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ABSTRACT

An approach to estimating the 3D pose parameters of
a planar object using the perspective projection without
feature correspondences is proposed. Two problems are
discussed. The first is the estimation of the pose of a
planar object with known shape, and the second is the
estimation of the relative motion parameters between two
views of a planar object with unknown shape and mov-
ing without changing the direction of the plane normal.
The two problems are treated by an identical mathemati-
cal formulation because they both aim to find six motion
parameters. Because of the nonlinearity of the perspective
projection, the 3D relationship between the two views of a
moving planar object is difficult to formulate except when
their 2D perspective projections are just different in orien-
tation, position, or scale. This condition can be achieved
by iteratively adjusting the orientation of the camera. By
comparing the moment invariants of the two views, one
way to adjust the orientation of the camera is proposed,
in which only two parameters are involved in the itera-
tion process, and the remaining four parameters can be
solved analytically. To speed up the iteration part of the
proposed method, some improvements on implementation
are also proposed. By testing against synthesized data and
real images, the experimental results show the feasibiliy of
the proposed approach.

Key words: planar patch, pose estimation, relative
motion, numerical derivative, ground plane constraint,
moment invariants.

I. INTRODUCTION

Estimating the 3D pose of a planar object from its 2D
perspective projection has received a lot of attention be-
cause of its broad applications. Two problems are studied
in this paper. The first is the so-called pose estimation
problem which aims to estimate the 3D pose of a planar
object with known shape from its perspective projection.
Two applications of this problem are object positioning,
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and camera calibration. The second problem is to esti-
mate the relative motion parameters between two views
of a moving planar object with unknown shape under the
constraint that the plane normals of the planar object in
the two views are identical. A straightforward application
of the second problem is to estimate the motion parame-
ters of a planar object moving on a plane. In addition,
the structure of the planar object can be constructed if
the two views are at least related by a translation. This
makes it possible to automatically construct the model of
a planar object without requiring that the normal of the
planar object must be parallel to the optical axis of the
camera.

Most existing methods proposed for estimating the pose
parameters of a planar object need optical flow or feature
correspondences. On the other hand, instead of using the
perspective projection, some approximate perspective pro-
jection transformations like, orthographic projection and
scaled-orthographic projection, have been used to obtain
approximate 3D pose parameters. Related researches can
be found in [1-8]. However, these methods in general have
some difficulty for implementation. For example, feature
correspondences are not always easily obtainable, optical
flow is also hard to obtain when the separation between
two views is large, and the pose parameters estimated
from the approximate perspective projection transforma-
tions may be poor when the planar object is not far from
the camera.

In this paper, an iterative method is proposed to solve
the two problems mentioned above under the perspective
projection without feature correspondences. In the first
problem, since the structure of the planar object is known,
it is equivalent to translating this problem into estimat-
ing the relative motion parameters between two views of a
moving planar object with the knowledge of the 3D pose of
the planar object in the first view. Thus, the two problems
can both be formulated as the estimation of the relative
motion between two views of a moving planar object and
can be treated by a single mathematical framework. The
main idea of the proposed method is that the relationship
between two views of a planar object is easy to formulate
from their perspective projections which are different in
orientation, position, or scale. Thus, by applying succes-
sive camera rotation transformations (9], which are com-
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puted from the gradients of the 2D moments of the two
views, to the perspective projections of the planar object
observed at the two time instances until the transformed
shapes can be described by a rigid motion, the desired
relative motion parameters can be recovered from the re-
lationship between the two transformed shapes and the
applied camera rotation transformations. Since the pro-
posed method does not need optical flow or feature corre-
spondences, no complicated technique for image process-
ing and feature detection is needed. In addition, because
of using the perspective projection model, the proposed
method can deal with the case that the planar object is
close to the camera.

In the following sections, the framework of the proposed
method will be introduced in Section 2. In Section 3,
some issues about how to effectively implement the iter-
ation part of the proposed algorithm are discussed. In
Section 4, experimental results of the proposed method
tested against simulated data and real images are given.
In the last section are some concluding remarks.

