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ABSTRACT

An incremental-learning-by-navigation approach
to vision-based autonomous land vehicle "(ALV)
guidance in indoor environments is proposed. The
approach consists of three stages : initial learning,
navigation, and model updating. In the initial
learning stage, the ALV is driven manually, and
environment images and other status data are
recorded automatically. Then, an off-line procedure is
performed to build an initial environment model. In
the navigation stage, the ALV moves along the
learned environment automatically, locates itself by
model matching, and records necessary information
for model updating. In the model updating stage, an
off-line procedure is performed to refine the learned
model. A more precise model is obtained after each
navigation-and-update iteration. Used environment
features are vertical straight lines in camera views. A
multi-weighted generalized Hough transform is
proposed for model matching. A real ALV was used as
the testbed, and successful navigation experiments
show the feasibility of the proposed approach.

1. Introduction

1.1 Motivation

Because of the fast development of computer vision
techniques, vision-based guidance of autonomous
land vehicles (ALV's) has been intensively studied in
the recent years, and model-based methods are often
used in practical experiments. However, the
establishment of environment models is really a
time-consuming work. It is thus desired to design a
process for automatic modeling of . navigation
environments. With this process, it is not necessary to
measure the environment manually. Instead, just drive
the ALV manually once along the desired path, and all
jobs about initial model learning will be automatically
accomplished without human involvement.

However, certain problems arise when a fully
automatic model establishing process is performed.
The noise of image processing and the shake of the
ALV will reduce the accuracy of the obtained model.
Since the noise coming from image processing will
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not appear at the same place in each navigation cycle
and the error caused by ALV shaking may be
eliminated by averaging several observations, it is
possible that more training using multiple navigation
data will reduce the inaccuracy. This means that after
initial model learning, we could utilize the
information recorded in each navigation cycle to
update the original coarse model, and hopefully a
more reliable refined model could be obtained after
several navigation trainings. This leads to our study of
“incremental-learning-by-navigation” for ALV
guidance in indoor environments.

1.2 Survey of Related Studies

A lot of successful ALV systems have been
established for various purposes. For environment
learning, the autonomous mobile robot HERMIES
developed by Saussure et al. [1] includes a successful
learning system in which the robot, placed in an
arbitrary initial location without any prior
specification of its environment, successively
discovers and navigates around some obstacles,
searches for a desired target, and performs a learned
sequence of manipulations on the control panel
device. Lebegue and Aggarwal [2, 3] developed an
integrated system to generate architectural CAD
models using a mobile robot. The system consists of a
segment detector, a tracker and a CAD modeler
optimized for environments with prominent 3-D
orientations. Nashashibi et al. [4] proposed an
approach to build a rough geometric model for a 3D
terrain using a laser range finder. They also gave
algorithms to build snapshot models with planar faces
from range data, and to perform 3D data fusion
between these snapshot models, in order to build
incrementally a reliable 3D model [5]. Ishiguro et al.
[6] also presented a strategy for establishing models of
an unknown environment by a mobile robot. In their
implementation, panoramic sensing was used to
perceive the structure of the environment.

1.3 Overview of Proposed Approach

The goal of ALV learning and guidance of this
study is to equip the ALV with the capabilities to
explore the environment with its seflsors, construct an



appropriate model of the environment, and navigate
smoothly and safely in the learned environment.

The proposed approach. incremental-learning-by-
navigation for ALV guidance in indoor environments,
consists roughly of three stages. The first stage is
initial learning, in which the ALV is driven manually
along a path decided by the driver and the
environment images captured by the camera and the
control status data are recorded. Then, a certain off-
line procedure is performed to construct the initial
model. This is accomplished by calculating the
relation between the ALV and the environment
features observed in each learning cycle, and
matching the features with the partially learned
model. The second stage is to allow the ALV to
navigate automatically alone the desired path. And the
third stage is to update the learned model with the
information collected in the previous navigation. The
second and the third stages. namely, ALV navigation
and model updating, may be repeated several times in
order to obtain a more reliable model. The relation of
these three stages is illustrated in Figure 1.

The second stage, the navigation task, can also be
roughly divided into three phases. The first phase is to
calculate the relation between the ALV and the
environment features observed in the image taken in
the current cycle. The second phase is to perform a
model matching scheme so that the ALV can locate
itself accurately. The third phase is to drive the vehicle
toward a favorable direction by a control strategy. The
detailed procedure of navigation will be described
later.

