
 1

AUTOMATIC GUIDANCE FOR INDOOR CAR PARKING USING 
AUGMENTED-REALITY AND OMNI-VISION TECHNIQUES†

 

 
1Jair Chen (陳頡) and 2Wen-Hsiang Tsai (蔡文祥) 

1Institute of Multimedia Engineering 
2Department of Computer Science 

National Chiao Tung University, Hsinchu, Taiwan 
Emails: pplinlin2@gmail.com, whtsai@cis.nctu.edu.tw 

 
 

ABSTRACT 
An augmented reality (AR)-based car parking 

guidance system is proposed to help a driver to save 
parking time, which has the functions of finding empty 
parking spaces automatically, planning an optimal path to 
an empty space, and displaying the path in an AR way on 
a mobile device to guide the driver to reach to the 
selected space. To detect and track a car driven in the 
parking lot, a car localization method by uses of 3D 
car-shape bounding boxes as well as the constraint 
information of the car speed and turning curvature is 
proposed. To find empty parking spaces in the parking lot, 
a dynamic environment learning technique and a 
parking-space detection method based on the use of 3D 
bounding boxes again are proposed. For path planning, 
the Dijsktra algorithm which yields a shortest path from 
the current car location to a selected empty parking space 
is employed. To guide the driver, also proposed is an 
integrated method for generating a perspective-view 
image from a fisheye image, on which the planned path is 
augmented. Finally, good experimental results showing 
the feasibility of the proposed system are also included. 
Keywords: automatic guidance, augmented reality, car 
tracking, empty parking-space detection, fisheye image, 
mobile device. 

1. INTRODUCTION 
Finding an empty space to park a car in a parking lot 

is often a problem, especially in a crowded metropolitan 
area. A feasible solution is to design a method to conduct 
the functions of finding empty parking spaces 
automatically and guiding the driver to a selected space in 
an augmented reality (AR) way. The function may be 
implemented as an APP which is installed on a mobile 
device like an iPhone or an iPad. And the AR information 
may be designed to be the shape of a directed arrow 
representing a path leading to a destination parking space. 
The mobile device may be held by the driver or a 
passenger in the car, or even by a user outside the car 
before the car is driven into the parking lot, as illustrated 
in Fig. 1. To keep safe driving, the mobile device may 
also be affixed firmly in front of the driver for convenient 
observation. By following the augmented guiding arrow 
on the mobile-device screen, the driver can drive the car 
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to reach the selected empty parking space. A system with 
these capabilities will be of great help to a driver to save 
parking time. In this study, it is desired to design such an 
automatic system for empty parking-space finding and 
AR-based driving guidance in a parking lot. 
 

(a) (b) 
Fig. 1: Proposed AR-based guidance system for car parking. (a) An 
illustration. (b) An image of a parking lot used in proposed system. 

 

There are more and more researches about vehicle 
guidance systems using various techniques recently. 
These systems adopted different types of car positioning 
and AR techniques to meet the requirements for vehicle 
navigation. About the car positioning technique, Chen and 
Tsai [1] proposed a park-area navigation guidance system 
using circular sidewalk landmarks in the park; and by 
using the omni-image taken with an omni-camera placed 
on top of the vehicle, the vehicle position is computed as 
the top-view distance from the circular-shape center to 
optical center of the omni-camera. Wei and Tsai [2] 
proposed a system for the similar purpose by detecting 
line features on along-path buildings in omni-images and 
compute the vehicle position by line-feature matching 
using a longest common subsequence algorithm. Betke 
and Gurvits [3] proposed a car localization method by 
identifying landmarks in car surrounds to find their 
locations on an environment map. Wu and Tsai [4] 
proposed a method of using various combinations of line 
features to localize the vehicle. Recently, Kurz, et al. [5] 
introduced the first publicly available test dataset with 
ground truth values for outdoor handheld camera 
localization. About the AR technique, Hsieh and Tsai [6] 
proposed an indoor navigation system displaying the AR 
navigation information with real-world images taken by 
the camera on the mobile device. Kim and Dey [7] 
proposed the idea of AR windshield displaying.  