II. PROBLEM FORMULATION AND TRANSFORMATION

A planar object €2 is a flat object consisting of finite
closed regions and lying on a plane called the supporting
plane of the planar object. Suppose that, initially, the sup-
porting plane of the planar object is the z-y plane of the
camera coordinate system, and the centroid of the object
is at the origin of the camera coordinate system. Then,
the pose of the planar object in a certain view with respect
to the camera can be described by a rigid motion which
consists of a counterclockwise rotation of the planar object
around the z-axis, y-axis, and z-axis of the camera coordi-
nate system by angles v, 3, and a, and then a translation
of the planar object in such a way that the centroid of the
planar object is located at a 3D point t. Accordingly, the
relationship between a point x on the planar object before
and after the rigid motion can be described by

y = R:RyR.x+t, (1)
where
1 0 0 cos@ 0 sinf
R;=|0 cosa —sina [,Ry= 0 1 0
0 sina cosa —sinff 0 cosf
cosy —siny 0 z
R,=| siny cosy O |, x=]|y |,
0 0 1 0

y represents the 3D point of x after the rigid motion, and
the z-component of t is greater than the focal length f
of the camera. In addition, the third column vector of
R:R R. is a unit normal vector of the supporting plane
in the camera coordinate system. If the normal of the
supporting plane is parallel to the z-axis, we say that the
planar object is at a standard pose. Let the poses of the

-

planar object in the first view and in the second view be
described by Eq. (1), and Eq. (2) below, respectively:
y =R_RR,x+t. (2)

The aim of this study is to find the relationship between
the two views.

A. Relationship between two perspective projections of a
planar object

By using the homogeneous coordinate system, the per-
spective projections of the planar object £ on the image
plane in the two views can be described by two 2D shapes,
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where S represents the 2D shape of the planar object pro-
jected on the image plane in the first view, S’ represents
that in the second view, P is the perspective transforma-
tion matrix:

and
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and x is a point on the planar object . In addition,
a camera rotation transformation R on a 2D shape H is
defined (9] by

oo
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where R represents a 3D rotation matrix. Furthermore, if
H is the perspective projection of €2 in orientation R’ and
at position t, then the camera rotation transformation R
of the 2D shape H satifies the following equality

(1] xen

Because of the nonlinearity of the perspective projection
model, the transformation from S to S’ is hard to formu-
late except when S and S’ are only different in orientation,
position, or scale. Such a circumstance can occur, for ex-
ample, when S and S’ are observed with their supporting
planes being parallel to the image plane. In other words,
there always exist camera rotation transformations R; and

[uvfl]t=P[:) ?’t][gR ?
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R, (eg, R, = R R;, R; = R;‘R;‘) transforming S and
s, respectively, to S; and Sllsuch that

[3]=] Ik

where 8 > 0 with

—siny
cos Y

cos Y
sin ¥

[u v fl]‘=P[IO )

‘o flf=p[T Rat 1R.R,R,
[“”fl]‘P[o1 Ho TN
where [u v ]' €S,,and [ 4 o' ]* €S}, and x € .
In this study, we do not consider the “symmetric” shape
which may have the same perspective projection at differ-
ent poses. For convenience, let y; = R;y and y'1 = R'ly'
Also, from Eq. (1) and Eq. (2), the relationship between

y: and yl can be described by a rigid transformation
Y. =Ry +t (4)
where R is a 3 x 3 rotation matrix and t is a translation
vector. Multiplying Rt to the both 51d¢5 of Eq. (4) and
substituting R,y and Rly for y; and Y1» respectively, we
have

y =R/RRiy + R (5)

which is the key equation of this study.

Now, we have to know the 3D relationship between two
perspective projections of a planar object when they are
only different in orientation, position, or scale. Let the
perspective projections of a point y; on the planar op-
ject in the first view and its corr&spondmg point yl in
the second viewbe [ u v |*and [ » v ], respectively.
Then, from Eq. (3), the relationship between the two
transformed shapes y, and yl in the camera coordinate
system can be described as follows:

!

u cosy —siny uwy u
v | =8| siny cosv we v | +g. (6)
f w3 wy  ws f

where g = [Au—sfw, Av—sfwy f—sfws— suws—svwg)".

