
 1

AUTOMATIC GUIDANCE FOR INDOOR CAR PARKING USING
AUGMENTED-REALITY AND OMNI-VISION TECHNIQUES†

1Jair Chen (陳頡) and 2Wen-Hsiang Tsai (蔡文祥)

1Institute of Multimedia Engineering
2Department of Computer Science

National Chiao Tung University, Hsinchu, Taiwan
Emails: pplinlin2@gmail.com, whtsai@cis.nctu.edu.tw

ABSTRACT
An augmented reality (AR)-based car parking

guidance system is proposed to help a driver to save
parking time, which has the functions of finding empty
parking spaces automatically, planning an optimal path to
an empty space, and displaying the path in an AR way on
a mobile device to guide the driver to reach to the
selected space. To detect and track a car driven in the
parking lot, a car localization method by uses of 3D
car-shape bounding boxes as well as the constraint
information of the car speed and turning curvature is
proposed. To find empty parking spaces in the parking lot,
a dynamic environment learning technique and a
parking-space detection method based on the use of 3D
bounding boxes again are proposed. For path planning,
the Dijsktra algorithm which yields a shortest path from
the current car location to a selected empty parking space
is employed. To guide the driver, also proposed is an
integrated method for generating a perspective-view
image from a fisheye image, on which the planned path is
augmented. Finally, good experimental results showing
the feasibility of the proposed system are also included.
Keywords: automatic guidance, augmented reality, car
tracking, empty parking-space detection, fisheye image,
mobile device.

1. INTRODUCTION
Finding an empty space to park a car in a parking lot

is often a problem, especially in a crowded metropolitan
area. A feasible solution is to design a method to conduct
the functions of finding empty parking spaces
automatically and guiding the driver to a selected space in
an augmented reality (AR) way. The function may be
implemented as an APP which is installed on a mobile
device like an iPhone or an iPad. And the AR information
may be designed to be the shape of a directed arrow
representing a path leading to a destination parking space.
The mobile device may be held by the driver or a
passenger in the car, or even by a user outside the car
before the car is driven into the parking lot, as illustrated
in Fig. 1. To keep safe driving, the mobile device may
also be affixed firmly in front of the driver for convenient
observation. By following the augmented guiding arrow
on the mobile-device screen, the driver can drive the car

2 Wen-Hsiang Tsai is also with the Dept. of Information
Communication, Asia University, Taichung, Taiwan 41354.

to reach the selected empty parking space. A system with
these capabilities will be of great help to a driver to save
parking time. In this study, it is desired to design such an
automatic system for empty parking-space finding and
AR-based driving guidance in a parking lot.

(a) (b)
Fig. 1: Proposed AR-based guidance system for car parking. (a) An
illustration. (b) An image of a parking lot used in proposed system.

There are more and more researches about vehicle
guidance systems using various techniques recently.
These systems adopted different types of car positioning
and AR techniques to meet the requirements for vehicle
navigation. About the car positioning technique, Chen and
Tsai [1] proposed a park-area navigation guidance system
using circular sidewalk landmarks in the park; and by
using the omni-image taken with an omni-camera placed
on top of the vehicle, the vehicle position is computed as
the top-view distance from the circular-shape center to
optical center of the omni-camera. Wei and Tsai [2]
proposed a system for the similar purpose by detecting
line features on along-path buildings in omni-images and
compute the vehicle position by line-feature matching
using a longest common subsequence algorithm. Betke
and Gurvits [3] proposed a car localization method by
identifying landmarks in car surrounds to find their
locations on an environment map. Wu and Tsai [4]
proposed a method of using various combinations of line
features to localize the vehicle. Recently, Kurz, et al. [5]
introduced the first publicly available test dataset with
ground truth values for outdoor handheld camera
localization. About the AR technique, Hsieh and Tsai [6]
proposed an indoor navigation system displaying the AR
navigation information with real-world images taken by
the camera on the mobile device. Kim and Dey [7]
proposed the idea of AR windshield displaying.

About parking-space detection technique, Blumer et
al. [8] detected vacant parking spaces by a single
perspective camera using edge and color information and
constructed the regions of parking spaces manually. Lixia
and Dalin [9] determined the vacancy of a parking space
based on image segmentation and local binary patterns,

 2

providing that the pixels of the parking space are known
in advance. And Shih and Tsai [10] proposed a method
for the same purpose by detecting lines in omni-images
directly using an elliptical-curve fitting technique.

