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ABSTRACT

An approach to unsupervised learning of the envi-
ronment for autonomous land vehicle (ALV) navigation
by the use of a pushdown transducer is proposed. The
ALV may, without human’s involvement, navigate in an
unknown closed environment, collect the information of
the environment features, and then build a top-view map
of the environment for ALV navigation or other applica-
tions. In the learning system, the pushdown transducer is
employed to guide the ALV to explore the entire naviga-
tion environment. The sensed local environment features
are encoded into symbols for use as input to the push-
down Iransducer by a preprocessing unit. Output sym-
bols representing special ALV actions are generated by
the transducer to guide the ALV. Some theoretical proofs
showing that the proposed transducer is able to explore
the entire region of any closed navigation environment in
finite cycles are included. A learning system for simu-
lated grid model environments was implemented and
several simulation results show the feasibility of the
proposed approach.

Keyword : unsupervised learning, autonomous land
vehicle navigation, pushdown transducer,
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1. Introduction

Many vision-based autonomous land vehicles
(ALV's) have been developed in recent years, and
model-based guidance approaches are often employed in
ALV navigation. However, the traditional method of
establishing environment models by manual measure-
ment of the navigation environment is a time-consuming
work. [t is thus desired to design a system for automatic
modeling of navigation environments. As a result, sev-
eral environment learning systems were developed in the
recent years [1-9]. Many other mobile robot learning
systems were also constructed [10-13] for use in applica-
tions other than navigation environment modeling, such
as navigation, goal reaching, obstacle avoidance, etc.

For environment learning, Lebégue and Aggarwal
[1.2]) developed an integrated system to generate archi-
tectural CAD models using a mobile robot. The system
consists of a segment detector, a tracker, and a CAD
modeler. The basic assumption of their study is that the

navigation environment is with prominent 3-D orienta-
tions. Such assumption stands in most building corridors.
Nashashibi et al. [3] proposed an approach to building a
rough geometric model for a 3D terrain using a laser
range finder. They also gave algorithins to build snap-
shot models with planar faces from range data. By per-
forming 3D data fusion between the snapshot models,
the proposed approach can build a reliable 3D model
incrementally [4]. [shiguro et al. [3] presented a strategy
for establishing the model of an unknown environment
by a mobile robot. Panoramic sensing was used to per-
ceive the structure of the environment in their implemen-
tation. Kurz [6] introduced an approach to generating
environmental maps based on ultrasonic range data.
Free-space can be partitioned into situation areas by
means of a learning classifier. Then the situation areas
can be attached to graph nodes by dead-reckoning and
finally a map of the free-space in the form of a graph
representation is generated. Dean et al. [7] formulated
map learning as the problem of inferring the structure of
a reduced deterministic finite automaton from noisy
observations and also provided an exploration algorithm
to learn the correct structure of the automaton. Pan and
Tsai (8] proposed an integrated approach to automatic
model learning and path generation for vision-based
ALV guidance in building corridors.

In most learning systems, certain involvement from
human operators is required to complete the learning
process. For example, in our previous work, the ALV
should be driven manually by a human operator along
the environment for initial learning. However, for some
applications, it is impractical to get human's involve-
ment. A typical example of such applications is the use
of autonomous mobile robots in nuclear plants or other
dangerous regions. For this case, all operations, includ-
ing the learning process, should be full automatic. As a
result, the capability to explore an unknown navigation
environment automatically is required, demanding an
unsupervised learning scheme. Furthermore, with the
capability of automatic exploration, the ALV can serve
as a safety guard. being able to patrol around certain
environments. The ALV may also reach any goal auto-
matically if it is designed with the capability to explore
the entire navigation automatically. The proposed learn-
ing scheme is developed to meet these requirements.
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- As discussed previously, the first step of unsuper-
vised learning is automatic exploration. In the proposed
approach, a pushdown transducer, called ravigation
transducer, is designed to guide the ALV to explore the
unknown environment. The sensed local environment
features are encoded into symbols for use as input to the
pushdown transducer by a preprocessing unit, and output
symbols representing special ALV actions are generated
by the navigation transducer to guide the ALV. The
sensed local environment features are then merged into
the learned global model with a model matching scheme.
[n this way, a global map may be generated after the
ALYV have explored the entire navigation region.