Selecting stable environment features and
developing effective methods to extract these features
are the most important keys to success of model-based
ALYV guidance, especially to the model learning and
update works. In this study, we extract all vertical line
features in each environment image with no care
about what the lines really represent. One reason for
using vertical lines as features is that they can be
treated as points in the top view; this facilitates the use
of many well-developed point matching techniques to
locate the ALV. Another reason is that vertical lines
can be extracted more easily and stably by many image
processing techniques; this leads to the use of less
image processing time which is necessary for a real-
time navigation system.

The remainder of this paper is organized as
follows. In Section 2, the proposed method to extract
environment features for model learning and ALV
guidance is described. In Section 3, the proposed
“incremental-learning-by-navigation” approach is
described in detail. In Section 4, employed image
processing techniques and some experimental results
are presented. Finally, the conclusion of this paper is
given in Section 5.

2. Extraction Environment Features for
Model Learning and ALV Guidance

2.1 Coordinate Systems and Transformations

In the proposed ALV guidance process, the
following four coordinate systems are used to describe
the vehicle location and the navigation environment.

1. The vehicle coordinate system (VCS): denoted
as x-y-z. The origin V of the VCS is chosen to be
at the middle point of the line segment which
connects the two contact points of the two front
wheels with the ground. The x-axis and y-axis
are on the ground and parallel to the short and
the long sides of the vehicle body, respectively.
The z-axis is vertical to the ground.

2. The camera coordinate system (CCS): denoted
as u-v-w. The camera is associated with the
camera coordinate system whose origin C is
attached to the camera lens center. The v-axis is
coincident with the optical axis and the u-w
plane is parallel to the image plane.

3. The image coordinate system (ICS): denoted as
u-w. The image plane of the image coordinate
system is coincident with the u-w plane of the
CCS and its origin I is the image plane center.

4. The global coordinate system (GCS): denoted as
x"-y'-z'. The origin G of the global coordinate
system is located at a certain fixed position. The
x'-axis and y'-axis are defined to lie on the
ground.

Figure 2 shows these coordinate systems. Since the
origins of the ICS, CCS, and VCS are attached to
some points on the ALV, the ICS, CCS, and VCS are
moving with the vehicle during navigation. On the
contrary, the GCS is fixed and is defined to be
coincident with the VCS when the ALV is at the
starting position in the initial model learning stage.

The transformations between these four coordinate
systems can be found in [8] and [11]. Note that since
the ALV always navigates on the ground, the relation
between the two 2-D coordinate systems x-y and x"-y’
is sufficient to detecrmine the position and orientation
of the vehicle. In other words, the translation vector

(x;, , y;,) and the rotation angle @ of the ALV in the

x'-y' coordinate system determine the position and the
direction of the vehicle in the GCS, respectively.

In the following sections, the combination of the
vehicle position and direction is referred to the vehicle

location and is denoted by a triple (x;, y, ,a)) .

2.2 Ideas of Locating and Matching Vertical
Line Features for ALV Guidance

In this study, the term “vertical lines” are defined
to be the ones which are parallel to the z'-axis of the
GCS. Vertical lines may be the edges of walls,
windows, doors, bulletin boards, paintings on the
walls, and so on. Vertical line features provide
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abundant 3D information and may be collected to
serve as the basic elements of the environment model.
For simplicity, we only utilize those vertical lines
which appear nearly parallel to the w-axis of the ICS
in the captured images. This simplifies the work of
searching vertical lines in the image and also spceds
up the image processing procedure. However, this
requires that the swing angle be nearly zero, i.e., the
w-axis must be nearly parallel to the z'-axis, and the
tilt angle is small. This requirement must be satisfied
hen the camera is installed.

With no depth information, a single image is
asufficient for locating a vertical line in the GCS
without any heuristic. However, if a point on a certain
ertical line is known to be on a known plane, the
location of the line may be uniquely decided. In our
study, the intersection point of a vertical line with the
base line of the corridor is used to locate the vertical
line, since this intersection point is known to be on the
ground. The job of finding the intersection point can
be easily done by simpie image processing techniques.

The equations for calculating the VCS coordinates
of a point located on a known plane, e.g., on the
ground, are derived in (9] and [11]. By the way, if the

vehicle location, (xp',_vp‘,(u), is known, the GCS

coordinates of the vertical lines can also be obtained
by Eq. 1. In our approach, a rough estimation of the
vehicle location is firstly obtained by the use of the
information of the odometer, which gives the
navigation distance during a cycle. as well as the
photo-encoder. which feeds back the turn angle of the
front wheels. Then by matching the collected vertical
line features with those in the learned model, the error
in the rough estimation of the vehicle location can be
corrected, and so safe ALV guidance is feasible.