Let the depths of y; and yl. the distances between the
ongm of the camera coordinate system to y; and yl ,be A
and ), respectively. Then, we have y, = f[ w9 1%

¥ = f 1. In addition, according to Eq. (6),

the relationship between y; and y', can also be described
by

'

'\T[u' v

) , | cos¥p —siny w ,
Y= ST'\ siny cosy  wp y1+"Tg. )
w3 Wy Ws

Comparing Eq. (4) with Eq. (7), we have w, = w; =
w3 = wq = 0, and ws = 1 because R is a rotation matrix;

in addition,

ul cosy —siny 0

R = smw cosw 0|, (8)
1

t = ¥[Auw Av f-sf ], (9)

A o= 3 (10)

Since R and t must be identical for all of the point pairs
on the planar object in the first and the second views, as
shown in the following, the poses of the planar object in
the two views are either at standard poses or only related
by a rotation around the z-azis.

e Casel,?# 0:From Eq. (9), we can know that the all
of the points on the planar object in the second view
must be at the same depth. In addition, from Eq.
(10), the depths of the points on the planar object in
the first view are also identical. Therefore, the poses
of the object in the two views are both standard poses.

e Case 2, = 0: Since t = 0, from Eq. (9), s must
be one. In other words, the depth of a point on the
planar object in the first view and that of its corre-
sponding point in the second view are equal. There-
fore, the poses of the planar object in the two views
are only related by a rotation around the 2-azis.

Accordingly, once R, R',, and the relationship between
S; and S, are found, then the rigid motion between the
two views can be identified by Eq. (5). However, for the
second problem, A and A" are unknown, and thus t can
only be determined up to a scale factor. For convenience,
we assume "E“2 = 1. Before discussing how to obtain Ry,
and R'1 a well known method to compute the parameters
8, ¥, Au, and Av in Eq. (3) using the moments of S; and
S, is reviewed as follows.

B. Determining relationship between Sy and S,

The (p+q)th regular moment of a 2D shape H is defined
as

MH pq = //u”v"H (u,v) dudv,
where H (u,v) is a function whose value is one if [ © v |*

is in H, and zero elsewhere. In addition, the (p + g)th
central moment of the 2D shape H can be expressed as

MH,pq = //(u—'ﬁu)p (v — o) H (u,v) dudv,

¢
. — m mMH 01 . .
where [ Ty Ty |' = [ o ‘mee | I8 the centroid

of the shape H. First, s can be computed by the areas of
the two shapes,

m
8’ .00

(11)

ma, 00"
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If S; and Sl1 are not symmetric shapes, then 9% can be
determined by the angles between the principal axes of
the two shapes S; and S,; that is,

if Ms) 30 is with the same sign as
3 Af Ensl 30€0s Af — 3ng, 5 sin AB; cos? Af+

3ns, 1208 A8 — 15, 03 sin Af sin? AG;
Af — 7 otherwise,

(12)

where
Ag = 92—01,
2
0 tan-1 ﬂsl,oz"lsl,zo‘*'\/("'lsl.oz"ls,.zo) +417§1,“
= an
L 2n8, 11 1
2
- _ 1 4n?
" Ms] .02 T75'1.20'4'\/(’78".02 "3'1,20) +4n51'”
02 = tan 20 .

Sl,ll

Let the centroids of S; and S| be located at [ & ¥ | and
[T T ], respectively. According to Eq. (3), we have

T ] _ [cosy —siny u [ Au
E3Rtpestmad I b
Hence,
Au | _ T cosy —siny | [ @
[Av]_[vl]—s[sinw cos Y } ﬁ]' (13)

C. Determining camera rotation transformations R, and

’

R,

Now, the remaining question is how to obtain the cam-
era rotation transformations R; and RI1 which make the
transformed shapes of S and S only different in orienta-
tion, position, or scale. In this study, an iterative method
is proposed to find R; and R’1 by applying successive cam-
era rotation transformations to S and S  until the two
transformed shapes S; and S’l are only different in orienta-
tion, position, or scale. A camera rotation transformation
can be decomposed to be R;R; R ,in which the left-most
matrix only affects the orientation and the position of the
transformed shape; therefore, the desired camera rotation
transformations can be described by the right-most two
matrices of R;R}RY.