About parking-space detection technique, Blumer et 
al. [8] detected vacant parking spaces by a single 
perspective camera using edge and color information and 
constructed the regions of parking spaces manually. Lixia 
and Dalin [9] determined the vacancy of a parking space 
based on image segmentation and local binary patterns, 



 2

providing that the pixels of the parking space are known 
in advance. And Shih and Tsai [10] proposed a method 
for the same purpose by detecting lines in omni-images 
directly using an elliptical-curve fitting technique. 

In this study, we try to develop an AR-based guidance 
system with the above-mentioned functions for use by a 
car driver or a passenger after entering a parking lot, 
which has the following capabilities: 1) locating the car in 
a parking lot to inform the driver of his/her current 
position; 2) finding empty parking spaces automatically 
from omni-images acquired with fisheye cameras on the 
ceiling; 3) showing the found parking spaces on a map 
displayed on the mobile device for the user to select 
manually, or for the system to choose automatically; 4) 
planning a shortest navigation path to guide the driver to 
the selected space; 5) displaying the planned path on a 
mobile device in an AR manner (showing augmented 
arrows leading to the found parking space), by which the 
driver/user can inspect and drive accordingly to reach the 
destination space. 

The details of the proposed system will be introduced 
in the remainder of this paper, with the configuration of 
the proposed system and the system process being 
described in Section 2, the process of “learning” an 
parking-lot environment presented in Section 3, a 
newly-proposed car detection method proposed in Section 
4, a parking-space detection method and a path planning 
process for guidance described in Section 5, an AR-based 
method for generating a perspective-view image for 
displaying on a mobile-device screen proposed in Section 
6, and some experimental results presented in Section 7, 
followed by some conclusions in the last section. 

2.  SYSTEM DESIGN AND PROCESSES 

2.1 System Design 
As shown in Fig. 2(a), at first we affix a number of 

fisheye cameras on the ceiling of the parking lot where 
the proposed system is to be applied. The cameras are 
used to acquire images of the parking-lot environment, 
from which augmented images displayed on the 
mobile-device screen is constructed. Also, the system is 
constructed to be of a client-server structure. The server, 
which is located at a remote site and connected to the 
fisheye cameras through an Ethernet, is designed to 
conduct the works of planning a path from the car 
location to a selected empty parking space and sending 
the navigation information to the client which is run on 
the user-held mobile device. When a driver enters the 
parking lot, the client is connected to the server through 
the network, and starts to receive the navigation 
information from the server and display augmented 
images on the mobile device. 

2.2 Learning Process 
The software operations of the proposed system 

include two processes  learning and navigation. The 
first goal of the learning process is to establish an 
environment map, which includes the background 
knowledge such as locations of the parking spaces and 
paths in the parking lot required for the navigation 
process. The second goal is to construct space-mapping 

tables for use in generating the augmented image 
displayed on the mobile device. Especially, as shown in 
Fig. 2(b), four coordinate systems are used in this study 
and three space-mapping tables are constructed to 
transform image points between different coordinate 
systems to generate perspective-view images of the 
parking lot environment from which augmented images 
for displays on the mobile device are created. 
 

 
(a) (b) 

Fig. 2: Hardware architecture of proposed system. 
 

2.3 Navigation Process 
There are four main tasks in the navigation process, 

namely, 1) detection of empty parking spaces, 2) tracking 
of cars, 3) path planning, and 4) generation of augmented 
images for AR-based for car-parking guidance. In the first 
task, environment images are acquired by use of all the 
fisheye cameras and all empty parking spaces are 
detected for selection by the system or by the user (the 
driver or any passenger). In the second task, acquired 
fisheye images are analyzed to detect empty parking 
spaces and track cars in the images. The third task is path 
planning, by which a suitable path is generated to guide 
the driver from the current car location to the selected 
parking space. The fourth task is AR-based guidance for 
car parking, in which a perspective-view image with the 
navigation path augmented on it, namely, an augmented 
image, is generated and displayed. The approach adopted 
in this study for this purpose is to generate the augmented 
image using the fisheye image without using the camera 
on the mobile device to take images. 

