used together

with the ALV location (d,,0,) in P, to estimate a

reasonable ALV location in P

>« When the control-based

kinematic model is used. Let (d,,,,0,,) denote the
estimated ALV location in P, . Then, if 0<0, as

illustrated in Fig. 1, d,,, and 6.,,, are solved to be

i =d; + 1 cos(U+6))

(13)

(14)

0, =6, -y. (15)
Otherwise (8 20), d,,, is solved by
diy=d, —lycos(U—-0,), (16)

and 91-;1 is identical to that expressed in Eq. (15).

Note that if d,,, =d,, 6,,,=6,=0, and =0,
we cannot derive the translation vector using the vision-based
kinematic model even when the navigation from P, to P,

is judged to be reasonable by checking the values of d,, 8,,

d;,, 0., ,and O in the navigation checking rule. In this
case, the control-based kinematic model is used, and the

components of the translation vector 7 from P, to P, are
just

x; =0,
yr =8.

The vision-based kinematic model combined with the
control-based kinematic model and the navigation checking
rule enables the ALV to achieve reliable and fault-tolerant
navigation.

2.2 Object Shape Prediction in Next Cycle

Several  coordinate  systems and  coordinate
transformations are used in the prediction process. The image
coordinate system (ICS), denoted as u-w, is attached to the
image plane of the camera mounted on the ALV. The camera
coordinate system (CCS), denoted as u-v-w, is attached to the
camera lens center. The vehicle coordinate system (VCS),
denoted as x-y-z, is attached to the middle point of the line
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segment which connects the two contact points of the two
front wheels of the ALV with the ground. The x-axis and the
y-axis are on the ground and parallel to the short and the long
sides of the vehicle body, respectively. The z-axis is vertical
to the ground. The transformation between the CCS and the
VCS can be written in terms of homogeneous coordinates
[37,38] as

Ol 0 0, r, ns
O N
0 1 0 o0 7, T
(uvw1)= (xyzl)D M "2 "
go 0 1 Oy, ry ny
%—xd YV, —Z4 1%0 0 o0
where (a
r, = cosfBcos¢ +sinBsingsing,
, =—sinfcos@,
1, = sin@sing@cos@ —cosOsing,
ry, =sinfcos¢ —cosOsin @sin @,
1y, =cosfcosg,
1y, = —cos@sin@cos$ —sinfsing,
ry = cos@sing,
1y, =sing,
ry; =Cos@cosg, ¢!

and Ois the pan angle, @the tilt angle, and ¢ the swing angle,

of the camera with respect to the VCS; and (x,,¥,,2,) is
the translation vector from the origin of the VCS to the origin
of the CCS.

To predict the shape boundary of an object in the ICS in
the next cycle, we first find the ICS coordinates of all the
boundary points representing the shape of the object in the
image of the current cycle. We t%en backproject each
boundary point of the object in the ICS into the VCS, based
on the assumption that the height of the boundary point in the
VCS is zero, i.e., its z coordinate is zero, to obtain the 2-D
VCS coordinates (x, y) of the boundary point in the current
cycle. By using the translation vector derived previously, the

2-D VCS coordinates (x',y') of the boundary point in the
next cycle can be found, as illustrated in Fig. 3, where

0,>0, 8, <0, and the components of the translation
vector are (x;,y,). In the figure, the VCS coordinates

(x',y") of point Pin cycle i+1 is solved to be

x = (x=x; )COS(6i+1 - 61’ Hy =y, )Sin(6i+1 - 61‘)

9)

y = (x; =x)8in(B,,, =6,)+(y = y;)cos(6,,, —6,) . (20)

After the backprojection and translation processes, we project
the backprojected and translated boundary point in the VCS

into the ICS to predict the ICS coordinates (u, w) of the

boundary point in the next cycle and the prediction process is
finished. The backprojection and projection principles are
described as follows.