The moment invariants [10] of a 2D shape are indepen-
dent of orientation, translation, and scaling. Therefore, if
the moment invariants of the two transformed shapes S,
and S, are identical, then the two shapes are only different
in orientation, position, or scaling, and thus the desired
camera rotation transformations are obtained. Specifi-
cally, let ¢y ; (a, B) denote the ith moment invariant of
the resulting 2D shape after applying the camera rotation
transformation described by R;R to the 2D shape H.

Now, if we have four parameters a, £, al, and ﬁ’ such
that

b’ (a',ﬁ') — g (@,B)=0,i=1,2, ---,n, (14)

where n is sufficient large, then the desired camera rota-
tion transformations can be obtained accordingly.
However, it is not necessary to search the four parame-
ters for the two problems; only two parameters are enough.
In the first problem, the pose of the planar object in the
first view is known; in other words, a camera rotation
transformation which transforms the planar object to be
at a standard pose is known. Thus, we can transform
the pose of the planar object in the first view to a stan-
dard pose, and only the camera rotation transformation to
transform the object in the second view to be at a stan-
dard pose need be found. In the second problem, the plane
normals of the supporting plane of the planar object in the
first and second views are identical. Therefore, if we have
a camera rotation transformation to transform the pose
of the object in the first view to a standard pose, then
we can apply the same camera rotation transformation to
the planar object in the second view to be at a standard
pose. Let p denote the vector formed by the parameters
to be found and Ap denote the adjustment vector for each
iteration. Thus, for each iteration, the update rule is

Pnext iteration = P + Ap

By linearizing Eq. (14), the adjustment vector Ap can be
computed as follows.

In the first problem, a and 3 are known, and the para-
meters to be found can be representedbyp=[ o' g |".
Writing Eq. (14) as a first-order approximation, we have

Ps' ; (a’,ﬁ,) — ¢s.i (o, 8) + MAC!,-F

da
¢S’i°‘"ﬁl "~ o=
—AéF—)Aﬁ ~0,i=1, 2, s b

Rewriting the above equation in a matrix form and mul-
tiplying weighting factors to them, we can get

WIAp = We
where
00, (2 8) _9y,(aF)
- da’ - ap’
J= : 5

8¢y (a'8") 8¢y (o'8)
- da’ - ap

W= diag(|¢s,1 (a,ﬁ)| ’ |¢S,2 (avﬁ)l jrmsy |¢S,n (a’ﬁ)l)—l

bs' 1 (alaﬂ') - ¢s,1 (. 8)

],c= ;

b5 (o) = 650 (. 5)

Ao’

in which diag(d,,ds, ..., dn) represents an n x n diagonal

matrix with diagonal elements d;,dz,...,d,. Hence, Ap
can be computed by
Ap = (IW'WI) ™' I'Wiwe. (15)
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Since the analytical formulas to compute —r—-% i(eB)

8 a,B
&'L—) are too lengthy, we use the numerical denvatlv&s

a¢s (a,8) ~ ¢g i(°+5nﬂ)_¢3 (a,8)
8a = € ’
6¢g i(a.8) Ma-ﬁ+‘2‘¢s,i(°-ﬁ)

instead of the analytical ones in this study where € is a
sufficiently small number (0.0001 in this study).