3. CONSTRUCTING SPACE-MAPPING TABLE 

3.1 Mapping between Fisheye and Top-view Image 
To detect cars in the parking lot, we need top-view 

images of the parking lot. For this, we conduct an 
image-space mapping from the fisheye-image coordinate 
system (FCS) to the map coordinate system (MCS), by 
which we can obtain a top-view image of a part of the 
parking lot environment from a fisheye image, i.e., we 
regard the obtained top-view image as part of the 
environment map. The entire process of space mapping 
can be illustrated by Fig. 3. Firstly, we take an image of a 
calibration cylinder with a grid pattern (shown on the 
right-hand of Fig. 3), and find the corner points of it in 
the image. Secondly, a space-mapping table TF is created 
using a geometric model. Finally, a transformation from 
the fisheye image into the top-view image can be derived 
by looking up the space-mapping table TF. 

More specifically, a calibrate cylinder as just 
mentioned is constructed at first, which is shown in Fig. 
4(a). Inside it is attached a chessboard-like grid pattern 
whose squares are of the size of 22 cm2. The circles 
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formed by the grids on the bottom are designed to have 
increasing radii from inside to outside. Secondly, the 
cylinder is placed under each of the fisheye cameras, and 
an image of it is taken with the fisheye camera, which is 
named a space-mapping image. An example is shown in 
Fig. 4(b). Thirdly, a corner detector is applied to obtain 
the corner points of the squares in the image, as shown as 
the yellow points in Fig. 4(c). Subsequently, a 
space-mapping function, described as a table TF, is 
derived, by which we can compute the corresponding 
location on the top-view image of each corner point in the 
space-mapping image. 
 

 
Fig. 3: An illustration of image space mapping between fisheye 
image and top-view image. 

 

(a) (b) (c) 
Fig. 4: An illustration of the space-mapping cylinder. 

 

In more detail, an illustration of the space-mapping 
function is shown in Fig. 5(a) where the value r and h are 
the radius and height of the cylinder, respectively; H is 
the height of the fisheye camera with respect to the floor; 
r1 is the distance of a corner point Pcb on the bottom of 
the cylinder to the center of the cylinder; h2 is the distance 
of a corner point Pcs on the “vertical” side of the cylinder 
to the top of the cylinder which is an input known value. 
The output variables are the two distances R1 and R2 of 
the points Pcb' and Pcs' in the top-view image 
corresponding to Pcb and Pcs, respectively, as shown in 
the figure. According to the similar-triangle principle, we 
have R1/r1 = H/h and R2/r = H/h2, leading to the results of 
R1 = (H/h)r1 and R2 = (H/h2)r. For non-corner points, 
the values of R1 and R2 are computed by interpolation. As 
a result, every point in the space-mapping image is 
mapped to a point in the top-view image using the 
formulas R1 and R2. This mapping can be represented as a 
table which is just Table TF mentioned previously. 
Subsequently, given a fisheye image, we can then 
transform it into a top-view image conveniently by 
table-lookup using TF. An experimental result of 
conducting such a mapping is shown in Fig. 5(b).  
 

 
(a) (b) 

Fig. 5: Mapping from fisheye images to top-view images. (a) An 
illustration of notations involved in the mapping. (b) An 
experimental result. 

 

It is not difficult to figure out that the 
previously-described mapping is reversible so that we 
may construct a backward space-mapping table TR from 
TF, which can then be used to map a top-view image back 
into a fisheye image by table-lookup. 
 

3.2 Forward Mapping from Fisheye Image to 
Panorama Image 

To generate the previously-mentioned augmented 
image for displaying on the mobile-device screen, as 
mentioned previously a forward space-mapping method 
by table-lookup is proposed to transform a fisheye image 
into a panorama image. The detail is described now. The 
involved concept is illustrated by Fig. 6. At first, we 
imagine to put the fisheye image on the ground and create 
a virtual cylinder at the location of the fisheye camera 
which is named point O. For each pixel P on the 
panorama image to be constructed, we project it onto the 

cylinder in the direction of the vector OP


 to get a 
projection point F on the ground. We then assign the RGB 
values of point F to be those of point P. Once all the 
pixels on the cylinder are processed, transformation of the 
fisheye image onto the desired panorama image is 
completed. More specifically, according to the principle 
of similar triangles, we have the equality: (FP2 + R)/H = 
R/P1P, or equivalently, FP2 + R = RH/P1P . Accordingly, 
the position of point F can be derived by the following 
way: 

2 1( ) ( / )r rF C FP R e C R H P P e     
 

 (1) 

where 1 1/|| ||re OP OP
  

, and F and C are regarded as 

vectors. An experimental result is shown in Fig. 7. 
 