In this study, we try to develop an AR-based guidance
system with the above-mentioned functions for use by a
car driver or a passenger after entering a parking lot,
which has the following capabilities: 1) locating the car in
a parking lot to inform the driver of his/her current
position; 2) finding empty parking spaces automatically
from omni-images acquired with fisheye cameras on the
ceiling; 3) showing the found parking spaces on a map
displayed on the mobile device for the user to select
manually, or for the system to choose automatically; 4)
planning a shortest navigation path to guide the driver to
the selected space; 5) displaying the planned path on a
mobile device in an AR manner (showing augmented
arrows leading to the found parking space), by which the
driver/user can inspect and drive accordingly to reach the
destination space.

The details of the proposed system will be introduced
in the remainder of this paper, with the configuration of
the proposed system and the system process being
described in Section 2, the process of “learning” an
parking-lot environment presented in Section 3, a
newly-proposed car detection method proposed in Section
4, a parking-space detection method and a path planning
process for guidance described in Section 5, an AR-based
method for generating a perspective-view image for
displaying on a mobile-device screen proposed in Section
6, and some experimental results presented in Section 7,
followed by some conclusions in the last section.

2. SYSTEM DESIGN AND PROCESSES

2.1 System Design
As shown in Fig. 2(a), at first we affix a number of

fisheye cameras on the ceiling of the parking lot where
the proposed system is to be applied. The cameras are
used to acquire images of the parking-lot environment,
from which augmented images displayed on the
mobile-device screen is constructed. Also, the system is
constructed to be of a client-server structure. The server,
which is located at a remote site and connected to the
fisheye cameras through an Ethernet, is designed to
conduct the works of planning a path from the car
location to a selected empty parking space and sending
the navigation information to the client which is run on
the user-held mobile device. When a driver enters the
parking lot, the client is connected to the server through
the network, and starts to receive the navigation
information from the server and display augmented
images on the mobile device.

2.2 Learning Process
The software operations of the proposed system

include two processes  learning and navigation. The
first goal of the learning process is to establish an
environment map, which includes the background
knowledge such as locations of the parking spaces and
paths in the parking lot required for the navigation
process. The second goal is to construct space-mapping

tables for use in generating the augmented image
displayed on the mobile device. Especially, as shown in
Fig. 2(b), four coordinate systems are used in this study
and three space-mapping tables are constructed to
transform image points between different coordinate
systems to generate perspective-view images of the
parking lot environment from which augmented images
for displays on the mobile device are created.

(a) (b)

Fig. 2: Hardware architecture of proposed system.

2.3 Navigation Process
There are four main tasks in the navigation process,

namely, 1) detection of empty parking spaces, 2) tracking
of cars, 3) path planning, and 4) generation of augmented
images for AR-based for car-parking guidance. In the first
task, environment images are acquired by use of all the
fisheye cameras and all empty parking spaces are
detected for selection by the system or by the user (the
driver or any passenger). In the second task, acquired
fisheye images are analyzed to detect empty parking
spaces and track cars in the images. The third task is path
planning, by which a suitable path is generated to guide
the driver from the current car location to the selected
parking space. The fourth task is AR-based guidance for
car parking, in which a perspective-view image with the
navigation path augmented on it, namely, an augmented
image, is generated and displayed. The approach adopted
in this study for this purpose is to generate the augmented
image using the fisheye image without using the camera
on the mobile device to take images.

3. CONSTRUCTING SPACE-MAPPING TABLE

3.1 Mapping between Fisheye and Top-view Image
To detect cars in the parking lot, we need top-view

images of the parking lot. For this, we conduct an
image-space mapping from the fisheye-image coordinate
system (FCS) to the map coordinate system (MCS), by
which we can obtain a top-view image of a part of the
parking lot environment from a fisheye image, i.e., we
regard the obtained top-view image as part of the
environment map. The entire process of space mapping
can be illustrated by Fig. 3. Firstly, we take an image of a
calibration cylinder with a grid pattern (shown on the
right-hand of Fig. 3), and find the corner points of it in
the image. Secondly, a space-mapping table TF is created
using a geometric model. Finally, a transformation from
the fisheye image into the top-view image can be derived
by looking up the space-mapping table TF.