(1) Backprojection principle: As shown in Fig. 4, assume
that point P in the image has the CCS coordinates

(u,,~f,w,) where (u,,w,) indicate the position in the
image, i.e., the ICS coordinates, and f is the focus length.
After backprojecting the point P in the image into the VCS,

we can get a line L that passes P and the lens center O, . Let

P’ denote the intersection point of this line L and the
horizontal plane z = h. Using Eq. (18), we get the VCS
coordinates (x,,y,,z,) ofpoint P in the image as

X, =u, (cos@cosl,U +sin0sin(psin(,ll)+ f(sin@cos(p)+

w, (sin9 sin @cosy +cos @ cosl,U)+ Xy,



v, = up(sinecosl,u +cos9sin(psin([l)—f(cos@cos(p)—

w, (cos@sinq)cosl,u +sin95in([l)+ Vs

z, =u,(cos@sing)- fsing+w, (cosOcosy)+z,. (21)

Additionally, the equation of line L can be expressed as

X7Xa _V7Va _ 2724 =k

'xp_'xd yp_yd Zp_Zd

(22)

where k is a constant. By substituting z =4 into Eq. (22),

the VCS coordinates (x'p,y'p,zvp) of point P can be
solved to be

o h-z, ( )
X, =X, +—xp - Xy

Zp_Zd
, h-z
ypzyd+—do/p_yd)’

Zp_Zd
z;,=h. (23)

Since we backproject each boundary point in the image into
the VCS using the assumption that the height of the boundary

point in the VCS is zero, we substitute 2 = 0 into Eq. (23)
and the desired 2-D VCS coordinates (x'p, y'p) of point

P’ are solved to be

v dexp_xd)
.Xp s 7 —
Zp T2y
' Z( _y(
=y, - e T) @4)
ZI—’ —Z,

(2)Projection principle: as shown in Fig. 4, assume that
point P has the VCS coordinates (x'p,y'p,z;). After

projecting the point P " in the VCS into the ICS, we get its
corresponding space point P in the ICS. Since the lens center
O, has the VCS coordinates (x,,1,,z,) as given in Eq.

(18), the distance between P and O, denoted as D, is
calculated to be

p=le,-x,f +(, -v.f + 6 -2 e

Let (x,,7,,z,) denote the VCS coordinates of the

corresponding point P in the image. Then the following
equation is satisfied:

2,72, _f+D

zZ,"z2, D

X)Xy Ve TV _
Ya ~ y};
where f is the focus length and K is a constant. The VCS
coordinates of point P can be solved accordingly to be
x, =Ky, =x, )+,
o =Kl =2, )+,
z =K(2d —Z;D)+Z;J. 27)

P

, =K, (20)
X, =X,

Since we assume that the height of the boundary point in the

VCS is zero, we substitute zyp =0 into the above equations

for further simplification. Using the transformation between
the CCS and the VCS described in Eq. (18), we can get the

CCS coordinates (u,,=f,w,) of point P, and so the

desired coordinates (u,,w,) of point P in the image.
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2.3. Shape Matching

To judge whether an object O is an obstacle in the
current cycle, we extract its shape (represented by the shape
boundary points) in the image of the previous cycle, and
predict its shape in the image of the current cycle using
coordinate transformation techniques based on an assumption
stated and derived previously. Let P denote the predicted
shape boundary and £ denote the extracted shape boundary
of the object in the image of the current cycle. To match P
and E, we overlap them and compute the measure of the
distance-weighted correlation (DWC) [34] to check the

similarity between them. First, the minimum distance d, of
a boundary point b in P or E is defined to be the Euclidean
distance between b and its closest point in the other shape.