(a) (b) 
Fig. 6: The cylinder model used in space mapping from the fisheye 
image to the panorama image. (a) Illustration of the mapping 
scheme. (b) Involved notations. 

 

(a) (b) 
Fig. 7: An experimental result of forward mapping from a fisheye 
image to a panorama image. (a) Input image. (b) Output image. 

4. CAR DETECTION AND TRACKING BY 
DOWN-LOOKING FISHEYE CAMERAS 

Three methods have been developed sequentially in 
this study to detect and track cars in the parking lot using 
fisheye image. Each method is an improvement of the 
precedent one, as described subsequently. 

4.1 Car Localization by Use of 3D Bounding Boxes 
A common technique in object detection is frame 

differencing, which, however, results in inaccuracy when 
the involved images are acquired by fisheye cameras. 
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There are two reasons for this. The first is geometric 
distortion found in fisheye images. To overcome this, 
mapping of fisheye images into top-view images as 
discussed above is adopted. The second reason is that 3D 
information is not used in frame differencing because the 
images are treated as 2D in the process. To remedy this, 
we introduce a type of 3D box shape, called 3D bounding 
box, and use it to “bind” the car shape found in the 
fisheye image so that the car in the image can be detected 
more effectively, as described the algorithm below. 

Algorithm 1. Car localization by 3D bounding box. 
Input: a fisheye image I and a background image B both 

acquired by an identical fisheye camera. 
Output: a parking-lot graph with a detected car located 

on it. 
Steps. 
1. (Frame differencing and component labeling) 

Compute the difference between input images, I and B, 
to create a frame-difference image IF, find large 
connected components in IF as possible car shapes, 
and compute the location of each component (as the 
average of all the points in the component). 

2. (Car location approximation) Transform each found 
component with location (i, j) in the fisheye image 
into a component in the top-view image with location 
(x, y) in the environment map using the forward 
space-mapping table TF as illustrated in Fig. 8(a); and 
regard (x, y) as the approximate location of a car 
candidate. 

3. (Finding car candidates) Create a 22 chessboard 
(with four grid points) centered at the approximate 
location of each car candidate on the environment 
map, and put a bounding box on each grid point of the 
chessboard, as illustrated in Fig. 8(b), resulting in four 
bounding boxes. 

4. (Selecting an optimal car candidate) Select an optimal 
car candidate from all the four car candidates in the 
following way: 4.1) initialize two backward 
space-mapping tables TR1 and TR2, where TR1 is the 
table for mapping the bottom part of the car, and TR2 is 
the table for mapping the ceiling part of the car; 4.2) 
regard each of the four bounding box, B, in the 
environment map to consist of eight points P1~P8 with 
P1~P4 forming the top, Btop, of the box and P5~P8 
forming the bottom, Bbottom; 4.3) regard bounding box 
B as a shape in the top-view image and transform it 
into the fisheye image by transforming Btop and Bbottom 
using tables TR1 and TR2, respectively and regarding 
the result as a 3D polygonal solid shape G; 4.4) 
superimpose G on the frame difference image IF and 
count the number C of overlapping pixels; and 4.5) 
select the car candidate among the four candidate ones 
with the maximal number of overlapping pixels as the 
optimal car candidate, as illustrated in Fig. 9, which is 
then taken to be the detected car. 

5. Draw the location (x, y) of the detected car on the 
parking-lot graph O as output. 

 

4.2 Car Detection by Prediction Using Knowledge of 
Car Movement 
The previous method localizes a car by the use of 3D 

bounding boxes. However, the trajectory of the computed 
car locations is not only discontinuous but also vibrating 
as found in our experimental results. The reason is that 
only the fisheye image is used as input. To improve the 
result, it is found in this study some knowledge of the 
physical limitation on the vehicle’s movement may be 
utilized, as discussed in the following. 
 

(a) (b) 
Fig. 8: Car location approximation. (a) An illustration of the 
process. (b) An illustration of finding car candidates using the 
bounding box. 

 

Fig. 9: An illustration of selecting an optimal car candidate. 
 