More specifically, a calibrate cylinder as just
mentioned is constructed at first, which is shown in Fig.
4(a). Inside it is attached a chessboard-like grid pattern
whose squares are of the size of 22 cm2. The circles

 3

formed by the grids on the bottom are designed to have
increasing radii from inside to outside. Secondly, the
cylinder is placed under each of the fisheye cameras, and
an image of it is taken with the fisheye camera, which is
named a space-mapping image. An example is shown in
Fig. 4(b). Thirdly, a corner detector is applied to obtain
the corner points of the squares in the image, as shown as
the yellow points in Fig. 4(c). Subsequently, a
space-mapping function, described as a table TF, is
derived, by which we can compute the corresponding
location on the top-view image of each corner point in the
space-mapping image.

Fig. 3: An illustration of image space mapping between fisheye
image and top-view image.

(a) (b) (c)
Fig. 4: An illustration of the space-mapping cylinder.

In more detail, an illustration of the space-mapping
function is shown in Fig. 5(a) where the value r and h are
the radius and height of the cylinder, respectively; H is
the height of the fisheye camera with respect to the floor;
r1 is the distance of a corner point Pcb on the bottom of
the cylinder to the center of the cylinder; h2 is the distance
of a corner point Pcs on the “vertical” side of the cylinder
to the top of the cylinder which is an input known value.
The output variables are the two distances R1 and R2 of
the points Pcb' and Pcs' in the top-view image
corresponding to Pcb and Pcs, respectively, as shown in
the figure. According to the similar-triangle principle, we
have R1/r1 = H/h and R2/r = H/h2, leading to the results of
R1 = (H/h)r1 and R2 = (H/h2)r. For non-corner points,
the values of R1 and R2 are computed by interpolation. As
a result, every point in the space-mapping image is
mapped to a point in the top-view image using the
formulas R1 and R2. This mapping can be represented as a
table which is just Table TF mentioned previously.
Subsequently, given a fisheye image, we can then
transform it into a top-view image conveniently by
table-lookup using TF. An experimental result of
conducting such a mapping is shown in Fig. 5(b).

(a) (b)

Fig. 5: Mapping from fisheye images to top-view images. (a) An
illustration of notations involved in the mapping. (b) An
experimental result.

It is not difficult to figure out that the
previously-described mapping is reversible so that we
may construct a backward space-mapping table TR from
TF, which can then be used to map a top-view image back
into a fisheye image by table-lookup.

3.2 Forward Mapping from Fisheye Image to
Panorama Image

To generate the previously-mentioned augmented
image for displaying on the mobile-device screen, as
mentioned previously a forward space-mapping method
by table-lookup is proposed to transform a fisheye image
into a panorama image. The detail is described now. The
involved concept is illustrated by Fig. 6. At first, we
imagine to put the fisheye image on the ground and create
a virtual cylinder at the location of the fisheye camera
which is named point O. For each pixel P on the
panorama image to be constructed, we project it onto the

cylinder in the direction of the vector OP


 to get a
projection point F on the ground. We then assign the RGB
values of point F to be those of point P. Once all the
pixels on the cylinder are processed, transformation of the
fisheye image onto the desired panorama image is
completed. More specifically, according to the principle
of similar triangles, we have the equality: (FP2 + R)/H =
R/P1P, or equivalently, FP2 + R = RH/P1P . Accordingly,
the position of point F can be derived by the following
way:

2 1() (/)r rF C FP R e C R H P P e     
 

 (1)

where 1 1/|| ||re OP OP
  

, and F and C are regarded as

vectors. An experimental result is shown in Fig. 7.

(a) (b)
Fig. 6: The cylinder model used in space mapping from the fisheye
image to the panorama image. (a) Illustration of the mapping
scheme. (b) Involved notations.

(a) (b)
Fig. 7: An experimental result of forward mapping from a fisheye
image to a panorama image. (a) Input image. (b) Output image.

4. CAR DETECTION AND TRACKING BY
DOWN-LOOKING FISHEYE CAMERAS

Three methods have been developed sequentially in
this study to detect and track cars in the parking lot using
fisheye image. Each method is an improvement of the
precedent one, as described subsequently.

4.1 Car Localization by Use of 3D Bounding Boxes
A common technique in object detection is frame

differencing, which, however, results in inaccuracy when
the involved images are acquired by fisheye cameras.