2.3 Multi-weighted Generalized Hough
Transform

As mentioned in the previous section, a vertical
line can be viewed as a point from a top-view. As a
result, the learned model, which is a collection of
some vertical line features, can be treated as a set of
points. or a point pattern. Thus, the ALV location
problem may be solved by a point matching scheme.
Our approach to point matching is based on a
modification of the distance-weighted generalized
Hough transform (DWGHT) proposed by Jeng and
Tsai [10]. The DWGHT is useful for inexact matching
of point patterns and may be emploved to detect or
locate object shapes with noisy or distorted boundaries
caused by image sensing or preprocessing, so it is
suitable for our application since our feature patterns,
the vertical lines, are often distorted by erroneous
image processing or by the shake of the ALV. The
basic idea of the DWGHT is to replace the unity
increment value used in the cell value incrementation
stage of the conventional generalized Hough
transform proposed by Ballard [12] with distance-

153

weighted increment values. The distance-weighted
(DW) cell value incrementation strategy for the
DWGHT for a certain cell C in the Hough counting
space can be describe as follows:
Jor each point P at (x,,y,) in the input point
pattern,
for each scale S,

Jfor each orientation (:), and
Jfor each displacement vector (r,0) ,

compute (x,y) =(x,,y,)+(rcosd,rsinf),
Jfor each cell NC at location (x',y") in

the neighborhood NH of cell C at (x,y),
set
H(x',y',§,€)) = H(x',y',§,é) +(d) (1)

where d is the Euclidean between C and NC, i.e.,

d = (x-x)? +(v-»)" , and the distance-weighted
function value W(d) is

W(d) = —

1+d* “

However, in the DWGHT, each point in the point
pattern has the same importance, and the weight value
only depends on the distance of the matched point
pairs, but not on the importance of the point itself. In
our approach, we propose the use a multi-weighted
generalized Hough transform (MWGHT), in which
each point is attached with an additional weight,
called the confidence weight.

There arc two reasons to add this new weight. First,
during the learning-by-navigation process, the
confidence of a feature point should be increased if the
corresponding vertical line appears at an identical
position again in the next image because multiple
occurrences of a vertical line indicate that the vertical
line feature is reliable. Second, it is found that the
errors of the feature points coming from locations far
from the vehicle are relatively larger than those of the
feature points near the vehicle. Two examples can
illustrate this fact. First, as shown in Figure 3, the two
segments are of the same length actually, but in the
perspective image, the further line segment looks
shorter while the nearer one looks longer. As a result,
image processing errors in pixel length may cause
relatively larger errors in the estimations of the
positions of further points. Second, Figure 4 shows the
errors caused by the variations of the tilt angle. Two
sources of variations of the tilt angle values are shakes
of the ALV and imprecise camera calibration results.
Let the errors caused by the variations of a tilt angle at
a short distance and at a long distance be p and ¢,
respectively. Also, let the distance between a further
point P, and the camera be s, and that between a

nearer point P, and the camera be r. If the variation of

the tilt angle is 6, then since @ is small, the errors
caused by the variation of the tilt angle for P, and P,

respectively can be written as :



p=rl, q=s6. 3)
Since r<s, we have p<q. The conclusion is that the
error due to the variation of the tilt angle is directly
proportional to the distance between the point and the
camera (or the ALV).

The above discussions show the need of a
confidence weight for each feature point. In the rest of
this section, an algorithm for the proposed MWGHT
will be presented. The algorithms for assigning and
updating the values of confidence weights will be
described in Section 3.3.

Algorithm 1: Multi-weighted generalized Hough
transform.

Input: An input point pattern N and a template

point pattern L.

Output: The displacement vector (x,,y,,y) which
transforms N to L through a translation
(x,,y,) and a rotation y .

Steps:

Step1. Set up a 3-D Hough counting space
H(x,,y,,y) including the maximum
reasonable displacement, and set all values
of the cells in H to zero.

Step 2. Increase the values of the cells in H
according to the following cell value
incrementation strategy:

Jor each point P, with location (x,,y,)
and confidence weight W, in template
pattern N,
Jor each rotation angle y ,
Jor each point Q, with location
(x,,¥,) and confidence weight W, in
input pattern L,
compute
(x,y) =(x,.7,)
—(x,cosy -y, siny,x, siny +y, cosy),
Jor each cell NC with location
(x',y',y) in the neighborhood NH of
the cell C at (x,y,y), set
H(x"y",y)
=H(x",)',7)
+W, W, - l ,
1+d(F,,0,)/ D,
where D, is a pre-selected constant, and
d(F,0,))
between £, and Q,, ie.,

2 2
d(P,0)=(x, %) +(, - 3) . ®
Step 3. Find out the location of the cell with the
maximum value in H.
Step 4. Exit with the corresponding displacement
vector (x,,y,, ¥) as the output.