The first limitation is the upper bound of the car 
speed, that is, the driver cannot drive too fast in the 
parking lot. Accordingly, we can make a limit which the 
car speed cannot exceed. For example, thirty kilometers 
per hour is a reasonable speed limit for driving in parking 
lots. The second limitation is the minimum radius of 
curvature through which the vehicle can turn. That is, 
when the driver turns right, the car trajectory cannot be a 
sharp 90o angle; instead, it should be a smooth curve. 
Furthermore, when the driver turns the steering wheel to 
the end and moves the car forward for a while, the 
trajectory should be a circle; the location of the car should 
not appear in this circle; and the radius of this circle is 
just the minimum radius of curvature found in the car 
turning trajectory. This knowledge is used in this study 
for improving the last method for car localization. As a 
summary, the movement of the car is restricted by the 
upper bound of the car speed and the minimum radius of 
curvature in car turning. As found in this study, these 
restrictions cause the reachable range of the car 
movement within an image processing cycle (i.e., during 
the time duration between acquisitions of two image 
frames) to form an area with the shape of a gingko leaf as 
shown in Fig. 10(a), called a gingko-shaped prediction 
area in this study, as discussed in the following. 

At first, we derive the equation of the boundary of 
this area as a proof of its shape  a gingko, which helps 
us to decide whether an input point is within this area or 
not. Referring to Fig. 10(b) for the notations, let r be the 
radius of curvature by which a car is driven to turn, and 
let f(r) specify the corresponding limitation of how far the 
car can move forward in an image processing cycle. In 
other words, f(r) specifies the scope of the gingko-shaped 
prediction area. Let L be the maximum distance that a car 
can move in an image processing cycle, which may be 
decided in advance by the upper bound of the car speed 
and the frame rate of the camera. Then, f(r), when 
regarded as a vector, may derived to be 

 ( )   f r BC CE 
 

 

 ( , 0) ( cos , sin )r r r    
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 ( (cos 1), sin )r r    (2) 

where  =    =   [L/(2r)]2 =   (L/r) so that 
(2) becomes 

 ( ) ( (1 cos( )), sin( ))
L L

f r r r
r r

      

 ( (1 cos( / )), sin( / ))r L r r L r  . (3) 
 

 
(a) (b) 

Fig. 10: Computation of gingko-shaped prediction area. (a) The 
limitation of car moving resulting in a gingko-shaped area. (b) An 
illustration of notations involved in proposed method. 

 

Now, given an input point P on the environment map 
with coordinates (x, y), we want to check if it is in the 
gingko-shaped prediction area. For the answer to be 
positive, it must be true that P can be specified by the 
function f(r) with a certain radius r as illustrated in Fig. 
10, or equivalently, P must be on a circle with its center C 
being (r, 0) and its radius being r which is the distance 
from point P to C. That is, we have the equality r = ||(x, y) 
 (r, 0)|| which may be solved to get r = (x2 + y2)/(2x). 
Then, with rmin denoting the minimum radius of curvature 
of car turning and  denoting the angle between vectors 

CB


 and CP


, it is not difficult to figure out that if r 
satisfies the two conditions r > rmin and r < L, then the 
input point P is in the gingko-shaped area. If this is true, 
then we can regard P to be reasonable for use as the 
approximate location of the car on the environment map. 
Otherwise, we change the approximate location by adding 
the distance of L/2 (unit of the orientation vector) to the 
current location of P and take the result as the location of 
a suitable candidate for the car. This approximate car 
location is then taken as input to perform Algorithm 1, 
starting from Step 2. By the way, it is noted that the 
meanings of the above two conditions are: (1) r > rmin 
means that the radius of car-turning curvature is in the 
reasonable range; (2) r< L means that the distance for 
which the car moves forward in an image processing 
cycle is smaller than L. 
 