 4

There are two reasons for this. The first is geometric
distortion found in fisheye images. To overcome this,
mapping of fisheye images into top-view images as
discussed above is adopted. The second reason is that 3D
information is not used in frame differencing because the
images are treated as 2D in the process. To remedy this,
we introduce a type of 3D box shape, called 3D bounding
box, and use it to “bind” the car shape found in the
fisheye image so that the car in the image can be detected
more effectively, as described the algorithm below.

Algorithm 1. Car localization by 3D bounding box.
Input: a fisheye image I and a background image B both

acquired by an identical fisheye camera.
Output: a parking-lot graph with a detected car located

on it.
Steps.
1. (Frame differencing and component labeling)

Compute the difference between input images, I and B,
to create a frame-difference image IF, find large
connected components in IF as possible car shapes,
and compute the location of each component (as the
average of all the points in the component).

2. (Car location approximation) Transform each found
component with location (i, j) in the fisheye image
into a component in the top-view image with location
(x, y) in the environment map using the forward
space-mapping table TF as illustrated in Fig. 8(a); and
regard (x, y) as the approximate location of a car
candidate.

3. (Finding car candidates) Create a 22 chessboard
(with four grid points) centered at the approximate
location of each car candidate on the environment
map, and put a bounding box on each grid point of the
chessboard, as illustrated in Fig. 8(b), resulting in four
bounding boxes.

4. (Selecting an optimal car candidate) Select an optimal
car candidate from all the four car candidates in the
following way: 4.1) initialize two backward
space-mapping tables TR1 and TR2, where TR1 is the
table for mapping the bottom part of the car, and TR2 is
the table for mapping the ceiling part of the car; 4.2)
regard each of the four bounding box, B, in the
environment map to consist of eight points P1~P8 with
P1~P4 forming the top, Btop, of the box and P5~P8
forming the bottom, Bbottom; 4.3) regard bounding box
B as a shape in the top-view image and transform it
into the fisheye image by transforming Btop and Bbottom
using tables TR1 and TR2, respectively and regarding
the result as a 3D polygonal solid shape G; 4.4)
superimpose G on the frame difference image IF and
count the number C of overlapping pixels; and 4.5)
select the car candidate among the four candidate ones
with the maximal number of overlapping pixels as the
optimal car candidate, as illustrated in Fig. 9, which is
then taken to be the detected car.

5. Draw the location (x, y) of the detected car on the
parking-lot graph O as output.

4.2 Car Detection by Prediction Using Knowledge of
Car Movement
The previous method localizes a car by the use of 3D

bounding boxes. However, the trajectory of the computed
car locations is not only discontinuous but also vibrating
as found in our experimental results. The reason is that
only the fisheye image is used as input. To improve the
result, it is found in this study some knowledge of the
physical limitation on the vehicle’s movement may be
utilized, as discussed in the following.

(a) (b)
Fig. 8: Car location approximation. (a) An illustration of the
process. (b) An illustration of finding car candidates using the
bounding box.

Fig. 9: An illustration of selecting an optimal car candidate.

The first limitation is the upper bound of the car
speed, that is, the driver cannot drive too fast in the
parking lot. Accordingly, we can make a limit which the
car speed cannot exceed. For example, thirty kilometers
per hour is a reasonable speed limit for driving in parking
lots. The second limitation is the minimum radius of
curvature through which the vehicle can turn. That is,
when the driver turns right, the car trajectory cannot be a
sharp 90o angle; instead, it should be a smooth curve.
Furthermore, when the driver turns the steering wheel to
the end and moves the car forward for a while, the
trajectory should be a circle; the location of the car should
not appear in this circle; and the radius of this circle is
just the minimum radius of curvature found in the car
turning trajectory. This knowledge is used in this study
for improving the last method for car localization. As a
summary, the movement of the car is restricted by the
upper bound of the car speed and the minimum radius of
curvature in car turning. As found in this study, these
restrictions cause the reachable range of the car
movement within an image processing cycle (i.e., during
the time duration between acquisitions of two image
frames) to form an area with the shape of a gingko leaf as
shown in Fig. 10(a), called a gingko-shaped prediction
area in this study, as discussed in the following.