@

is the Euclidean distance

Due to the limitation of computer memory space
and speed, a hierarchical version of the MWGHT is
used in our implementation. In the MWGHT, the
constant D, scales the distance weight function and

should be chosen carefully. If D, is too small, the

weight function will drop sharply while the distance
gets larger. As a result, the effect of the distance
weight is eliminated. If D, is too large, the value of

the distance weight function always approaches to

one, and consequently the value in each cell is nearly

the same and the real maximum cell value is no longer
. distinguishable.

3. Strategies for Model Learning and

ALYV Guidance

As mentioned in Section 1.3, the proposed
incremental-learning-by-navigation approach
consists roughly of three stages. In Section 3.1, an
algorithm for establishing the initial learned model
will be described first. In Section 3.2, the proposed
approach to guiding the ALV will be described next.
And in Section 3.3, the algorithm for updating the
learned model will be illustrated finally.

3.1 Construction of initial model

The goal of the first stage of the proposed approach
is to construct the initial model. The works for
establishing the initial model are accomplished by the
following algorithm.

Algorithm 2: Construction of initial model.

Step 1. Perform camera calibration.

Step 2. Drive the ALV manually to the starting
location, and set up the GCS of the current
model by the position and orientation of the
ALV.

Start the ALV.

Take an image of the environment using

the camera.

Record the counter of the odometer and the

turn angles of the front wheels.

Manually drive the ALV with a certain

distance and an appropriate turn angle.

If the ALV reaches the goal, go to Step 8 to

perform off-line processing; else, go to Step

4 for the next cycle.

Perform image processing to find the local

vertical line features in the image taken in

each cycle.

Step 9. Compute the VCS and the GCS coordinates
of the local features to form a local model.

Step 10. If the first cycle is processed, add the local
model to an empty model to form a global
model, and go to Step 16; otherwise, go to
Step 11.

Step 11.Extract desired feature points from the
learned global model with a certain window
in the VCS to form an extracted model.

Step 3.
Step 4.

Step S.
Step 6.

Step 7.

Step 8.
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Step 12. Perform the MWGHT to match the local
model with the extracted model.

Step 13. Compute the actual slant angle and position
of the ALV using the result of the previous
matching.

Step 14. Recompute the more precise GCS
coordinates of the local features according
to the actual slant angle and position of the
ALYV computed in the last step.

Step 15. For each local feature point p in the local
model, check if there exists in the learned
global model any feature point in the
neighborhood of point p. If there exists
none, add the point p to the learned global
model; otherwise, compute the weighted
centroid of point p and those points in the
learned global model within the
neighborhood of p, and add the resulting
centroid point to the global model (the
detailed computation process is described
in Section 3.3).

Step 16. Go to Step 9 if there exists a subsequent
cycle; otherwise, stop.

In Step 9, the estimated position and orientation of
the ALYV is used to calculate the rough GCS position
of the feature points. In our system, the estimated
position and orientation of the ALV can be obtained
by using the information of the feedback sensors,
namely, the odometer and the photo-encoder on the
front wheels. The equations to calculate the estimated
ALYV location are derived in [7].

Note that the processing time of the MWGHT is
proportional to the size of the data set. In order to
achieve the goal of real-time navigation, the
processing time of the MWGHT must be reduced.
This work can be done by extracting just the feature
points near the current ALV position from the learned
global model, instead of using the full set of the model.
Feature points which are impossible to appear in the
camera view, €.g., the points which are far away from
or behind the ALV, are of no help in the matching
process. Such feature points should be discarded to
speed up the matching. In our approach, a certain
window in the VCS are used to extract the desired
points from the learned global model (see step 11).

The positions of the feature points in the local
model are derived from the estimated ALV location.
After performing the MWGHT, the displacement
from the local model to the learned global model is
obtained. Note this displacement is also the
displacement from the estimated vehicle location to
the actual one. As a result, the actual vehicle location

(x",yp',w) can be obtained by :
x,'=X,+x, y,)=y,+y,, o=6-y, (6)
where (f - )7,,(?)) is the estimated vehicle location,

and (x,,y,,r) is the displacement vector.
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3.2 Steps of Navigation Cycle

Basically, an ALV navigation process includes the
tasks of grabbing and processing images, locating the
ALV, making guidance decisions, and executing
steering control procedures. The proposed navigation
process is described by the following algorithm.