To concentrate on developing a system with the ca-
pability of automatic exploration, a simulated grid envi-
ronment model is introduced to simplifv the environment
learning works, including map establishment, environ-
ment feature detection. ALV self-location. etc. It is also
more convenient to develop the kemel of automatic ex-
ploration, namely, the navigation transducer, in such an
environment model. An unsupervised learning system
for grid environment models has been built. Several
simulation results and theoretical proofs show the cor-
rectness of the proposed approach. Real-world environ-
ments may be reduced to grid environment models by
appropriate transformations, and the proposed learning
scheme may be extended for real-world environments
with certain modifications. These topics are beyond the
scope of this study and are the directions of future works.

The remainder of this paper is organized as follows.
In Section 2, the proposed method for unsupervised
leamming of ALV navigation environments is described.
In Section 3, the proposed navigation transducer is de-
scribed in detail. In Section 4, the correctness of the
proposed navigation transducer is proved. In Section 3,
several simulation results are presented. Finally, the
conclusion and further works of this paper is given in
Section 3.

2. Proposed Environment Learning
Systems

2.1 System overview

The proposed ALV leamning svstem consists of three
subsystems, a feature location subsystem, a map building
subsystem, and an automatic exploration subsystem. The
feature location subsystem is designed to extract and
locate the environment features. The automatic explora-
tion subsystem consists of a navigation transducer and a
preprocessing unit. The preprocessing unit encodes the
extracted local environment features into input symbols
for the navigation transducer. The navigation transducer
is a pushdown transducer which takes the encoded local
environment features as input and yields ALV reactions
as output corresponding to the current system status. It
serves as the guidance kernel, which leads the ALV to
explore the entire navigation environment automatically.
The map building subsystem builds and keeps track of
the learned global model. For each leamning cycle, it

merges the local environment features to the global
model, or adjusts the global model when multi-
occurrence, of environment features is encountered. The
interaction of these subsystems are shown in Figure 1.

2.2 Steps of learning algorithm

As mentioned previously, the unsupervised leaming
work is accomplished by the cooperation of the three
subsystems. Generally speaking, the environment leamn-
ing work is incrementally accomplished by several suc-
cessive cycle runs. In a leaming cycle, the feature loca-
tion subsystem first extracts the local environment fea-
tures from sensor inputs, matches the features to the
global model, and then compute the location of the fea-
tures. The map building subsystem then merges the ex-
tracted local environment features in the global model.
The extracted local environment features are also passed
to the automatic exploration subsystem. The navigation
transducer generates the output according to the encoded
input. The output is then passed to the ALV control unit,
and the control unit performs a certain operation corre-
sponding to the transducer output. like moving the ALV
to a new position. This completes a learning cycle. The
same procedures are performed repeatedly in each learn-
ing cycle. A flowchart of the proposed leamning proce-
dures is shown in Figure 2. A deuailed description of the
leamning algorithm is shown as follows.

Algorithm I Unsupervised learning of unexplored
environment for ALY navigation.

Step 1. Perform sensor calibration.

Step 2. Drive the ALV manually to the starting loca-
tion and start the ALV.

Step 3. Set the initial global model to empty.

Step 4. Get inputs from the sensors.

Step 5. Extract environment features from the sensor
inputs.

Step 6. Calculate the location of the extracted envi-
ronment features and set up a local model by
collecting the extracted local features.

Step 7. I[f the global model is non-empty, then match
the local model with the global model and re-
calculate the accurate position of the local
features by the matching result.