4.3 Car Tracking by Uses of Track Continuity and 
Virtual Fences 

The method of car detection by prediction as 
described in the previous section yields a more precise 
location of the vehicle. However, the trajectory is not 
smooth, either, as seen in the results of the experiments 
we have conducted. The reason causing this problem is 
that the continuity of the car orientation has not yet been 
taken into consideration. If a car turns to the left in the 
first frame, it cannot turn to the right immediately in the 
next frame. In other words, dramatic changes in car 
turning should not happen. The mentioned selection of 
car candidates should be modified so as to avoid this 
problem. Specifically, given an input car location P at 
map coordinates (x, y), P must be on a trajectory within 

the gingko-shaped prediction area as shown in Fig. 10, 
and the trajectory is a portion of a circle with equation (x 
 r)2 + y2 = r2. Taking a differentiation of the equation 
leads to 2(x – r) + 2y(dy/dx) = 0 which may then be 
solved to get the orientation of point P as dy/dx = (r – x)/y. 
This restriction on the orientation of the car location may 
be utilized in a modified version of Step 4 of Algorithm 1 
to make the selection of the optimal car candidate to be 
more effective, as is done in this study. 

Furthermore, to have a start point of detection and 
tracking, a 3D virtual fence is used in this study. 
Specifically, in order to detect a car appearing in the 
fisheye images for the first time after it enters the parking 
lot, the 3D virtual fence is implemented essentially as a 
3D bounding box like the one described previously in Sec. 
4.1 for detecting cars. After being detected, a car will then 
be tracked continuously by the system. 

Some experimental results of applying various 
modified versions of Algorithm 1 taking into 
considerations of the above-discussed issues and their 
solutions are shown in Fig. 11. The upper-left image 
shows the output car trajectory which results from frame 
differencing only, the middle-left image shows the output 
trajectory of proposed car localization using 3D bounding 
boxes, and the lower-left image shows the output 
trajectory of proposed car detection by prediction. The 
right-side image is the output of proposed car tracking by 
uses of track continuity and virtual fences. As can be seen 
from the figure, the precision of the detection and 
tracking process gets higher and higher as the three 
remedy methods are applied sequentially, resulting in a 
smooth car trajectory finally. 
 

Fig. 11: Experimental results of the three proposed methods with a 
comparison of them. 

5. PARKING-SPACE DETECTION AND PATH 
PLANNING 

5.1 Parking-space Detection 
Background subtraction is commonly used as the first 

step of detecting objects in an image, but it has two 
disadvantages if a static background is used. The first is 
that it requires all the objects (cars in this study) that we 
want to detect not to appear in the background image. 
However, this is not easy to satisfy by a parking lot 
usually full of parked cars. The second disadvantage is 
that the background may change during the car detection 
process. For example, the brightness of a scene in the 
parking lot may not be identical from morning to 
afternoon. Therefore, it is impractical to use only a static 
background which cannot vary when the surrounding 
condition is changing. To avoid these disadvantages of 
using a static image as the background, a dynamic 
environment learning technique is proposed for use in 
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empty parking-space detection, as described in the 
following algorithm. 

Algorithm 2. Dynamic environment learning and 
empty parking-space detection. 
Input: a fisheye image I and a list Llocation keeping the 

locations of the parking spaces in a parking lot. 
Output: an environment map O with the empty parking 

spaces marked. 
Steps. 
1. (Initialization) Assign the input image I as the initial 

environment background image B and create a list 
Lempty for recording the emptiness condition of each 
parking space in the parking lot. 

2. (Dynamic environment learning) Acquire a new image 
I' of the environment with each fisheye camera, and 
analyze the image content to check whether the 
environment covered by the camera (including the car 
spaces and the lighting condition) has changed too 
much; if so, update the background image B to be I'. 

3. (Detection by use of 3D bounding boxes) For each 
parking space S in the list Llocation, check in I' whether 
S is empty or not currently; if so, update the emptiness 
condition of the corresponding element in an 
emptiness-condition list Lempty. 

4. Check each parking space in list Lempty, and if it is 
empty, then mark it up on the environment map O. 

5. Repeat Steps 2~4 until the system is shut down. 
The main part of the proposed dynamic environment 

learning technique as described above is updating of the 
background image B in every image processing cycle. 
This is necessary if the environment has changed too 
much. For example, when a car is parked in a parking 
space or when it is driven away later, the image should be 
updated. Fig. 12 shows an example of applying the 
proposed process of empty parking-space detection using 
the 3D bounding box. 
 

Fig. 12: An example of empty parking-space detection. 
 

