

Creation of A New Type of Art Image 
Tetromino-based Mosaic Image  And Protection of

Its Copyright by Losslessly-removable Visible
Watermarking+

Chun-Pei Chang (張均培)
Institute of Multimedia Engineering

National Chiao Tung University, Hsinchu, Taiwan 30010
Email: elros.cs96g@g2.nctu.edu.tw

Wen-Hsiang Tsai (蔡文祥)*
Dept. of Computer Science

National Chiao Tung University, Hsinchu, Taiwan 30010
Email: whtsai@cs.nctu.edu.tw

Abstract―A new type of art image, called
tetromino-based mosaic image, is designed and a novel
method for losslessly-recoverable visible watermarking in
such images is proposed. Also proposed is a technique for
constructing this new type of mosaic image, which is based
on the use of the tetrominoes of the Tetris game as tiles. A
watermark may be embedded into an input
tetromino-based mosaic image by replacing the colors of
the composing pixels of the tetrominoes according to a
one-to-one mapping between two color palettes
constructed from the colors of the watermark area in the
input image. The visible watermark can be losslessly
removed from the watermarked image with a correct key.
The proposed method is useful for secure protection of the
copyright of the tetromino-based mosaic image.
Experimental results are also shown to prove the
feasibility of the proposed method.

Index Terms―tetromino-based mosaic image, copyright
protection, losslessly-removable visible watermarking.

I. INTRODUCTION

Mosaic image is a type of artistic decoration
composed of numerous small tiles arranged in a
certain way. Tile mosaics appeared in Greek and
Roman times over 2000 years ago. They are still
widely used today. Creation of mosaic images by
computers is a new research topic in recent years. A
traditional mosaic image is obtained by arranging a
large number of small images, called tile images, in
a certain manner so that each tile image represents

+ This work was supported by the NSC project No.

97-2631-H-009-001.
* To whom all correspondence should be sent.

a small piece of a source image, named target
image. A tile image may be just a single-color
block area or a small image with a complicated
content. The overall effect of the integrated tile
images is a mosaic image which looks like the
source image when seen from a distance. This
effect utilizes a property of the human visual
system that an observer standing far away will only
see the average color of a region (the tile image
here) even though the region is actually full of
different colors coming from its content. As a result,
the key point of mosaic image creation is to make
the average colors of the tiles images to be as
similar to those of the target images as possible.
Many methods have been proposed to create
different types of mosaic images [1-8].

Tetris is a popular computer game invented by a
Russian mathematician, named Alexey Pajitnov, in
1985. He derived the game’s name from the Greek
numerical prefix “tetra-” and the word specifying
one of his favorite sports, “tennis.” “Tetra-” means
that all of the game’s pieces, called tetrominoes,
contain four segments, each segment being a small
square unit. A tetromino is a geometric shape
composed of four squares, connected orthogonally.
There are five basic types of tetrominoes, and
nineteen types of oriented tetrominoes obtained by
rotating and reflecting the basic ones. See Fig. 1 for
an illustration.

Tetrominoes can be used to fill a plane by a
certain arrangement without overlapping. This
property makes tetrominoes good components for
composing a new type of mosaic image, called

tetromino-based mosaic image, as proposed in this
study. It is desired to propose a method for
effective creation of tetromino-based mosaic
images from the artistic point of view. Furthermore,
it is desired as well to design a new watermarking
method for copyright protection of this new type of
art image based on the use of information hiding
techniques.

Fig. 1: Nineteen types of oriented tetrominoes

made of five basic ones.

There are yet few studies on hiding information

in art images. Lin and Tsai [9] proposed a method
to hide data in mosaic images by manipulating the
four borders of tile images. Hung, Wu, and Tsai [10]
proposed a method to embed data in tile mosaic
images by adjusting the orientations, sizes, and
textures of the tiles. Hsu and Tsai [11] proposed a
method to hide data in circular-dotted images by a
dot overlapping scheme. Wang and Tsai [12]
proposed a method for data hiding in
tile-overlapping mosaic images by utilizing the
overlapping degrees of adjacent tile images.