Step 8. Artach the local model to the global model.

Step 9. Encode the extracted local fearures and send
the encoded symbol to the navigation trans-
ducer as input.

Step 10.If the output of the navigation transducer is
‘stop’, then stop the ALV, otherwise, perform
the ALV operation corresponding to the
transducer output, and then go to Step 4 to
start another cycle.

2.3 Grid environment model

The grid environment model is a simulation of an
indoor navigation environment which meets the follow-
ing conditions:

I. The navigation environment is composed of nu-

merous square grids.
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The obstacles or the walls are located on the
edges of the grids and the length of the wall is
equivalent to the side-length of the grid. That is,
each side of a grid is either fully open or fully
occupied by a wall.

3. For each navigation cycle, the ALV may move to
the left-, right-, upper-, or lower- neighbor of the
grid where the ALV is currently located, depend-
ing on the output of the navigation transducer.

4. The fields of view of the sensors of the ALV are
within the grid where the ALV is currently lo-
cated.

As mentioned previously, with the use of the grid
environment model. the development of the exploration
algorithm and the environment leaming works are facili-
tated. The behavior of the exploration kemel, the naviga-
tion transducer, can be defined clearly in such an envi-
ronment model. Although the grid model environment
loses some degree of reality; however, with cerain
modification the techniques developed from leamning of
the grid environment model can be applied to leaming of
the real-world environment.

3. Navigation Transducer

The proposed navigation transducer serves as an
automatic exploration kernel. which enables the ALV to
explore the entire navigation environment without hu-
man involvement. In this section, the definition of a
typical pushdown transducer is first introduced. Then,
the principle and the structure of the proposed navigation
transducer are described. In the remainder of this section,
a brief proof showing that the proposed transducer is
able to explore the entire environment region and then
stops in finite steps will be described.

3.1 Definition of pushdown transducer

A pushdown transducer (PDT) is an eight-tuple,
M= (Q. ‘:.I‘,A‘é.}.,qo.Zo) , where
l. Qs a finite nonempty set of states;

T is a finite nonempty set of input alphabert;
[ is a finite nonempty set of stack alphabet;
A is a finite nonempty set of output alphabet;
d is a transition function,

§:0x(Zufe})xT > OxI", where ¢ de-
notes empty input;
6. Xisan output function, A : OxIx[ = A;
q, is the initial state; and

L 1I
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Z, is a particular stack symbol, called the
start symbol.

The above notations of the PDT are based on those
used in Hopcroft and Ullman [14). An interpretation of
the transition function

8(9.a.2)={{p. 1. s 12 ) (P 1))
where g, p,€eQl<ism; aeZ; Zel;and y,el",

I <i<m,is that the PDT in state ¢, with the input sym-
bol @ and the top symbol Z on the stack can, for any i,

enter state p,, replace symbol Z by string y,, and

advance the input head one symbol. The interpretation of
the transition function

8(g.6.2) = {(p.x ) psors ) (Panr )]

is that the PDT in state g with the top symbol Z on the
stack, independent of the input symbol being received
can, for any i, enter state p, and replace symbol Z by

string ¥,. The interpretation of the output function
A(q,a,2)=b.where qeQ, aeX, Zel', bed.is

that the PDT in state ¢. with input svmbol a and the top
symbol Z on the stack can output symbol b.

3.2 Principle of navigation transducer

When a man attempts to walk through a building, the
most common rules for him to follow is as follows. First.
walk along a corridor. Secondly, when a crossing is en-
countered, i.e., when more than two candidate paths can
be chosen, select one of them and put a mark on the
chosen path to distinguish it from the unexplored ones,
and then go along the chosen path. Thirdly, when an end
of the current path is encountered, go backward along
the current path to the previous crossing, pick another
unexplored path. put a mark on the selected path. and go.
Finally, if all available paths are explored. go backward
furthermore to another crossing until an unexplored path
is found. In this way, one may either find the exit of the
building or explore the entire building and find there is
no exit.