In the second problem, because the desired camera ro-
tation transformations for the two views are the same, we
have a = a and B = ﬁ'. Thus, the parameters to be
found can be denoted by p=[ a g |*. Writing Eq. (14)
as a first-order approximation, we have

20y (o)

¢s i (@, ) — ¢s: (@, 8) + Ao+
8¢, (a,8) a, .
—s‘ﬁ__Aﬂ 8¢B x( B)A a¢s'é§;a‘ﬁ) Aﬁ %’ 0’
1= ]_, 2, e

Rewriting the above equations in a matrix form and mul-
tiplying them by some weighting factors, we can get

where
8¢s.(aB) s (B)  89s5,(aB) 8 ,(ah)
Sa 8a 8B aﬁ
J= ; :
89sn(0,8) 985 ,(aB) 86 ,.(a8) s (28)
3a Ba Y 85
¢8'.l (Q,ﬁ) - ¢3.1 (Q, ﬁ)
Aa .
ap= [ ag | o= : ,

¢S',n (a, ﬁ) - ¢S.n (a' ﬁ)

and the weighting factors are

W =di r
1ag (I¢s'.l(°'ﬂ)l+|¢s'l(°'ﬁ)|, )

Accordingly, Ap can be computed by Eq. (15), too.

The iteration process is terminated when ¢!W*:Wc is
smaller than a threshold value, when the step size of the
adjustment vector is small, or when the number of itera-
tion exceeds a threshold value.

If the a priori information of the relative motion pa-
rameters between the two views is not available, initial
guesses for the two parameters must be provided, which
are generated by the following steps. First, sample the pa-
rameters space (—90°,90°) x (—90°, 90°) evenly at interval
of 30° to generate twenty five parameter pairs. Second, for
each parameter pair, apply the camera rotation transfor-
mations to the input shapes to generate two transformed
shapes. If the parameters are close to the answer, the two
transformed shapes will be similar. For simplicity, only up
to the second moments are considered in this procedure;
therefore, the two transformed shapes can be regarded as

1
|¢5'.ﬂ(°'ﬂ)|+|¢s.n(°\ﬂ)|)

two ellipses, and the following difference between the ra-
tios of the lengths of the semimajor and the semiminor
axes of the two ellipses can be used as a goodness measure
for the parameter pair,

!’
A A
AL
Az ::’

where A; and A\; denote the lengths of the semimajor and
the semiminor axes of the first ellipse, and A; and Ap de-
note those of the second ellipse. At last, the five best
parameter pairs are selected for use as the initial guesses
for the above iteration process.

III. IMPLEMENTATION ISSUES

To make the proposed algorithm more efficient, some
improvements in implementation have been taken and de-
scribed in this section. In this study, a 2D shape is rep-
resented by its boundary. This representation is suitable
for applying successive camera rotation transformations
on the 2D shape. Besides, the moments of the 2D shape
can be computed fast from its boundary. To speed up
the iterative part of the proposed algorithm, the itera-
tion process is decomposed into two stages. In the first
stage, only approximate shapes of the input 2D shapes
are created and used in a minimization process until a lo-
cal minimum is reached. Then, a secondary minimization
process is started to find a good solution using the original
2D shapes. At the end of this section, a method to obtain
an approximate shape of a 2D shape is proposed, which is
based on the moments of the 2D shape.

A. Shape representation

In a digital image, the contour of a closed region can be
represented by crack codes [11]. A crack code may have
one of the four moving directions: up, down, left, and
right. Basically, a crack code corresponds to a boundary
segment, but successive crack codes in the same directions
can be merged to form a longer boundary segment. A
boundary segment is represented by two end points. In
addition, the contour of a closed object region is tracked
counterclockwise and the contour of a background region
is tracked clockwise. Fig. 1 shows an illustrative example.
Because a straight line on the image plane after applying
a camera rotation transformation remains a straight line,
we can apply a camera rotation transformation to the end
points of the boundary segments of a 2D shape instead of
to all of the points on the boundary segments.