At first, we derive the equation of the boundary of
this area as a proof of its shape  a gingko, which helps
us to decide whether an input point is within this area or
not. Referring to Fig. 10(b) for the notations, let r be the
radius of curvature by which a car is driven to turn, and
let f(r) specify the corresponding limitation of how far the
car can move forward in an image processing cycle. In
other words, f(r) specifies the scope of the gingko-shaped
prediction area. Let L be the maximum distance that a car
can move in an image processing cycle, which may be
decided in advance by the upper bound of the car speed
and the frame rate of the camera. Then, f(r), when
regarded as a vector, may derived to be

 () f r BC CE 
 

 (, 0) (cos , sin)r r r  

 5

 ((cos 1), sin)r r   (2)

where  =    =   [L/(2r)]2 =   (L/r) so that
(2) becomes

 () ((1 cos()), sin())
L L

f r r r
r r

    

 ((1 cos(/)), sin(/))r L r r L r  . (3)

(a) (b)

Fig. 10: Computation of gingko-shaped prediction area. (a) The
limitation of car moving resulting in a gingko-shaped area. (b) An
illustration of notations involved in proposed method.

Now, given an input point P on the environment map
with coordinates (x, y), we want to check if it is in the
gingko-shaped prediction area. For the answer to be
positive, it must be true that P can be specified by the
function f(r) with a certain radius r as illustrated in Fig.
10, or equivalently, P must be on a circle with its center C
being (r, 0) and its radius being r which is the distance
from point P to C. That is, we have the equality r = ||(x, y)
 (r, 0)|| which may be solved to get r = (x2 + y2)/(2x).
Then, with rmin denoting the minimum radius of curvature
of car turning and  denoting the angle between vectors

CB


 and CP


, it is not difficult to figure out that if r
satisfies the two conditions r > rmin and r < L, then the
input point P is in the gingko-shaped area. If this is true,
then we can regard P to be reasonable for use as the
approximate location of the car on the environment map.
Otherwise, we change the approximate location by adding
the distance of L/2 (unit of the orientation vector) to the
current location of P and take the result as the location of
a suitable candidate for the car. This approximate car
location is then taken as input to perform Algorithm 1,
starting from Step 2. By the way, it is noted that the
meanings of the above two conditions are: (1) r > rmin
means that the radius of car-turning curvature is in the
reasonable range; (2) r< L means that the distance for
which the car moves forward in an image processing
cycle is smaller than L.

4.3 Car Tracking by Uses of Track Continuity and
Virtual Fences

The method of car detection by prediction as
described in the previous section yields a more precise
location of the vehicle. However, the trajectory is not
smooth, either, as seen in the results of the experiments
we have conducted. The reason causing this problem is
that the continuity of the car orientation has not yet been
taken into consideration. If a car turns to the left in the
first frame, it cannot turn to the right immediately in the
next frame. In other words, dramatic changes in car
turning should not happen. The mentioned selection of
car candidates should be modified so as to avoid this
problem. Specifically, given an input car location P at
map coordinates (x, y), P must be on a trajectory within

the gingko-shaped prediction area as shown in Fig. 10,
and the trajectory is a portion of a circle with equation (x
 r)2 + y2 = r2. Taking a differentiation of the equation
leads to 2(x – r) + 2y(dy/dx) = 0 which may then be
solved to get the orientation of point P as dy/dx = (r – x)/y.
This restriction on the orientation of the car location may
be utilized in a modified version of Step 4 of Algorithm 1
to make the selection of the optimal car candidate to be
more effective, as is done in this study.

Furthermore, to have a start point of detection and
tracking, a 3D virtual fence is used in this study.
Specifically, in order to detect a car appearing in the
fisheye images for the first time after it enters the parking
lot, the 3D virtual fence is implemented essentially as a
3D bounding box like the one described previously in Sec.
4.1 for detecting cars. After being detected, a car will then
be tracked continuously by the system.

Some experimental results of applying various
modified versions of Algorithm 1 taking into
considerations of the above-discussed issues and their
solutions are shown in Fig. 11. The upper-left image
shows the output car trajectory which results from frame
differencing only, the middle-left image shows the output
trajectory of proposed car localization using 3D bounding
boxes, and the lower-left image shows the output
trajectory of proposed car detection by prediction. The
right-side image is the output of proposed car tracking by
uses of track continuity and virtual fences. As can be seen
from the figure, the precision of the detection and
tracking process gets higher and higher as the three
remedy methods are applied sequentially, resulting in a
smooth car trajectory finally.

Fig. 11: Experimental results of the three proposed methods with a
comparison of them.