The proposed navigation transducer is designed
based on the above rules. The rules seem straightfor-
ward, but the design of the transducer is complicated.
Sensed environment features are transformed by the
preprocessing unit into symbols first as input to the
ransducer, and the transducer emits the navigation direc-
tion as output to guide the ALV to explore the unknown
environment.

The stack of the navigation transducer is used to
keep track of the marks, each of which indicates whether
a certain path is explored or not. When one crossing is
encountered, the symbols representing all unexplored
paths from this crossing are pushed down to the stack of
the transducer except the selected one, and the naviga-
tion transducer guides the ALV to move along the se-
lected path. When the ALV encounters an end of the
corridor, according to the third rule. the navigation
transducer guides the ALV to retreat backward to the
previous crossing; when arriving the previous crossing, a
new path is popped out of the stack, and the navigation
ransducer guides the ALV to follow this new path. Be-
sides, when all paths from the crossing-have been ex-
plored, a similar retreating procedure is performed again
to guides the ALV to the previous crossing. Unfortu-
nately, if no further information is kept, the navigation
transducer will not be able to know from which path the
ALV comes to this crossing, so the retreating work is
unfeasible obviously. To solve this problem, the retreat-
ing path should be pushed before other unexplored paths
are pushed. By the nature of stack operations, namely,
first in last out, the retreating path would be popped out
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only after all unexplored paths are popped out. That is,
the ALYV retreats from one crossing only if all paths from
the crossing have been explored. This ensures the ALV
to explore the entire region systematically.

The stack operations of the navigation transducer are
summarized as follows.

® [n the exploring mode indicating that the ALV is
navigating in an unexplored region, if a crossing is
encountered, choose a path to go, push the retreating
path into the stack first and then those unexplored
paths except the chosen one. and finally guide the

ALV to move along the chosen path.

® [n the retreating mode indicating that the ALV has
visited a path end and is retreating to the previous
crossing, if the ALV reaches the crossing, pop one
path from the stack, and then guide the ALV 10 go
along the popped path.

The state of the navigation tansducer is used to
check whether the ALV is navigating in the exploring
mode or in the retreating mode. The state transition func-
tion vields the corresponding new state in accordance
with the current state, the input. and the content of the
stack. The detailed implementation of the navigation
transducer is illustrated next.

3.3 Implementation of navigation transducer

The proposed navigation transducer is constructed
according to the principle described previously. The
preprocessing unit transforms the surrounding environ-
ment features into input symbols. Fifty-two input sym-
bols are identified. They are categorized into seven sets
by their properties in order to simplify the illustration of
the mansition functions. as shown in Figure 3. The first
set of input symbols includes “one-way grids". They
correspond to the grids with nwo walls on their four bor-
ders. The second set of input symbols includes “ending
grids”. They are the ones with three walls on their bor-
ders. The third set of input symbols includes “crossing
grids”. The symbols in this set correspond to grids with
three or more open sides on their borders. The fourth set
includes “explored grids”. The preprocessing unit trans-
forms a grid into a symbol of an “explored grid” if the
grid is a crossing and is explored once before the current
transition. The squares are colored in gray to represent
the atribute of “being explored”. The fifth set includes
“one-way starting grids". Each symbol in this set corre-
sponds to a starting grid with only one open side. The
sixth set includes “multi-way starting grids". Each sym-
bol in this set corresponds to a starting grid with two or
more open sides. The seventh set includes “dead starting
grids”. Each symbol in this set corresponds to a starting
grid with no way to exit. Starting grids are regarded to be
different from other grids because each of them has no
previous move. Note that the preprocessing unit gener-
ates starting grid symbols only when the ALV is in the
start condition, and the starting grids are encoded as
normal grids after the ALV leaves the start condition.