And the weight W,f of b is defined to be

L 0/lar+1) ifo<a, <k,
w, =01
0 0

where k is a constant that limits the distance within which the
closest point of b is searched for. Then the distance-weighted
correlation is defined to be

) (28)
otherwise,

DWCk(P,E)=% lzwiuszfE (29)

p 0P Ny jinry

where N, and N are the total numbers of the boundary
points in P and E, respectively. It can be easily verified that

0< DWC*(P,E)<1. The value of DWC* (P, E) is then
checked to judge whether the object O is an obstacle. If the
value is greater than a certain threshold value, say 7H 1,
where 0<TH 1<1,itis decided that O is not an obstacle
because P and E are strongly similar, as illustrated in Fig.
5.5(a). Otherwise, it is decided that O is an obstacle as
illustrated in Figs. 5.5(b) and 5.5(c). In 5.5(b), P and E are
partially similar; and in 5.5(c), P and E are strongly
dissimilar.

3. Proposed Obstacle Avoidance Method
3.1. Navigation Point Selection

If no obstacle appears on the road ahead, we drive the
ALV to follow the central path line on the road using a
closeness distance measure from the ALV to the central path
line pr(%posed by Cheng and Tsai [36].

If obstacles appear on the road ahead, we compute a
safe navigation point and drive the ALV toward this point for
obstacle avoidance. The navigation point is selected as
follows. For each boundary point of an obstacle, we compute
its corresponding angle that is defined as the angle between
the y-axis of the VCS and the line segment which connects
the boundary point and the origin of the VCS. This angle is
positive to ﬂ%’e left with respect to the y-axis of the VCS. And
we define the left extreme point LP as the boundary point
whose corresponding angle 1s the largest, and define the right
extreme point RP as the boundary point whose corresponding
angle is the smallest. Fig. 6 shows the LP and the RP of an

obstacle O, where the corresponding angle 6, of the LP is

the largest and the corresponding angle 8, of the RP is the
smallest. Then the proposed navi%lation point selection
method is illustrated in Fig. 7, where there are three obstacles

0O,, 0,,and O, ahead of the ALV on the road, and LP,

and RP, are the LP and the RP of obstacle O, , respectively,
fori=1, 2, and 3.

In the figure, RP, is the point on the left road
boundary that is the closest to LP,, and LP, is the point on
the right road boundary that is the closest to RP;. We then
compute the angle between the line segment connecting RP,
and O, (the origin of the VCS) and the line segment

connecting LP,, and O, ,fori=0, 1,2, and 3. From all of
the angles so computed, we find the largest one and let it be

Qk , k=20,1, 2, or 3. Then the middle point of the line



segment connecting RP, and LP,,, is chosen as the

navigation point. It can be seen from the figure that 8, is the
largest angle, so the navigation point is set as the middle

point of the line segment connecting RP, and LP,. This
way of choosing the navigation point can be further applied
to the case that there are more obstacles than three on the
road ahead.

If all of the obstacles ahead of the ALV appear in the
image simultaneously in the current cycle, they are extracted
from the image to find their LP’s and RP’s, and the
navigation point in this cycle is computed using these LP’s
and RP’s. In the next cycle, if all of the obstacles ahead of the
ALV still appear in the image simultaneously, they are
extracted ang the navigation point in this cycle i1s computed
in the same way as described above. But, if some of these
obstacles, which are still ahead of the ALV, disappear from
the image due to the angle of the camera view, they cannot be
extracted from the image to find their LP’s and RP’s. At this
moment, their LP’s and RP’s in this cycle are predicted using
their extracted LP’s and RP’s in the previous cycle. The
prediction process has been stated previously in Section 2.2.
These pre(Ficted LP’s and RP’s together with the extracted
LP’s and RP’s of the obstacles that appear in the image in
this cycle are then used to compute the navigation point in
this cycle.

In subsequent naviigation cycles, the navigation point is
computed cyclically until no obstacle is ahead of the ALV. At
this moment, the ALV heads back to the central path line
using the line following scheme described previously, and the
obstacle avoidance process is finished. Note that the chosen
navigation point may vary during ALV navigation since new
obstacles may appear in t1¥e image during navigation.