In this paper, a losslessly-removable visible
watermarking method is proposed. A watermark
may be embedded into an input tetromino-based
mosaic image by replacing the tetromino colors
according to a one-to-one mapping between two
color palettes constructed from the colors of the
watermark area in the input image. The watermark
may be losslessly removed from the watermarked
image later for better inspection of the original
image. The proposed method is useful for copyright
protection of tetromino-based mosaic images.
Security of the embedded watermarking is
enhanced by the use of a secret key. Experimental
results are also shown to prove the feasibility of the
proposed method.

In the remainder of this paper, we describe the
proposed tetromino-based mosaic image creation
process in Section 2, the proposed process for

losslessly-removable watermarking in Section 3,
and some experimental results in Section 4,
followed by conclusions and some suggestions for
further studies.

II. PROPOSED TETROMINO-BASED
MOSAIC IMAGE CREATION PROCESS

In Section 2.1, the basic idea of proposed
tetromino-based mosaic image creation is presented.
In Section 2.2, the traditional mosaic image
creation is reviewed. In Section 2.3, the
tetromino-based mosaic image creation method
will be described in detail.
2.1 Idea of Tetromino-based Mosaic Image

Creation
The idea of the proposed technique to create

tetromino-based mosaic images was inspired by
Lin and Tsai [9]. Two goals are considered
simultaneously in this study. The first is to integrate
art and computer technologies to create images,
which look more artistic with special visual effects
for decorations or other uses. The second is to use a
mosaic image as a medium for data hiding. As a
result, the proposed method is applicable to deal
with the problem of copyright protection.

In geometry, tetrominoes can be combined
adjacently to one another to form square blocks,
and blocks so formed can be used to fill a plane.
This is the reason why tetrominoes are also good
units for mosaic image creation as proposed in this
study. However, tiling a plane in this way with
tetrominoes is more difficult than traditional
mosaic image creation because tetrominoes have
more complicated shapes. Consequently, how to
combine different kinds of tetrominoes to create a
variety of distinct mosaic images is a critical issue.
In addition, using tetrominoes as components to
generate mosaic images can provide a new style of
visual effects for viewers.
2.2 Review of Traditional Mosaic Creation

Process
2.2.1 Mosaic Images Creation Process

Two major issues are involved in mosaic image
creation, namely, mosaic database construction and
similarity measure selection. The former is the first
step of the mosaic creation process to generate tile

images. Tile images are not only the basic
components of mosaic images but also the key
components which determine how mosaic images
look like. The latter issue is the design of a good
measure for use in the process of choosing the
best-matching tile image for each target image from
a mosaic database. In Lin and Tsai [9], mosaic
images were created according to the following
procedure. First, a mosaic database was constructed
by selecting a set of tile images and then extracting
relevant features from them. Next, a source image
is taken as input and divided into many small target
images with a pre-selected size. A similarity
measure is then used to search the best-matching
tile images of the same size from the mosaic
database for all the target images. Finally, after
putting the best-matching tile images together, a
mosaic image is generated. A flowchart of such a
mosaic image creation process is illustrated in Fig.
2.

Fig. 2: A flowchart of mosaic image creation.

2.2.2 Similarity Measure Computation

In Fig. 1, computation of the similarity measure
between a target image and a tile image is
mentioned. An input source image is first divided
into blocks of small target images and the feature
vector of each target image is obtained by
calculating the three average color values of the
target image in the R, G, and B color channels. The
vector extracted from a target image is matched

with the feature vector of each tile image in the
mosaic database according to the Euclidean
distance measure. The tile image with the smallest
distance in the database is finally taken as the
best-matching tile for use in composing the output
mosaic image. The detailed algorithm of similarity
measure computation is described as follows.

Algorithm 1. Similarity measure computation.
Input: a target image T and a tile image L.
Output: a similarity measure value D between T

and L.
Steps:
Step 1. Divide T and L into N parts, where N is a

pre-defined number.
Step 2. Extract color features from each part of T to

form a vector VT with N×3 elements.
Step 3. Extract color features from each part of L to

form a vector VL with N×3 elements.
Step 4. Calculate the Euclidean distance between

the color vectors VT and VL according to the
following similarity measure:

2
T LD V V= − .

2.3 Proposed Tetromino-based Mosaic Image
Creation Process

In this section, based on above-mentioned
traditional mosaic image creation process we show
how we create a tetromino-based mosaic image in
this study in this section as an algorithm below.

Algorithm 2. Tetromino-based mosaic image
creation.

Input: a source image I, a given size s of one
square in a tetromino, and a tetromino
database DB.