Without keeping track of the grids which have been
explored, to explore the entire region of an environment
including a loop, e.g., like that of G-H-I-J-G in Figure 4,

becomes unfeasible because the ALV might navigate
within the loop repeatedly. To solve this problem, a
scheme is proposed for the ALV to handle a loop in a
grid environment. In the proposed scheme, an explored
grid is regarded as an ending grid with three walls when
the ALV is in the exploring mode. This prevents the
ALYV from keeping moving in the loop and retreats the
ALYV to the entrance grid of the loop. However, keeping
track of all grids needs a large memory if the number of
grids is large. It is also unfeasible for the real-world
environment because of non-existence of the grids. In
the proposed scheme, only crossing grids are kept track
of for memory saving. Furthermore, it is also reasonable
to track the crossing in the real-world environment since
crossings in a real-world environment are countable and
limited.

The mappings between the environment features and
the input symbols are listed in Figure 3. In the figure, the
arrows show the previous move of the ALV: the thick
lines represent real walls in navigation environments: the
thin lines show the open sides of the grid: and the dash-
lines represent the false walls generated by the preproc-
essing unit. The false walls are not real walls. They are
generated to avoid dumb loop navigation. namely, to
avoid moving back immediately to the previous grid, and
also to indicate the previous move direction.

There are five output symbols for the proposed
navigation transducer, and each output corresponds to an
ALV action, as shown in Table |. The states of the navi-
gation transducer are listed in Table 2. The navigation
transducer starts in the exploring stare, and halts in the
final state. The stack symbols are listed in Table 3. Each
symbol in the stack corresponds to an unexplored path or
a retreating path. For example, the symbol £; corre-
sponds to an unexplored path to the left-side neighbor
grid.

The wtansition function determines the behavior of
the transducer. It maps the input, the current state, and
the current stack status into a new transducer state and a
new stack starus. For the proposed navigation transducer,
there are fifty-two input symbols, nine stack symbols.
and three states. So there are up to 32x(9—1)x3=1.560
transition rules for this transducer and it is unfeasible to
list all rules here. Instead. only several principles. named
as ‘super rules’, are described as follows. These super
rules are induced from the principle of the wansducer
behavior mentioned previously.

1. For a “one-way grid” input or a “one-way starting
grids™ input, neither the state nor the stack content
need be changed. An example which follows from
this super rule is 8(q,.G,.E,) = {(g,.E,)}.

2. For an “ending grid” input:

2.1. If the navigation transducer is in the “exploring
state”, change the state of the navigation trans-
ducer to the “retreating state” and keep the content
of the stack unchanged. An example which fol-

lows this super rule is &(q,,G. E,) = {(q,.E,)} .

2'2. If the navigation transducer is in the “retreating
state” and the stack is empty, change the state to
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the “final state™. An example which follows from
this super rule is &(q,,G4.2,) = {(q,. )}

5. For a “dead starting grid” input, change the state to
the “final state”. The only rule which follows from

this super rule is 8(q,.G.,.Z,) = {(%..-Zo)} :

4. For a “crossing grid" input or a “multi-way starting
grid” input, push the symbol which corresponds to
the retreating path, i.e., the direction to the previous
grid, onto the stack first; then scan the four sides of
the current grid in the sequence of left. right, top,
bottom; ignore the first open side. which is chosen
to be the navigation direction : and push the symbols
which correspond to the other open sides onto the
stack. [n this case, the state of the navigation trans-
ducer remains in the “exploring state™. An example
which follows from this super rule is

6(9.-Gua. £s) = {(4.- E.E, R,E,)} -

Note that it is impossible to have a “crossing grid”
input when the navigation transducer is in the
‘retreating state’.

5. For an “explored grid™ input:

3.1, If the navigation transducer is in the “exploring
state”, change the state of the navigation trans-
ducer to the “retreating state” and keep the content
of the stack. An example which follows from this
super rule is 8(g,,Gy;. £, ) = {lg,.£,)}

. If the navigation transducer is in the “retreating
state”, if the stack is empty. i.e.. if the popped
svmbol is the start s_vmbol of the stack. change the
state into the “final state™.