3.2. Turn Angle Computation

After the navigation point is chosen, the ALV turns an
angle to approach this point for safe navigation. The turn

angle computation is illustrated in Fig. 8, where P,:

(x,,»,) is the navigation point, £, is the distance
between P, and O, , R is the rotation radius, and O is the

n

turn angle of the front wheels we want to compute. From Egs.
(5) and (6), we can obtain the following equation:

cos U

tand =—f‘ (30)
i T
sinpg+-7/

Since /,, sinl,and cos U can be solved by

0, =\x2+y2, (1)

Sinp = —2n (32)
VX, * Y,

X

cosp = ——2—, (33)

NSRS

the desired turn
accordingly to be

2d
d=tan"" Eﬁ%
. vy, +2dy,

3.3. Precise ALV Location Estimation

angle of the front wheels is solved

The ALV keeps driving forward after an image is taken
at the beginning of each navigation cycle. After the image is
processed and corresponding algorithms are performed, the

ALV location at the time instant of image taking can be found.

At this moment, however, the ALV has travelled a certain
distance, and the current ALV location cannot be found by
vision-based information. To overcome this difficulty, the
system uses the ALV control information to estimate the

current ALV location. Let P, denote the ALV location at the

time instant of image taking, and Pl.' denote the current
ALV location after the ALV has travelled a certain distance.

(34
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Then, as described in Section 2.1, the translation vector T

from P, to R can be found by using the travelled distance
S and the pan angle O of the front wheels of the ALV from

P to P, and the current ALV location P, can thus be

estimated by using P. and T.

At the ending of each navigation cycle, the actual
current ALV location can be estimated as described above.
The ALV then drives from the actual current ALV location
toward the navigation point when obstacles appear on the
road ahead, or toward the central path for line following
when no obstacle appears on the road ahead.

4. Image Processing and
Experimental Results

Techniques

4.1. Image Processing Techniques

We use an ISODATA clustering algorithm based on an
initial-center-choosing technique [35], which can solve the
problem caused by great changes of intensity in navigations,
to divide the road image into three clusters according to their
intensity values: (1) cluster-0: dark area, like trees and the
tested black board on the road; (2) cluster-1: gray area,
coming from the main body of the road; and (3) cluster-2:
bright area, like the sky and the tested white boards on the
road. A real road image and its clustering result are shown in
Fig. 9, where the tested black and white boards on the road
are classified into cluster-0 and cluster-2 areas, respectively.

We then extract the road surface, which is the cluster-1
feature, from the binary image to find the ALV location and
the left and right boundaries on the road [35]. Next, we
extract the boundary points of the objects in the area bounded
by the two lines representing the two road boundaries from
the binary image [39]. The process is described as follows.
First, we use the Sobel operators, which have the advantage
of both differencing and smoothing effect, to find the
positions of the boundary points in the image.

Second, we scan the image to label the object boundary
pixels to find 24-connected components. Each component
represents one specific object shape. The 24-connected
component allows single broken points on its boundary in all
directions including the horizontal, vertical, and diagonal
directions as illustrated in Fig.10, where broken pixels exist
between pl and gl in the horizontal direction, between p2
and ¢2 in the vertical direction, and between p3 and ¢3 in the
diagonal direction, and all shape points are still connected.
Before the labeling procedure, we first define the candidate
24-neighbors of some point p that have the following

properties:
(1) for each candidate 24-neighbor ¢ of p, p and g are 24-
connected;
(2) if the u coordinate (the horizontal coordinate in the

ICS) of g is smaller than that of p, then the w

coordinate (the vertical coordinate in the ICS) of ¢ is

greater than or equal to that of p; and
(3) if the u coordinate of g is greater than or equal to that
of p, then the w coordinate of g is greater than that of
Fig. 11 é?hows a point p and its candidate 24-neighbors, which
are labeled with “x”. The labeling procedure of the 24-
connected component, which is extended from that of the 8-
connected component described in [39], is stated as follows.