Output: a tetromino-based mosaic image I′.
Steps:
Step 1. Divide the source image I into a set of

target images with the given size s.
Step 2. For each target image T, perform the

following operations.
2.1 Calculate the distance between T and each

tile image L in database DB by Algorithm
1.

2.2 Choose the tile image LT in DB with the
smallest distance as the best-matching tile
image for T.

Divide image into target
i

Extract features of each
tile image

Search best matching till
image from DB

Compose all tiles to create
mosaic image

Mosaic
image

Extract color features from
original tile images

DB

Generate new tile images
from color features

Mosaic Image Creation

Original
image

Images

Mosaic Database Construction

Similarity
measure

computation

Add tile images to database

2.3 Perform a border enhancement process to
enhance the visual effect of each
tetromino in T (the detail described later).

Step 3. Replace each target image T in I with its
corresponding best-matching tile image LT
to create a tetromino-based mosaic image
I′ as output.

In the above steps, the best-matching tile image,
which is the most similar to the corresponding
target image, is found by in the use of Algorithm 1.
The construction of the tetromino database DB
mentioned in the above algorithm is described in
the next section.

2.3.1 Tetromino Database Construction

The tetromino database is used to find the
best-matching tile image for each target image, as
described in the previous algorithm. It is desired to
control the number of colors and combinations of
the tetrominoes in the database. Before tetromino
database construction, we have to design an
algorithm to enumerate all the possible tetromino
combinations in a fixed-sized region. Nineteen
types of tetrominoes, as shown in Fig. 1, are used
as input. In this study, the fixed-sized region is a
plane of 4×4 grids as shown in Fig. 3(a). An
example is shown in Fig. 3(b). The details of the
enumerating process of tetromino combinations
and the proposed process of tetromino database
construction are described as Algorithms 3 and 4
below.

Fig. 3: Illustrations of tetromino combinations.

(a) A plane of 4×4 grids. (b) A tetromino
combination in (a).

Algorithm 3. Enumeration of tetromino combina-

tions.
Input: 19 types of tetrominoes E and a plane P of

4×4 grids.

Output: a set of all possible tetromino
combinations T = {T1, T2, .., Tn} in P.

Steps.
Step 1. Create a four-level tree R with a root r.
Step 2. At the first level, for each tetromino type X

in E, perform the following operations.
2.1 For each position which can be used to place

X, perform the following operations.
2.1.1 Generate a child node Cr of root r.
2.1.2 If the filled tetromino X crosses the

boundary of P, delete Cr and go back to
Step 2.1.

2.1.3 Record the tetromino type X and the
position of X in Cr.

Step 3. For each node of level Li, where 2 ≥ i ≥ 4,
perform the following operations.

3.1 For each node D in level i − 1, perform the
following operations.
3.1.1 Choose one type from E and denote it

by Y.
3.1.2 For each position which can be used to

place Y, perform the following
operations.

3.1.2.1 Generate a child node Ck of node D.
3.1.2.2 If the filled tetromino Y crosses the

boundary of P, delete Ck and go back
to Step 3.1.2.

3.1.2.3 If the filled tetromino Y overlaps
with any existing tetromino, delete
Ck and go back to Step 3.1.2.

3.1.2.4 If the filled tetromino combination Y
already exists in the tree, delete Ck
and go back to Step 3.1.2.

3.1.2.5 Record the tetromino type and the
position of Y in Ck.

Step 4. Through a tree traversal, search all paths
from all leaves in level 4 to the root.

Step 5. For each path Pi in the tree, form a
tetromino combination Ti by extracting data
from each node of Pi.

Algorithm 4. Tetromino database construction.
Input: 19 types of tetrominoes, and a fixed number

N of colors.
Output: a tetromino database DB with all possible

tile images.
Steps:
Step 1. Generate a set of all possible tetromino

combinations T = {T1, T2, .., Tn} in a plane
of 4×4 grids by Algorithm 3.

Step 2. Generate a set of N distinct colors, C =
{C1, C2, .., CN}, in the RGB color space
uniformly.

Step 3. Create all possible tile images by
generating all possible combinations of Ti
in T and Ci in C.