Algorithm 3: ALV navigation process.

Step 1. Read the learned global model and the
planned path.

Step 2. Take an image of the environment using
the camera and compute the initial position

‘ and orientation of the static ALV.

Step 3. Start the ALV.

Step 4. Take an image of the environment using
the camera.

Step 5. Perform image processing to find the local
vertical line features.

Step 6. Compute the VCS and the GCS coordinates
of the local features to form a local model.

Step 7. Extract desired feature points from the
learned global model with a certain window
in the VCS to form an extracted model.

Step 8. Perform the MWGHT to match the local
model with the extracted model.

Step 9. Compute the actual slant angle and position
of the ALV using the result of the previous
matching,

Step 10. Re-compute the more precise GCS
coordinates of the local features to refine
the local model according to the actual slant
angle and position of the ALV computed in
the last step. Store the coordinates and the
confidence weights of the local features for
updating the model (see Algorithm 3
described later).

Step 11. Determine the turn angle of the front
wheels to guide the ALV close to the
extracted path portion and turn the front
wheels of the ALV (the details are
illustrated later).

Step 12.If the ALV reaches the goal of the desired
path, then stop; else, go to Step 4.

The scheme for adjusting the driving wheel
direction & in this study is based on the wheel
adjustment strategy described in [7]. The basic idea is
to search a turn angle of the front wheels to drive the
ALV as close to the desired path as possible. As shown
in Figure 5, given a reasonable moving distance S and
a fixed turn angle of the front wheels, the location of
the ALV can be estimated, as discussed in Section 3.1.
Given a path P, either a straight line or a circular
segment, define Df (5) as the distance from the ALV

front wheels to the given path P after the ALV
traverses a certain distance S with the turn angle 6,
where S may be assigned to be the average navigation
distance during a cycle. Also, define D} (5) as the



distance from the ALV back wheels to the given path
P. Finally, define measure L, tobe

Ly(8) = Dy (8) + D7 (9) . @)
To find the turn angle of the front wheel to drive the
ALYV as close to the path as possible, an exhaustive
search is performed to find the angle that produces the
minimal value of L, and the obtained angle is used
as the turn angle for safe navigation.

3.3 Strategies for Updating the Learned
Model

The proposed algorithm for updating the learned
model after a navigation training is described as
follows.

Algorithm 4: Strategies for updating the learned

global model.

Step 1. For each local feature point p recorded in
the navigation session, check if there exists
in the learned global model any feature
point in the neighborhood of point p. If
there exists none, add the point p to the
learned global model; otherwise, compute
the weighted centroid of point p and those
points in the learned global model within
the neighborhood of p, and add the
resulting centroid point to the global model.

Step 2. Normalize the confidence weights of the
feature points in the learned model.

Step 3. Discard those feature points whose
normalized confidence weights are smaller
than a certain threshold value 7.

Step 4. Adjust the confidence weight of the
primary point, defined to be the feature
point nearest to the origin of the GCS, to be
the maximum of all the confidence weights.

In Step 1, the size of the neighborhood can be
arbitrarily chosen. Choosing a large size of the
neighborhood would cause the combination of two
distinct feature points. Choosing a small size of the
neighborhood would leave unmerged a group of
feature points which come from inexact computation
results of a single feature point (i.e., a single vertical
line in the environment). However, the choice of the
neighborhood size does not affect the result of the
MWGHT too much. A reason is that, in the MWGHT,
several close feature points with small confidence
weights are equivalent to a feature point at the position
of their centroid and with a large confidence weight.

When new feature point is added into the model,
the initial confidence weight attached to this new
feature point P, is assigned by the following
equation :

1
W, = 8
R l+(x,,cs2 +y,,csz)/C’ o
where x,.; and y,.; are the x and y coordinates of
P, in the VCS, respectively, and C is a predefined

constant.

The coordinates (x.,y.) and the confidence
weight W, of the weighted centroid of a group of
points is calculated as follows :

_ 2 W xy _ 2 Wy _
TIw o e

&)
where (xp,yp5) and W, are the coordinates and the

Xc

confidence weight of a point P, in the group,
respectively.