5. PARKING-SPACE DETECTION AND PATH
PLANNING

5.1 Parking-space Detection
Background subtraction is commonly used as the first

step of detecting objects in an image, but it has two
disadvantages if a static background is used. The first is
that it requires all the objects (cars in this study) that we
want to detect not to appear in the background image.
However, this is not easy to satisfy by a parking lot
usually full of parked cars. The second disadvantage is
that the background may change during the car detection
process. For example, the brightness of a scene in the
parking lot may not be identical from morning to
afternoon. Therefore, it is impractical to use only a static
background which cannot vary when the surrounding
condition is changing. To avoid these disadvantages of
using a static image as the background, a dynamic
environment learning technique is proposed for use in

 6

empty parking-space detection, as described in the
following algorithm.

Algorithm 2. Dynamic environment learning and
empty parking-space detection.
Input: a fisheye image I and a list Llocation keeping the

locations of the parking spaces in a parking lot.
Output: an environment map O with the empty parking

spaces marked.
Steps.
1. (Initialization) Assign the input image I as the initial

environment background image B and create a list
Lempty for recording the emptiness condition of each
parking space in the parking lot.

2. (Dynamic environment learning) Acquire a new image
I' of the environment with each fisheye camera, and
analyze the image content to check whether the
environment covered by the camera (including the car
spaces and the lighting condition) has changed too
much; if so, update the background image B to be I'.

3. (Detection by use of 3D bounding boxes) For each
parking space S in the list Llocation, check in I' whether
S is empty or not currently; if so, update the emptiness
condition of the corresponding element in an
emptiness-condition list Lempty.

4. Check each parking space in list Lempty, and if it is
empty, then mark it up on the environment map O.

5. Repeat Steps 2~4 until the system is shut down.
The main part of the proposed dynamic environment

learning technique as described above is updating of the
background image B in every image processing cycle.
This is necessary if the environment has changed too
much. For example, when a car is parked in a parking
space or when it is driven away later, the image should be
updated. Fig. 12 shows an example of applying the
proposed process of empty parking-space detection using
the 3D bounding box.

Fig. 12: An example of empty parking-space detection.

5.2 Path Planning for Parking Guidance
By the proposed system described so far, not only the

locations of the car and the empty parking spaces have
been obtained but also the locations of the paths in the
parking lot are assigned in advance. Therefore, the most
suitable method for planning a navigation path for an
in-lot driver to follow is the single-source shortest path
algorithm. With no doubt, the most well-known shortest
path algorithm is the Dijkstra algorithm. The navigation
path from the entry of the parking lot to a selected empty
parking-space can be obtained efficiently by applying the
Dijkstra algorithm, as is conducted in this study.

6. AR-BASED GUIDANCE FOR CAR PARKING

6.1 Generation of Parking Guidance Image
In this study, the planned path is drawn on a

perspective-view image which looks like the scene seen
by the driver through the front window from his/her
viewpoint. An easy way to achieve this is to draw the
navigation path on an image taken with the camera built
in the mobile device. However, requiring the driver to
take images with the mobile device will endanger him/her
while driving. In order to generate a perspective-view
image without using the mobile-device camera, the only
image that we can use is the fisheye image captured with
the fisheye camera affixed on the parking-lot ceiling. In
this study, a two-stage method is proposed to achieve this
goal. The first stage is navigation path rendering and the
second is perspective-view image generation.

In the first stage, the navigation path is drawn onto
the fisheye image. For this, a fisheye image captured with
a camera with its scope covering a moving car is mapped
into a top-view image IT using the forward mapping table
TF mentioned in Sec. 3. Then, the navigation path
generated by the path planning algorithm mentioned in
Section 5 is drawn onto IT to create a new top-view image
IT'. Finally, IT' is mapped back into a fisheye image IF
using the backward mapping table TR mentioned in Sec. 3
as well. And in the second stage, a perspective-view
image is created from IF by mapping IF into a panorama
image IP, which is then cut properly to result in a
perspective-view image Iv as output whose sightline is the
same as that of the driver. The image Iv is finally
displayed on the mobile-device screen for the driver or a
passenger to inspect. An illustration of the above steps of
the proposed AR-based guidance process for car parking
is shown in Fig. 13, and some details of the process are
described in the following.

Fig. 13: An illustration of the guidance image generation process.