2.3.2 Visual Effect Improvement by Border
Enhancement

Through the above-proposed algorithms, basic
tetromino-based mosaic images can be created.
However, a problem occurs in the creation process.
That is, if two adjacent tetrominoes have similar
colors, the edge between them will be unclear,
yielding an undesirable effect in the resulting
mosaic image. It is desired to enhance the boundary
of tetrominoes in basic tetromino-based mosaic
images. Furthermore, it is also desirable to make
each piece of tetrominoes look like a
three-dimensional object. As a result, two visual
effects, lightening and shading borders, are created
in this study in a post-processing process after the
above basic tetromino-based mosaic image creation
process, which we call border enhancement. The
process is described as an algorithm in the
following.

Algorithm 5. Border enhancement.
Input: a plane Y of 4×4 grids with a tetromino

combination P.
Output: Y with lightening and shading effects P′.
Steps:
Step 1. For each tetromino t in P, transform the

color of the tetromino from the RGB model
to the HSL model (with H, S, and L
channels).

Step 2. For each tetromino t in P, check the type of
each of its four edges in the follow way.

2.1 If it is a top or left edge in t, then lighten the
edge by increasing the L channel value of the
color at the corresponding border.

2.2 If it is a bottom or right edge in t, then shade
the edge by decreasing the L channel value
of the color at the corresponding border.

2.4 Some Experimental Results of Mosaic Image
Creation

Some tetromino-based mosaic images created in
our experiments by the use of a tetromino database
with 125 colors and 117 tetromino combinations
constructed in this study are shown here. Fig. 4(a)
is the input image. Fig. 4(b) is the mosaic image
created from Fig. 4(a) by applying Algorithm 2.
And Fig. 4(c) is an enlarged version of the partial
image composed of some tetrominoes in the red
region shown in Fig. 4(b).

III. Proposed Method for losslessly removable
watermarking in tetromino-based mosaic

images

3.1 Idea of Proposed Data Hiding Method
In order to protect the copyright of images, many

digital watermarking techniques have been
designed to embed a pre-defined watermark into an
image. Digital watermarking techniques may be
classified into two main types, visible and invisible
watermarking, by their visual characteristics.
Different from invisible watermarking techniques,
visible watermarking techniques can be used to
convey ownership information directly and deter
further copyright violations. As a result, visible
watermarking is a suitable way to protect
copyrights of art images.

Obviously, having a fixed number of colors is a
common feature between palette images and
tetromino-based mosaic images. Based on this
observation and the concept of Chen and Tsai’s
method [13], we propose in this study a removable
lossless visible watermarking method for
tetromino-based mosaic images. The details are
described in the following sections.

3.2 Review of A Losslessly-Removable Visible
Watermarking Technique for Palette images

The losslessly-removable visible watermarking
method proposed by Chen and Tsai [13] are
applicable to palette images of the GIF (graphics
interchange format) type. Every GIF image
contains at most 256 colors stored in an 8-bit color
palette. Each color in the palette is assigned a
number, called an index. Every pixel in the GIF
image is assigned an index number corresponding
to the color of the pixel. Furthermore, each GIF
image can be compressed to reduce the file size
without degrading the visual quality.

Before describing the proposed method, some
definitions of terms are given below.
1. Watermark area: an area in a cover image

where a watermark is embedded.
2. Non-watermark area: an area outside the

watermark area.
3. Black embedded pixels: the pixels of the cover

image in the watermark area, denoted as Ib.
4. White embedded pixels: the pixels of the cover

image in the non-watermark area, denoted as Iw.

Each visible watermark is assumed to be a
binary image. In order to enable the embedded
watermark area to look more obvious, Chen and
Tsai [13] replaced the colors of Ib with other
visually-different colors. This replacement was
achieved by the use of the farthest (the most
different) color among the palette colors of the
cover image. First, the cover image was divided
into a watermark area and a non-watermark one.
Black embedded pixels Ib were replaced with other
colors and white embedded pixels Iw were kept
unchanged. Then, a raw color palette is constructed
by identifying the distinct colors in Iw and counting
the occurrences of these colors. Let them be
denoted as C = {C0, C1, …, C255} and their
corresponding numbers of occurrences as O = {O0,
O1, …, O255}. The raw color palette was sorted by
the colors Oi in O in a descending order to generate
a sorted color palette Ps. An adjusted Euclidean
distance by considering the concept of weighting,
called weighted Euclidean distance, was proposed.
Specifically, the traditional Euclidean distance
between two colors C1 and C2 is defined by Eq. (1)
below:

2
21

2
21

2
2121)()()(),(BBGGRRCC −+−+−=µ ; (1)

and the weighted one of color Ci in the color palette
is defined by Eq. (2) below:

∑

∑

=

=

×
= 255

0

255

0
),(

)(

n
n

ni
n

n

i

O

CCO
C

µ
µ . (2)

Second, Chen and Tsai [13] chose the farthest
color Cf from the sorted color palette by using the
weighted Euclidean distance described by (2),

(a)

(b)

(c)

Fig. 4: Experimental results of tetromino-based
mosaic image creation. (a) An original
image. (b) A created mosaic image. (c)
Enlarged image part of red region in (b).

which is the most different color from the colors of
Iw. Then, a rearranged color palette Pr is set up by
placing Cf as the first element in the palette, the
color Ca closest to Cf as the second element, and
that closest to Ca as the third, and so on. In such a
way, a one-to-one mapping between the two
palettes Ps and Pr is established. If a color Cm was
labeled by index m in Ps, then this color is mapped
to a color Cm′ which was labeled by index m in Pr.
All black embedded pixels in the cover image are
then replaced to generate a watermarked image by
the above-mentioned replacement using the
mapping. Furthermore, a lossless recovery of the
watermarked image can be achieved, which is an
inverse process of the above-proposed watermark
embedding process.

3.3 Visible Watermark Embedding Process

We now describe the visible watermark
embedding method for tetromino-based mosaic
images proposed in this study. First, a raw palette is
constructed by counting the occurrences of the
colors in a tetromino-based mosaic image. By using
the raw palette, a process of generation of two color
palettes, which are denoted as Ps and Pr, and a
mapping process between them are performed for
watermarking. At last, the colors of the black
embedded pixels Ib are replaced by using the
one-to-one mapping between Ps and Pr. The details
of such watermark embedding is described as
follows as an algorithm.

Algorithm 6. Visible watermark embedding in

tetromino-based mosaic images.
Input: a tetromino-based mosaic image I, a binary

watermark W, and a secret key K.
Output: a watermarked tetromino-based mosaic

image I′.
Steps:
Step 1. For each tetromino t in I, perform the

following steps.
1.1 If t is in the watermark area, add all pixels

in t into a set of black embedded pixels Ib.
1.2 If t is in the non-watermark area, add all

pixels in t into a set of white embedded
pixels Iw.

Step 2. Create a raw color palette Pa by identifying
the colors C = {C0, C1, …,Cn} in I and

denote the number of color elements of Pa
as n.

Step 3. For every pixel in Iw, count the occurrences
of the colors in C = {C0, C1, …,Cn},
respectively, and denote them as O = {O0,
O1, …,On}.

Step 4. Use Pa, C, and O to generate a sorted color
palette Ps and a rearranged color palette Pr
by Algorithm 7 described below.

Step 5. For each pixel p in Ib, embed W into I by the
following steps.

5.1 Obtain the color Cm of p.
5.2 Search Cm in Ps to obtain a color index m

of Cm.
5.3 Obtain the color Cm′ in Pr with the index

m.
5.4 Replace the color Cm of p with Cm′.

Step 6. Randomly pair every two pixels of Ib
together using the key K to form |Ib|/2 pairs
of pixels as a set A.

Step 7. For each pair a in A, swap the two colors of
a to generate a watermarked image I′.

The use of the input secret key in the way

described in Steps 6 and 7 above increases the
security of the embedded watermark against illicit
trials of removal of the watermark from the
watermarked image.

Algorithm 7. Creation of two color palettes for

one-to-one color mapping (mentioned in
Step 4 of Algorithm 6).

Input: a raw color palette Pa, a set of colors C =
{C0, C1, …, Cn} of Pa, and a set of
occurrences O = {O0, O1, …, On}
corresponding to C.

Output: a sorted color palette Ps and a rearranged
color palette Pr.

Steps:
Step 1. Sort Pa by the occurrences O in a

descending order to obtain a sorted color
palette Ps.

Step 2. Create an initially-empty rearranged color
palette Pr, which is of the same size of Ps.

Step 3. Calculate the weighted Euclidean distance
Dw of every color in Ps by Eq. (2).

Step 4. Use the values of all Dw’s to choose a color
Cf which has the largest value of Dw to be
the first color of Pr.