8g,.G,;.Z,) Kq,,, Z, } is the only rule which

follows from this case. If the stack is nonempty,
pop a symbol from the top of the stack, and if the
popped symbol corresponds to an unexplored
path, switch the state to the “exploring state™;
8(q,.G;;,E,) = {(g,.€)} is an example which fol-
lows from this case. If the popped symbol corre-
sponds to a retreating path, keep the state in the
“retreating state’™: &(g,.G,;.R,) = {(qe)} is an
example which follows from this case.

The output function maps the input, the current state,
and the current stack status into an output symbol. There
are up to 936 output mapping rules here. Instead of list-
ing all rules, the idea of "super rules’ is employed again.
The super rules for the output function are listed as fol-
lows.

I. For a “one-way grid” input or a “one-way starting
grid” input, take as output the symbol which corre-
sponds to the direction of the only open side implied
in the input symbol. An example which follows
from this super rule is A(q,.G,.£,)={0,} .

2. For an “ending grid” input:

2.1 If the navigation transducer is in the “exploring
state”, take as output the symbol which corre-
sponds to the direction of the false wall implied in
the input symbol, i.e., the direction to the previous

W
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grid. An example which foliows from this super
rule is A(q,.G;.,.E.)= {O,] .
2.2 If the navigation transducer is in the “retreating

state” and the stack is empty, take the “stop ALV"
symbol as output. An example which follows

from this super rule is 4(g,.Gw.2,)={0,}.

For a “dead starting grid” input, take the “stop

ALV" symbol as output. The only rule which fol-

9..G:2)={0,}.

4. For a “crossing grid” input or a “multi-way starting
grid" input, scan the four sides of the current grid in
the sequence of left. right. top. and bottom; and take
as output the symbol which corresponds to the direc-
tion of the first open side. An example which fol-
lows from this super rule is
Ag..G. E,)={0,} .

5. For an “explored grid” input:

5.1. If the navigation transducer is in the “exploring
state”, take as output the symbol which corre-
sponds to the direction to the previous grid. An
example which follows from this super rule is

Mg,:GsE,)={0,}-

5.2. If the navigation transducer is in the “retreating
state”, check if the stack is empty first. [f the stack
is non-empty, pop a symbol from the top of the
stack, take as output the symbol which corre-
sponds to the path implied in the popped symbol.
no matter whether the popped svmbol implizs an
unexplored path or a retreating path. An example
which follows from this super rule is

ﬂ.(q,,Gn.Eb) = {Ob} .

[f the stack is emprty, take the “stop ALV” symbol
as output. An example which follows from this
super rule is  A(g,.Gy;.2,)=1{0,}.

L

lows from this super rule is /'.(

4. Proof of Correctness

In this section, several theorems are proven to show
that the proposed transducer is able to explore the entire
region of any closed navigation environment in finite

cycles.

Theorem 1. The loops in the environment may be ex-
panded as paths with terminals.

Proof:

The navigation transducer regards “explored grids”
as “ending grids”. It is wmivial that a loop may be ex-
panded as a path with an “explored grid” as a terminal.
In the remainder of this paper. the term terminal is de-
fined to be either an explored grid or an ending grid. O

From Theorem 1, the loops of the environment may
be treated as paths with terminals. For any grid environ-
ment, an equivalent exploration tree may be derived to
illustrate how the transducer explore the environment.
The sequence to explore the environment is equivalent to
the sequence to traverse the tree. The root of the explora-
tion tree corresponds to the starting grid. The internal
nodes are the crossing grids in the environments, and the
leaf nodes are the terminals. The branch between two
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nodes indicates the path between the corresponding

grids. For example, the equivalent exploration tree for

the grid environment in Figure 4 are shown in Figure 5.