In Step 2, the normalized confidence weight W,,‘ of
a feature point P, is calculated by the following

equation:
= /4
W, =m- il

2 Wy

where W is the original confidence weight of P,

(10)

and m is the number of feature points in the learned
global model.

Note that the average value of the normalized
confidence weights is always one. The normalized
confidence weight of a stable feature point will get
larger and larger during the learning-by-navigation
iterations, while the weight of a noise feature point
will get smaller and smaller. When the normalized
confidence weight of a feature point gets lower than a
certain threshold, the feature point is regarded as
noise. Such a kind of feature point contributes nothing
in the matching scheme, and thus may be removed
from the learned model (see Step 3). After a sufficient
number of learning-by-navigation iterations, only
stable feature points are left in the learned global
model and all noise points will be removed.
Consequently, the goal to establish a stable and
practical model for the guidance of the ALV may be
achieved.

The primary point mentioned in Step 4 is chosen to
be the one closest to the origin. It is also the nearest
feature point to the starting location of the ALV in
each navigation session. It plays an important role in
determining the initial location of the ALV. In real
navigation trainings, the primary point can usually be
found in just one or two cycles in the whole navigation
session. It contrasts with other feature points which
might appear in four or more captured images in the
navigation cycles. As discussed in the previous
section, fewer occurrences result in smaller
confidence weights. Thus, in order to emphasize the
importance of the primary point, it is assigned with
the maximum confidence weight in Step 4.

4. Experimental Results

The image processing work of our system can be
divided into three steps. The first step is to find
vertical edges. In the second step, the Hough
transform is performed to detect vertical lines using
the edge points. To speed up the system, only nearly
vertical lines are searched. The third step is to find the
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cross points of the detected vertical lines and the base
lines of corridors. Then the cross points are used to
locate our vertical line features, as discussed in
Section 2.

The ALV learning and navigation experiments
were performed in a building corridor in National
Chiao Tung University. By using the proposed
approach, many successful navigation sessions have
been conducted. The navigation speed of the vehicle is
about 20cm/sec. The computation time of a navigation
cycle ranges approximately from 1.5 to 3.5 seconds for
different images. Figure shows an example of learned
global models. Figure 6(a) is the initial learned model,
and Figure 6(b) is the refined model after five
iterations of learning-by-navigation. There are totally
39 and 22 feature points in Figure 6(a) and Figure
6(b), respectively. The crosses and the spots in Figure
6 represent the feature points whose normalized
confidence weights are larger and less than 1.0,
respectively. Thus, the crosses are real vertical lines,
and the spots might be noise. By observing Figure 6,
we can find that some noise points were eliminated
during the incremental learning process. This shows
the effectiveness of our approach. Figure 7 shows the
trace of the ALV in one navigation session. In the
figure, the black squares represent the trace of the
ALV, the little black spots represent the vertical line
features, and the gray straight line represents the
planned path. Note the closeness of the ALV trace to
the planned path.

5. Conclusion

An incremental-learning-by-navigation approach
has been proposed for ALV learning and navigation in
indoor corridors. Computer vision techniques have
been proposed to locate an ALV by the use of the
vertical line features in a corridor. The approach is
reliable because of the robustness of the proposed
MWGHT matching scheme. It is also flexible because
the learned environment model can be updated after
each navigation session. Each navigation session
becomes a training to the ALV, even a coarse initial
learned model can be refined to be a more precise one
after several passes of navigation. The proposed
approach has been implemented on a prototype ALV
and successful navigation sessions in real time
confirm the effectiveness of the approach.
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Initial learning stage

Navigation stage

Figure 5

Model-updating stage

Figure 1. Illustration of the proposed “incremental-
learning-by-navigation” approach

image plane

Figure 2 : The four coordinate system ICS, CCS,
VCS and GCS.

Figure 6 :
Figure 3 : A view of the navigation environment. The
further line segment looks shorter in the
captured images, while the nearer one looks
longer. Both line segments are of the same
length actually.
Figure 7:

rags

—=>{ g =

Figure 4 : Illustration of position estimation error due
to the little variation of the tilt angle.
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: Illustration of adjustment of the front

wheels in a path.

(@) (b)

An example of learned global models. (a)
Initial learned model. (b) Refined model
after five iterations of incremental-
learning-by-navigation. =~ The  crosses
represent real vertical lines and the spots
are noise. Note the removal of some noise

points.

LN

Illustration of the top view of a navigation
session. The black squares mark the trace of
the ALV, the gray line within the black-
square trace is the planned path, and the
little black spots are extracted feature
points. Note the closeness of the ALV trace
to the planned path.
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