B. Computing moment invariants from boundary seg-
ments

In Leu [12], a method to compute the moments of a 2D
shape from its boundary segments is introduced. In this
method, the moments of a 2D shape can be computed fast
by summing up the moments of the triangles formed by
the origin of the image plane and the 2D shape’s bound-
ary segments. Let mpy ;jp, denote the (p+q)th regular
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moment of the triangle formed by the origin of the image
plane and the jth boundary segment of the ith closed con-
tour of a 2D shape H. Since the contour of a closed object
region is tracked counterclockwise and the contour of a
background region is tracked clockwise, the (p+g¢)th regu-
lar moment of the 2D shape H with c closed regions, each
of which consists of n; boundary segments,i = 1,2, ...,c,
can be computed by

c n;
MH,pq = z :z :mH,ij,pq’

i=1 j=1

where the moment expansion of a triangle can be found in
Singer [13]. Thus, the central moments of the 2D shape H
can be computed from its regular moments. Accordingly,
the moment invariants ¢y ; of the 2D shape H can be
obtained.

In this study, the moment invariants based on the sec-
ond and third moments are used for Eq. (14), and the first
seven moment invariants are found enough. To shorten
this paper, the formulas for computing the first seven mo-
ment invariants of a 2D shape H and the zeroth to the
third moments of the triangle formed by the origin of the
image and a boundary segment are not listed here. Inter-
ested readers can find them in [10] and [13].

C. Polygonal approrimations

The number of boundary segments dominates the speed
of the iteration process. To reduce the number of bound-
ary segments, the boundary of a closed region of a 2D
shape is approximated in this study with a polygon which
is formed by some of the end points of the boundary seg-
ments. A simple method to obtain an approximate poly-
gon of a closed region is to successively split the boundary
segments of the closed region into two parts until some
criterions are satisfied [14]. Since the moments of a 2D
shape are used to find the motion parameters, it is proper
to define a criterion based on the moments of the 2D shape
and its approximate shape. By moving the origin to the
centroid of the 2D shape, a criterion adopted in this study
for stopping splitting the boundary segments is defined as
follows:

""—Ar,anl;—::—?& <E forp+q=0,1,2,3,

where A represents the region enclosed by the boundary
segments and the origin, B is the triangle formed by the
starting and ending points of the boundary segments and
the origin, and £ is a threshold value. Fig. 2 shows a “B”
shape and its approximate polygons with various values
of £&. We can see that the approximate polygons save a
dramatic amount of boundary segments. In this study, £
is taken to be 0.1.

IV. EXPERIMENTAL RESULTS

In this study, the proposed method was implemented on
a Pentium-233 PC using the C++ programming language

and tested against synthesis data and real images to show
its performance. A “B” shape shown in Fig. 2 (a) was used
as a model shape for generating test samples at various
poses. To analyze noise sensitivity, the test samples were
perturbed by some noise. For simplicity, a test sample was
generated by perturbing the boundary end points of the
perspective projection of the model shape at some pose.
The noise was added by the following way

!
u =u+en,

where u is a boundary end point, u' is the perturbed ver-
sion of u, n is a noise vector whose elements are randomly
generated from the region [—1,1], and € controls the noise
level. The relative errors between the estimated pose and
the actual pose are defined as follows:

relative rotation error=
||estimated rotation matrix -actual rotation matrix||

‘/5 )

relative translation error=
“gtlmated translation vector-actual translation vector” 2,

[[actual translation vector||

where ||||, and ||-|| » represent the 2-norm of a vector, and
the Frobenius norm of a matrix [15], respectively. The
poses for generating the test samples are listed in Table 1
(a) and (b). The parameters o and S for generating the
tested poses are ranged from 0° to 60° because the per-
spective projection of the tested shape will slant too much
to be recognizable when the two parameters are larger
than 60°. The experimental results are shown in Figs. 3
and 4. Every point in Fig. 3 and Fig. 4 is the error of an
average of 100 test samples. It can be found that orien-
tations and positions both have impact on the stability of
the estimated parameters and that it is more difficult to
estimate the parameters from a slant view.

Shown in Fig. 5 are some real images used to test the
proposed method. This experiment was performed five
times to see the repeatability of the proposed method.
The results are shown in Table 2 where the variations of
the rotation matrix and the translation vector, defined for
use in measuring the effectiveness of the pose estimation
results, are computed by

B ” estimated rotation matrix- RlLE

variation of rotation matrix = 5

_ ”estlmated translation vector— tJl

variation of translation vector = ”... ”

where R and t denote the means of the estimated rotation
matrices and translation vectors, respectively.