The level of a grid G is defined to be the maximum
number of crossing grids the ALV may encounter before
the meeting a terminal along any exploring path ex-
panded from G itself. In the equivalent exploration tree,
the level of the corresponding grid G of a node is the
maximum number of internal nodes in any exploring
path expanded from itself. For example. in Figure 4 the
level of Grid L is O because the only exploring path ex-
panded from Grid L is L-F and there is no crossing grid
in path L-F. The level of Grid C is 2. There are four
exploring path expanded from Grid C. They are C-E-F.
C-D. C-E-G-H-1-J-G. and C-E-G-J-1-H-G. In any of
these paths. there are at most two crossing grids which
will be encountered before a terminal is met.

Theorem 2. For any symbol in the stack. the grid in
which the ALV is located when it is popped
is the same as the one in which the ALV is
located when it is pushed. And a retreating
stack svmbol, i.e.. the symbol which corre-
sponds the retreating path, is popped out
only when the paths expanded from the
grid where the symbol is popped are all ex-
plored.

Proof :

For the svmbals which are pushed in a grid of level
0. it is mivial. When an unexplored crossing grid, say
Grid X. of level 0 is encountered, the svmbo! which
corresponds to the retreating path is first pushed into the
stack. Then the transducer picks a path to go, and pushes
the symbols corresponding to the remaining paths into
the stack. Since Grid X is of level 0. no crossing grid will
be encountered before the ALV arrives the terminal of
the current path. The ALV then moves to thaterminal of
the picked path. switches into the “retreating mode”, and
then retreat to Grid X. A symbol corresponding to an-
other exploring path is popped. Similarly, the ALV trav-
erses along this path and then retreats to Grid X. Finally,
the symbol corresponding to the retreating path will be
popped after all paths expanded from Grid X have been
explored.

Assume for symbols which are pushed in a grid of
level smaller than or equal to -1, the theorem holds.
When an unexplored crossing grid, Grid Y, of level k is
encountered, the symbol which corresponds to the re-
treating path is first pushed into the stack. then the trans-
ducer picks a path to go, and pushes the symbols corre-
sponding to the remaining paths into the stack. When the
ALV goes along the picked path, it may encounter either
an unexplored crossing grid of level m, m<k-1, or a
terminal. If a terminal is encountered, no stack opera-
tions occur during traversing the picked path, and the
ALV will retreat to Grid Y. If an unexplored crossing
grid, say Grid Z, of level m is encountered, from the
assumption, all symbols pushed in this grid will be
popped in Grid Z after the ALV retreats from it. Thus,
for either case, when ALV goes back to Grid Y, the con-
dition of the stack is the same with the one before the

ALYV traverses the picked path. The symbols on the top
of the stack are still the ones which are pushed in Grid Y.
This situation also holds when the ALV traverse any of
the other exploring paths. A symbol corresponding to
another exploring path is then popped. Like traversing
the first path, the ALV traverses along the new path and
then retreats to the Grid Y. Finally, after the ALV trav-
erses all exploring path expanded from Grid Y, the sym-
bol corresponding to the retreating path is popped. The
theorem hence also holds for symbols which are pushed
in a grid of level k. By induction, it is concluded that the
theorem is correct. m
Theorem 3. The ALV explores the entire environment
region after the learning process is com-
pleted.
Proof:

We prove the theorem by contradiction. Assume that
there exists an unexplored grid, say Grid U, after the
learning process is completed. There must exist a path
from some grid, Grid V, in the explored region 1o Grid
U. When the ALV is in Grid V, the path V-U must either
be picked to traverse along or be pushed into the stack. If
V-U is picked to traverse along, Grid U will no longer be
unexplored. This is a contradiction to the assumption. If
the path V-U is pushed to the stack, the since the learn-
ing process will not be accomplished until the stack is
empty, the symbol corresponding to the path V-U must
be popped and the ALV will traverse along U-V some-
time before the learning process is accomplished. This
also causes a contradiction. Thus it is concluded that the
ALV explores the entire environment region after the
leaming process is completed. a
Theorem 4. The ALV will stop in the starting grid after

exploring the entire environment region.
Proof:

For the case that the starting grid is a “dead starting
grid”, the theorem is trivially true.