6.2 Perspective-view Image Generation
In the above perspective-view image generation

process, the driver’s viewpoint should be decided. For
this, at first it is noted that a panorama image can be
constructed in the form of a virtual cylinder from a
fisheye image, and we can get the perspective-view image
via this cylinder. This concept, mentioned before in Sec.
3.2, is illustrated in Fig. 14(a) from the need of computing
the driver’s viewpoint. In order to simplify the problem,
we transform the cylinder model into a circle model as
illustrated in Fig. 14(b). The circle model is the top-view
of the cylinder model. Every 3D sightline of the driver in
the cylinder model will form a 2D sightline in the circle
model. The mathematical property of the 2D sightline is
introduced in detail in the following to derive the driver’s
viewpoint.

Firstly, some notations are introduced. As illustrated
by Fig. 15(a) which shows the circle model, R is the

 7

radius of the panorama image cylinder, O is the location
of the fisheye camera, C is the location of the car, and

CL


 is the location vector of the car such that CL OC
 

.

Now, the driver’s view may be seen to be contributed by
many sightlines which are shown in orange color in Fig.
15(a). One line is taken without loss of generality and

shown in Fig. 15(b) where CO


 is the directional vector

of the sightline, A is the intersection point of the sightline
and the panorama image, and  is the azimuth angle of

the vector OA


.

(a) (b)

Fig. 14: An illustration of perspective-view image generation.

(a) (b)

Fig. 15: The notations used in the circle model for deriving the
driver’s viewpoint.

The values of the variables R and O are known in
advance. Given the input C which is the location of the

car and the vector CO


 which specifies the orientation of

the car, we want to decide the value of the azimuth angle

θ of the vector OA


, which defines the direction of the
viewpoint A of the driver from the location O of the

camera. At first, suppose c cOA L nO 
  

 where n is a

value to be determined, and let the length of this vector be

|| ||OA R


. Then, it is the equation || ||c cL nO R 
 

 that

we should solve to get n. By taking the squares of both
sides of the equation, we can get the following equality:

2 2 2 2|| || 2 || || 0c c c cO n nL O L R    
   

.

There are two possible solutions to n. One is positive, and
the other negative. We choose the positive one because it
means the right direction of the sightline, i.e., we take n to
be

2 2 2 2 2(1/|| ||)(() || || (|| ||))c c c c c c cn O L O L O O L R      
      

,(4)

where cL


 and cO


 may be computed by

c x x y yL L e L e 
  

; c x x y yO O e O e 
  

; (5)

with Lx and Ly being the x and y components of vector CL


,

respectively; Ox and Oy being the x and y components of

vector CO


, respectively, and
xe


 and
ye


 are the unit

vectors of the directions of the x- and y-axis, respectively.
Furthermore, we have

(cos) (sin)x yOA R e R e  
  

. (6)

On the other hand, we have c cOA L nO 
  

 which may

be rewritten as

() ()c c x x x y y yOA L nO L nO e L nO e     
    

. (7)	

Comparing (6) and (7), we can get two solutions for ,
namely, x = cos1[(Lx + nOx)/R] and y = sin1[(Ly +
nOy)/R]. Now, since the range of cos1 is from 0 to  and
the range of sin1 is from –π/2 to π/2, it is possible that θx
≠ θy. Therefore, we create a table, Table 1, in the
following for determining a unique value for θ from x
and y according to the properties of the quadrants.

Table 1. A truth table for computing azimuth angle  of vector OA .

θx > π/2 θy > 0 θ

True True θx

True False θy

False False 2π  θx

False True 2π + θy

7. EXPERIMENTAL RESULTS
Some experimental results of applying the proposed

system are shown here. The experimental environment is
a parking lot in National Chiao Tung University. There
are 25 parking spaces there, and four down-looking
fisheye cameras are installed on the ceiling, mainly above
the main paths in the parking lot.

The left-side image in each of Figs. 16(a) through (g)
is the car tracking result based on the use of car track
continuity which was described in Sec. 4. The yellow 3D
bounding box is the 3D virtual fence, and the red 3D
bounding box binds the detected car. And the right-side
images of Figs. 16(a) through (g) are the corresponding
locations and the trajectories of the detected car on the
environment map with the planned path also shown. The
results show that a car was driven into the parking lot,
and moved toward an empty parking space. Then, it was
parked into an empty parking space, the one with No. 63;
and the space on the map turns into gray, meaning that it
is occupied. The corresponding AR-based guidance image
is shown as Fig. 17. From these images, it can be seen
that the proposed method works effectively.