From Figs. 3 and 4, and Table 2, we can see that the
proposed method is faster in solving the first problem than
in solving the second problem although the mathematical
formulations of the two problems are similar. This phe-
nomenon can be explained by the fact that the amount of
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data which the second problem deals with are double of
those of the first problem because only one shape is needed
to perform the camera rotation transformation in the first
problem but two are needed in the second problem.

V. CONCLUSIONS

In this study, we have proposed a method to compute
the pose parameters of a known planar object and the mo-
tion parameters between two views of a unknown planar
object moving in such a way that the normal of the sup-
porting plane of the planar object is not changed. The
proposed method uses neither feature correspondence nor
optical flow; therefore, complicated image processing and
feature detection techniques can be avoided. In addition,
since the perspective projection model is adopted, the pro-
posed method can deal with the case like that the planar
object is not far from the camera which is critical to the
method using approximate perspective projection models.
To speed up the execution speed of the proposed method,
some improvements on the implementation have been pro-
posed. In addition, if the procedures for the camera ro-
tation transformation and moment computation are par-
allelized, further improvement on speed will be achieved.
Both synthesized data and real images are tested in this
study. Good experimental results prove the feasibility of
the proposed method.
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Figure 2 - Polygonal approximations for a 2D shape “B":
(a) is the original shape, and (b) to (e) are approximate
polygonals with £ = 0.05, 0.1, 0.15, and 0.2, respectively.
The numbers of boundary segments used to represent the
shapes (a) to (e) are 334, 151, 93, 75, and 64, respectively.
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Figure 3 — rotation error, and (b) is for the relative trans-
lation error.
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Figure 4 - rotation error, and (b) is for the relative trans-
lation error.

Figure 5 — Real images used in this study: (a) is one view
of the test planar shape; (b) is another view of the test
planar shape.

Table 1. The poses for generating test samples: (a) is for
the first problem, and (b) is for the second problem.

(a)
orientation position
BO. (av ﬁ17) (:z,y,z)
1 0°,0°,0° 0,0,8000
2 | 15°,15°,0° | 0,0,8000
3 | 30°,30°,0° | 0,0,8000
4 | 45°,45°0° | 0,0,8000
5 | 60°,60°,0° | 0,0,8000
(b)
the first view the second view
orientation position orientation position
no> (0761’7) (Ivyvz) (a7ﬁ»7) (Iwyvz)
1 0°,0°,0° 0,0,7000 0%,0%;02 100,100,7500
2 15°,15°,0° | 0,0,7000 15°,15°,72° | 100,100,7500
3 | 30°,30°,0° | 0,0,7000 [ 30°,30°,144° | 100,100,7500
4 | 45°,45°,0° | 0,0,7000 | 45°,45°,216° | 100,100,7500
5 | 80°,60°,0° | 0,0,7000 | 60°,60°,288° | 100,100,7500

Table 2. Experimental results for real images: (a) is for
the first problem, and (b) is for the second problem.

(a)

1 2 3 4 S
number of boundary segments 448 452 456 452 452
number of boundary segments 117 123 89 98 98
of approximate shape
variation of rotation matrix 0.058 | 0.052 0.08 0.079 | 0.035
variation of translation vector 0.062 | 0.052 | 0.059 | 0.081 | 0.039
computation time (sec) 0.43 0.44 0.38 0.39 0.39

(b)

1 2 3 4 5
number of boundary segments 448 452 456 452 452
in the lst view
number of boundary segmenta 17 123 89 98 98
of approximate shape in the lat
view
number of boundary segments 756 750 754 774 764
in the 2nd view
number of boundary segments LTT 166 157 163 174
of approximate shape in the
2nd view
variation of rotation matrix 0.011 | 0.025 | 0.028 | 0.069 | 0.015
variation of translation vector 0.01 0.018 | 0.032 | 0.033 | 0.041
computation time (sec) 0.99 0.93 0.82 0.88 0.88
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