Scan the input image pixel by pixel from left to right
and from top to bottom. The nature of the scanning sequence
ensures that when some pixel is examined, its candidate 24-
neighbors have been examined. Let p denote the pixel
examined currently in the scanning process. If p is not a
boundary point, simply move p to the next scanning position.
If p is a boundary point, check its candidate 24-neighbors for
labeling p. If all the neighbors are not boundary points,
decide that a new 24-connected component is encountered
and a new label is assigned to p. If some of the neighbors are
boundary points (have been labeled), assign the label of any
one of these boundary points to p and make a note that the
labels of these boundary points are equivalent. Then move p
to the next scanning position and examine p in the same way.
At the end of the scan, all boundary points have been labeled,
but some of these labels may be equivalent.

Finally, Warshall’s algorithm [40], which can save
much computing time, is employed to find the equivalent
classes from these labels, and a unique label is assigned to
each class. And the image is scanned again to replace each
label by the label assigned to its equivalent class. This yields
a set of 24-connected components, each of which represents
one specific object shape composed of the boundary points



that have the same label. Fig. 12(a) shows a real road scene
and the extracted boundary points, represented by the black
circles, of two objects on the road.

4.2. Experimental Results

Based on the proposed approach and algorithms, the
prototype ALV constructed for t%is study is tested and found
to be able to navigate safely and smootﬁly along part of the
campus road in National Chiao Tung University. The ALV
could follow the central path line when no obstacle appears
on the road ahead. And the ALV could decide whether the
tested objects on the road ahead are obstacles during
navigation, and could drive toward a safe navigation point to
avoid collision to the detected obstacles. A lot of successful
navigation tests confirm the feasibility of the approach. The
average cycle time is about 1.0 sec, and the average speed is
170 cm/sec or 6.2 km/hr.

Fig. 12 shows a sequence of real road images, their
clustering results, and the extracted and predicted boundar
points of some tested objects on the road ahead, whic
illustrate the obstacle detection and avoidance processes
when the ALV navigates along a road. In the figure, the road
boundaries are represented by the white lines, the extracted
and predicted boundary points of objects are represented by
the symbols of “.” and “x”, respectively, the navigation points
are represented by the white circles, and type-i objects, for i =
1, 2, or 3, are represented by Ti’s.

In Fig. 12(a), two boards newly appear in the image,
and the white board is classified into cluster-2 area and the
black board is classified into cluster-0 area. As defined
previously, they are type-1 objects in this cycle, and will be
Judged to be obstacles or not in the next cycle. In (b), the two
boards become type-2 objects that will be judged to be
obstacles or not in this cycle. After the shape matching
process, it is decided that the white board is an obstacle and
that the black board is not an obstacle. Then, the detected
obstacle (the white board) is used to derive the navigation
point, and a turn angle is computed to drive the ALV toward
this point for safe navigation.

In (c), the two boards in (b) become type-3 objects that
have been decided to be obstacles or non-obstacles in the
previous cycle, and two additional white boards (type-1
objects) newly appear in the image that will be judged to be
obstacles or not in the next cycle. Since the previous obstacle
in (b) still remains in the image in this cycle, it is extracted
and used to derive the navigation point in this cycle, and the
ALV keeps driving toward the navigation point. In (d), the
two type-3 objects in (c) disappear from the image, and the
two white boards in (d) become type-2 objects that are
judged and decided to be non-obstacles in this cycle. Hence,
no obstacle appears in the image in this cycle. But, due to the
angle of the camera view as described in Section 3.1, the
previous obstacle in (c) is still ahead of the ALV though it
disappears from the image. At this moment, we predict the
location of this hidden obstacle with respect to the ALV,
which is then used to derive the navigation point that is also
invisible in the image. And the ALV keeps driving toward the
navigation point.