5.2 Path Planning for Parking Guidance 
By the proposed system described so far, not only the 

locations of the car and the empty parking spaces have 
been obtained but also the locations of the paths in the 
parking lot are assigned in advance. Therefore, the most 
suitable method for planning a navigation path for an 
in-lot driver to follow is the single-source shortest path 
algorithm. With no doubt, the most well-known shortest 
path algorithm is the Dijkstra algorithm. The navigation 
path from the entry of the parking lot to a selected empty 
parking-space can be obtained efficiently by applying the 
Dijkstra algorithm, as is conducted in this study. 

6. AR-BASED GUIDANCE FOR CAR PARKING 

6.1 Generation of Parking Guidance Image 
In this study, the planned path is drawn on a 

perspective-view image which looks like the scene seen 
by the driver through the front window from his/her 
viewpoint. An easy way to achieve this is to draw the 
navigation path on an image taken with the camera built 
in the mobile device. However, requiring the driver to 
take images with the mobile device will endanger him/her 
while driving. In order to generate a perspective-view 
image without using the mobile-device camera, the only 
image that we can use is the fisheye image captured with 
the fisheye camera affixed on the parking-lot ceiling. In 
this study, a two-stage method is proposed to achieve this 
goal. The first stage is navigation path rendering and the 
second is perspective-view image generation. 

In the first stage, the navigation path is drawn onto 
the fisheye image. For this, a fisheye image captured with 
a camera with its scope covering a moving car is mapped 
into a top-view image IT using the forward mapping table 
TF mentioned in Sec. 3. Then, the navigation path 
generated by the path planning algorithm mentioned in 
Section 5 is drawn onto IT to create a new top-view image 
IT'. Finally, IT' is mapped back into a fisheye image IF 
using the backward mapping table TR mentioned in Sec. 3 
as well. And in the second stage, a perspective-view 
image is created from IF by mapping IF into a panorama 
image IP, which is then cut properly to result in a 
perspective-view image Iv as output whose sightline is the 
same as that of the driver. The image Iv is finally 
displayed on the mobile-device screen for the driver or a 
passenger to inspect. An illustration of the above steps of 
the proposed AR-based guidance process for car parking 
is shown in Fig. 13, and some details of the process are 
described in the following. 
 

Fig. 13: An illustration of the guidance image generation process. 
 

6.2 Perspective-view Image Generation 
In the above perspective-view image generation 

process, the driver’s viewpoint should be decided. For 
this, at first it is noted that a panorama image can be 
constructed in the form of a virtual cylinder from a 
fisheye image, and we can get the perspective-view image 
via this cylinder. This concept, mentioned before in Sec. 
3.2, is illustrated in Fig. 14(a) from the need of computing 
the driver’s viewpoint. In order to simplify the problem, 
we transform the cylinder model into a circle model as 
illustrated in Fig. 14(b). The circle model is the top-view 
of the cylinder model. Every 3D sightline of the driver in 
the cylinder model will form a 2D sightline in the circle 
model. The mathematical property of the 2D sightline is 
introduced in detail in the following to derive the driver’s 
viewpoint. 

Firstly, some notations are introduced. As illustrated 
by Fig. 15(a) which shows the circle model, R is the 
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radius of the panorama image cylinder, O is the location 
of the fisheye camera, C is the location of the car, and 

CL


 is the location vector of the car such that CL OC
 

. 

Now, the driver’s view may be seen to be contributed by 
many sightlines which are shown in orange color in Fig. 
15(a). One line is taken without loss of generality and 

shown in Fig. 15(b) where CO


 is the directional vector 

of the sightline, A is the intersection point of the sightline 
and the panorama image, and  is the azimuth angle of 

the vector OA


. 
 

 
(a) (b) 

Fig. 14: An illustration of perspective-view image generation. 
 

 
(a) (b) 

Fig. 15: The notations used in the circle model for deriving the 
driver’s viewpoint. 

 

The values of the variables R and O are known in 
advance. Given the input C which is the location of the 

car and the vector CO


 which specifies the orientation of 

the car, we want to decide the value of the azimuth angle 

θ of the vector OA


, which defines the direction of the 
viewpoint A of the driver from the location O of the 

camera. At first, suppose c cOA L nO 
  

 where n is a 

value to be determined, and let the length of this vector be 

|| ||OA R


. Then, it is the equation || ||c cL nO R 
 

 that 

we should solve to get n. By taking the squares of both 
sides of the equation, we can get the following equality: 

2 2 2 2|| || 2 || || 0c c c cO n nL O L R    
   

. 