For the case the starting grid is a “one-way starting
grids": The transducer pushes the first symbol when the
first crossing grid is encountered. From Theorem 2. after
exploring all paths expanded from this grid. all symbols
in the stack are popped and the ALV keeps rerreating
toward the starting grid. From Super rule 2.2, the ALV
stops when an ending grid is encountered, the transducer
is in the “retreating state” and the stack is empty. The
encountered ending grid is just the starting grid.

For the case that the starting grid is a “multi-way
starting grids”, the transducer first pushes all unexplored
paths into the stack. After exploring all paths expanded
from the starting grid. from Theorem 2, the ALV returns
to the starting grid and the transducer will try to pop out
the retreating symbol. Then, by Super rule 5.2, the empty
stack causes the ALV stops in the starting grid. a
Theorem 5. The learning process will halt within finite

learning cycles.
Proof:

The number of the exploring paths is finite, and each
path has a terminal, i.e., there is no loop in the paths.
Furthermore, the proposed algorithm ensures the ALV
traverses each exploring path only once. Thus, it is con-
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cluded that the ALV will explore the entire environment
region within finite cycles. O

5. Experimental Results

An unsupervised leaming simulation system for the
grid environment has been developed to test the correct-
ness of the proposed approach. The navigation grid envi-
ronments were firstly generated manuaily with the aids
of a graphical user interface program. Then, the simula-
tor simufates the leaming process in the grid environ-
ments. A simulation run is shown in Figure 6. The left-
middle part of the figure shows the grid environment.
The solid lines on the edges of the grids represent the
walls. The lirtle circles in the grid maps represent the
starting grids. The grid with lighter borders represents
one in which the ALV is located. The grids with x-marks
represent “explored grids™ and the grids with little spots
represent those which the ALV has visited. The waces of
the ALV are shown by animation in the simulation sys-
tem and are not shown in Figure 6. The leamsad envi-
ronment map is shown in the right-bottom comer of the
figure. Several simulation results show that the ALV
may explore the entire environment region. build an
equivalent environment maps, and stop at the starting
grid in finite leamning cycles.

6. Conclusion and Future Works

in this study, we have developed a system with the
capability of automatic exploration and unsupervised
learning for ALV navigation in unexplored environ-
ments. The system is based on a pushdown transducer.
With the capability of automaric exploration, the ALV
may. as mentioned previously, work in the dangerous
regions, serve as a safety guard. or perform a goal
searching job, etc. With the unsupervised leamning
scheme. the ALV may collect the information and build
a map of the navigation environment automatically with-
out human involvement. The unsupervised leaming
scheme is especially valuable when the ALV works in
the environment where human operator involvement is
inappropriate. We have also proved several theorems
showing the correctness of the proposed svstem.

The proposed learning system now works in the
simulated grid mode! environment. Unsupervised leamn-
ing for real-world environments based on the proposed
approach is our current study topic. With certain modifi-
cation, the principles developed in this study may be
applied to learning of the real-world environment. How
to collect the environment features of real-world envi-
ronments and how to transfer the features into the input
symbols to the navigation transducer are key problems of
the future works.
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Table 1. Output symbols of proposed navigation trans- dos o

THNT ZA= - || V- ==
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Symbol Corresponding ALV action o _
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0 stop the ALV * :
g i SRS
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Table 2. States of proposed navigation transducer.
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Table 3. Stack symb oposed navigation trans- . o
iucer ymbols of prop & Figure 3. Inputs of navigation transducer.
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Figure 2. Flowchart of proposed learning system.

Figure 6. An example of experimental results,
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