In (e), the two white boards in (d) become type-3
objects and the ALV has reached the navigation point. At this
moment, no obstacle is ahead of the ALV, and the ALV
begins to head back to the central path line. In (f), one type-3
object in (e) disappear from the image and another type-3
object in (e) remains in the image, and the ALV igeps
heading back to the central path line. Finally, as shown in (g),
the ALV navigates on the central path line after navigation
for several cycles. In (g), one plastic bucket newly appears on
the road ahead, which will be judged to be obstacle or not in
the next cycle. It can be seen from the cluster-1 area in the
clustering result that the bucket Ig)artiall blends into the road.
In (h), the bucket is decided to be an obstacle after the shape
matching process, where the bucket also blends into the road
in this cycle. Then, a navigation point is derived, and a turn
angle is computed to drive the ALV toward the navigation
point. And the obstacle avoidance process for ALV
navigation described above is performed in the same way in
subsequent navigation cycles.

5. Conclusions

A vision-based approach to obstacle detection and
avoidance for ALV navigation in outdoor road environments
has been proposed. Several techniques have been integrated
in this study to provide a reliable navigation scheme. Vision-
based and control-based kinematic models have been
combined such that fault-tolerant ALV navigation can be

817

achieved. Backprojection and projection principles have been
used to predict the boundary points of objects in the next
cycle. The DWC correlation measure has been employed to
judge whether an object is an obstacle. A connected
component labeling algorithm and Warshall’s algorithm have
been implemented to extract effectively the boundary points
of objects on the road ahead with less computing time. When
obstacles disappear from the image but they are still ahead of
the ALV, their positions with respect to the ALV can be
predicted and used further to derive the navigation point. The
safe navigation point on the road is chosen appropriately
during navigation for obstacle avoidance. A sequence of real
road images has been used in experiments to test the
proposed obstacle detection and avoidance method along a
road. Successful navigation results confirm the effectiveness
of the proposed approach. Future research directions may
focus on recognition and representation of general objects on
roads, path planning, and environment sensing and learning,
etc.
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Fig. 5 Illustration of how to decide using the DWC
correlation measure whether a static object is an
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obstacle is detected. (c) Another obstacle is detected.

Fig. 6 Illustration of the definitions of the LP and the RP of
one object.
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Fig. 7 Ilustration of how the navigation point is chosen when
obstacles appear on the road ahead.
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(a) Two type-1 objects newly ap{))ear in the image in this
cycle, and whether they are obstacles will be judged in
the next cycle.

Cluster 0

Cluster 1

Cluster 2

(b) The two type-1 objects in (a) become type-2 objects that
are judged to be obstacles or not in this cycle, where the
white board is decided to be an obstacle and the black
board is decided to be a non-obstacle.

Cluster 0

Cluster 1

Cluster 2

Navigation Point

(c) The two type-2 objects in (b) become type-3 ob{'ects that
have been decided to be obstacles or non-obstacles in the
previous cycle, and two additional type-1 objects newly
appear in the image that will be judged to be obstacles or
not in the next cycle.

—> Cluster 1

(d) The two type-1 objects in (c) become type-2 objects that
are decided to be non-obstacles in this cycle. Note that in
this figure the two type-3 objects in (c) disappear from
the image though they are still ahead of the ALV.

Cluster 0

Cluster 1

Cluster 2

(e) The two t%pe-Z objects in (d) become type-3 objects and
no new object appears in the image in this cycle, while
the ALV has reached the navigation point and begins to
head back to the central path line.

Cluster 0

Cluster 1

Cluster 2

(f) One type-3 object in (e) disappears from the image, and
another type-3 object in (e) remains in the image in this
cycle, while the ALV keeps heading back to the central
path line.
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(g) One type-1 object newly appears in the image when the
ALV navigates on the central path line, and whether it is
an obstacle will be judged in the next cycle. Note that in
this figure the object partially blends into the road.
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(h) The type-1 object in (g) becomes type-2 object that is
decidgg)to be an obstacle in this cycle.

Fig. 12 A sequence of real road images, their clusterinlg) results, and the extracted and predicted boundary points of some tested

objects on the road ahead, which illustrate the o
when the ALV navigates along a road.

stacle detection and avoidance processes