There are two possible solutions to n. One is positive, and 
the other negative. We choose the positive one because it 
means the right direction of the sightline, i.e., we take n to 
be 

2 2 2 2 2(1/|| || )( ( ) || || (|| || ) )c c c c c c cn O L O L O O L R      
      

,(4) 

where cL


 and cO


 may be computed by 

c x x y yL L e L e 
  

; c x x y yO O e O e 
  

; (5) 

with Lx and Ly being the x and y components of vector CL


, 

respectively; Ox and Oy being the x and y components of 

vector CO


, respectively, and 
xe


 and 
ye


 are the unit 

vectors of the directions of the x- and y-axis, respectively. 
Furthermore, we have  

( cos ) ( sin )x yOA R e R e  
  

. (6) 

On the other hand, we have c cOA L nO 
  

 which may 

be rewritten as 

( ) ( )c c x x x y y yOA L nO L nO e L nO e     
    

. (7)	

Comparing (6) and (7), we can get two solutions for , 
namely, x = cos1[(Lx + nOx)/R] and y = sin1[(Ly + 
nOy)/R]. Now, since the range of cos1 is from 0 to  and 
the range of sin1 is from –π/2 to π/2, it is possible that θx 
≠  θy. Therefore, we create a table, Table 1, in the 
following for determining a unique value for θ from x 
and y according to the properties of the quadrants. 
 

Table 1. A truth table for computing azimuth angle  of vector OA .

θx > π/2 θy > 0 θ 

True True θx 

True False θy 

False False 2π  θx

False True 2π + θy

7. EXPERIMENTAL RESULTS 
Some experimental results of applying the proposed 

system are shown here. The experimental environment is 
a parking lot in National Chiao Tung University. There 
are 25 parking spaces there, and four down-looking 
fisheye cameras are installed on the ceiling, mainly above 
the main paths in the parking lot. 

The left-side image in each of Figs. 16(a) through (g) 
is the car tracking result based on the use of car track 
continuity which was described in Sec. 4. The yellow 3D 
bounding box is the 3D virtual fence, and the red 3D 
bounding box binds the detected car. And the right-side 
images of Figs. 16(a) through (g) are the corresponding 
locations and the trajectories of the detected car on the 
environment map with the planned path also shown. The 
results show that a car was driven into the parking lot, 
and moved toward an empty parking space. Then, it was 
parked into an empty parking space, the one with No. 63; 
and the space on the map turns into gray, meaning that it 
is occupied. The corresponding AR-based guidance image 
is shown as Fig. 17. From these images, it can be seen 
that the proposed method works effectively. 

8. CONCLUSIONS 
An AR-based guidance system for car parking in a 

parking lot using multiple down-looking omni-cameras 
has been proposed. Several techniques have been 
proposed to implement the system as summarized in the 
following. 1) An integrated method for car detection, 
localization, tracking based on the uses of the 3D 
bounding box and the gingko-shaped prediction area has 
been proposed for finding the precise location of the 
vehicle. The car location yielded by the method is drawn 
onto a top-view map of the parking lot, on which the 
driver (or a passenger) may inspect to know where his/her 
car is located. 2) A new method for parking-space 
detection based on the use of the 3D bounding boxe has 
been proposed, by which the system can point out the 
positions of empty parking spaces for the driver to choose 
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or for the system to specify automatically. 3) A new 
method for path planning in the parking lot has been 
proposed, by which the system can plan a suitable 
navigation path from the current car location to the 
selected empty parking space. 4) An integrated method 
has been proposed as well for generating a 
perspective-view image, on which the selected navigation 
path can be augmented. The method is based on several 
stages of transformations starting from a fisheye image. 
By following the navigation path augmented in the 
perspective-view image which is then shown on the 
mobile-device screen, the driver can be guided to reach 
the selected empty parking space. Good experimental 
results reveal the feasibility of the proposed system. 
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Fig. 16: An experimental result of car tracking and parking-space 
detection 

 
(a) (b) (c) 

(d) (e) 
Fig. 17: An experimental result of generating AR-based guidance 
image for car parking. 
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