8. CONCLUSIONS
An AR-based guidance system for car parking in a

parking lot using multiple down-looking omni-cameras
has been proposed. Several techniques have been
proposed to implement the system as summarized in the
following. 1) An integrated method for car detection,
localization, tracking based on the uses of the 3D
bounding box and the gingko-shaped prediction area has
been proposed for finding the precise location of the
vehicle. The car location yielded by the method is drawn
onto a top-view map of the parking lot, on which the
driver (or a passenger) may inspect to know where his/her
car is located. 2) A new method for parking-space
detection based on the use of the 3D bounding boxe has
been proposed, by which the system can point out the
positions of empty parking spaces for the driver to choose

 8

or for the system to specify automatically. 3) A new
method for path planning in the parking lot has been
proposed, by which the system can plan a suitable
navigation path from the current car location to the
selected empty parking space. 4) An integrated method
has been proposed as well for generating a
perspective-view image, on which the selected navigation
path can be augmented. The method is based on several
stages of transformations starting from a fisheye image.
By following the navigation path augmented in the
perspective-view image which is then shown on the
mobile-device screen, the driver can be guided to reach
the selected empty parking space. Good experimental
results reveal the feasibility of the proposed system.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 16: An experimental result of car tracking and parking-space
detection

(a) (b) (c)

(d) (e)
Fig. 17: An experimental result of generating AR-based guidance
image for car parking.

9. REFERENCES
[1] B. C. Chen and W. H. Tsai, “A study on tour guidance

by car driving in park areas using augmented reality
and omni-vision techniques,” Proc. of 2012 Conf. on
CVGIP, Nantou, Taiwan, Aug. 2012.

[2] Y. C. Wei, B. S. P. Lin and W. H. Tsai, “Augmented
reality-based in-vehicle tour guidance in park areas by
vertical-line features in omni-images,” Proc. of 2013
Nat’l Computer Symp. - Workshop on Video & Image
Analysis, Taichung, Taiwan, Dec. 2013.

[3] M. Betke and L. Gurvits, “Mobile robot localization
using landmarks,” IEEE Trans. on Robotics &
Automation, Vol. 13, No.2, pp. 251-263, April 1997.

[4] C. J. Wu, “New Localization and Image Adjustment
Techniques Using Omni-Cameras for Autonomous
Vehicle Applications,” Ph. D. Dissertation, Inst. of
CSE, Nat’l Chiao Tung Univ., Hsinchu, Taiwan, 2009.

[5] D. Kurz, P. G. Meier, A. Plopski, and G. Klinker, “An
outdoor ground truth evaluation dataset for
sensor-aided visual handheld camera localization,”
Proc. of Int’l Symp. on Mixed & Augmented Reality,
Rio de Janeiro, Brazil, pp. 263-264, May 2013.

[6] M. Y. Hsieh and W. H. Tsai, “A study on indoor
navigation by augmented reality and down-looking
omni-vision techniques using mobile devices,” Pro. of
Conf. on CVGIP, Nantou, Taiwan, Aug. 2012.

[7] S. J. Kim and A. K. Dey, “Simulated augmented
reality windshield display as a cognitive mapping aid
for elder driver navigation,” Proc. of SIGCHI Conf.
on Human Factors in Computing Systems, Boston,
MA, USA, pp. 133-142, April 2009.

[8] K. Blumer, H. R. Halaseh, M. U. Arsan, H. Dong, and
N. Mavridis, “Cost-effective single-camera multi-car
parking monitoring and vacancy detection towards
real-world parking statistics and real-time reporting,”
Neural Information Processing - Lecture Notes in
Computer Science (LNCS), Vol. 7667, pp. 506-515,
2012.

[9] W. Lixia and J. Dalin, “A Method of Parking Space
Detection based on Image Segmentation and LBP,”
Proc. of 4th IEEE Int’l Conf. on Multimedia
Information Networking & Security, Nanjing, Jiangsu,
China, pp. 229-232, 2012.

[10] S. E. Shih and W. H. Tsai (2014). "A convenient
vision-based system for automatic detection of
parking spaces in indoor parking lots using
wide-angle cameras," IEEE Trans. on Vehicular
Technology, accepted and to appear.