Step 5. Calculate the Euclidean distance D between
Cf and every other color in Ps by Eq. (1).

Step 6. Use the values of D’s to construct Pr by
rearranging the colors in Ps with the nearest
color to Cf being the second element in Pr
and the farthest color to Cf being the last.

3.4 Lossless Recovery Process of Original

Images by Removing Visible Watermark
In this section, we describe the proposed lossless

recovery process of the original image by removing
the visible watermark in a watermarked image.
First, a raw palette is constructed by counting the
colors of the watermarked image. By using the raw
palette, generation of two color palettes, Ps and Pr,
like those mentioned previously in Algorithms 6
and 7 are performed. At last, we replace the colors
of the black embedded pixels Ib to recover the
original tetromino-based mosaic image by using the
mapping between Ps and Pr. The detailed algorithm
of the proposed lossless recovery process is
described as follows as an algorithm.

Algorithm 8. Lossless recovery of a tetromino-

based mosaic image.
Input: a watermarked tetromino-based mosaic

image I, a binary watermark W, and a
secret key K used in Algorithm 6.

Output: a recovered tetromino-based mosaic
image I′.

Steps:
Step 1. For each tetromino t in I, perform the

following steps.
1.1. If t is in the watermark area, add all pixels

in t into a set of black embedded pixels Ib.
1.2. If t is in the non-watermark area, add all

pixels in t into a set of white embedded
pixels Iw.

Step 2. Create a raw color palette Pa by identifying
the colors C = {C0, C1, …,Cn} in I and
denote the number of color elements of Pa
as n.

Step 3. For every pixel in Iw, count the occurrences
of the colors in C = {C0, C1, …, Cn},
respectively, and denote them as O = {O0,
O1, …, On}.

Step 4. Use Pa, C, and O to generate a sorted color
palette Ps and a rearranged color palette Pr
by Algorithm 7.

Step 5. Randomly pair every two pixels of Ib
together using K to form |Ib|/2 pairs of
pixels as a set A.

Step 6. For each pair a in A, swap the two colors of
a.

Step 7. For each pixel p in Ib, remove W from I to
generate a recovered palette image I′ by the
following steps.

7.1. Obtain the color Cn of p.
7.2. Search Cn in Pr to obtain a color index n of

Cn.
7.3. Obtain the color Cn′ in Ps with the index n.
7.4. Replace the color Cn of p with Cn′.

Note that without the correct key K used in
creating the watermarked image using Algorithm 6,
the lossless recovery of the original image cannot
be achieved, as can be seen from Steps 5 and 6.

IV. Experimental Results

Fig. 5 shows a binary watermark used in
experiments conducted in this study. Fig. 6 shows
some corresponding results of applying the
proposed method, in which Fig. 6(b) is a
watermarked tetromino-based mosaic image
yielded by the proposed watermark embedding
process (Algorithm 6) with Fig. 4(a) as the input
image and Fig. 5 as the input watermark. Fig. 6(c)
is a losslessly-recovered image extracted from Fig.
6(b) with a correct key by the proposed lossless
recovery process (Algorithm 8). Fig. 6(d) shows an
erroneously-recovered image extracted from Fig.
6(b) with a wrong key. As seen in these
experimental results, the embedded watermark area
looks visually different from the pixels adjacent to
them. In addition, the watermark can be removed
losslessly with the right key. These results show the
feasibility and applicability of the proposed
method.

V. Conclusions

In this study, we have proposed a new type of art
image, namely, tetromino-based mosaic image, and
a method for creation of it. Also proposed is a data

hiding method for losslessly-removable visible
watermarking. Using the properties of
tetromino-based mosaic images, we have designed
an algorithm for embedding a visible binary
watermark into a cover image by replacing the
colors of the watermark area according to a novel
one-to-one mapping between two color palettes
generated from the input original image and the
watermark. As a result, it can be used for the
purpose of copyright protection of tetromino-based
mosaic images. Also, a process for lossless
recovery of the original tetromino-based mosaic
image from a watermarked image has been
proposed, which is an inverse process of the
watermarking process. Accordingly, authorized
users can remove the embedded watermark
losslessly from the watermarked image for better
inspection of the original mosaic image. Some
experimental results generated by the proposed
watermarking algorithms were shown to prove the
feasibility of the proposed method. Future
researches may be directed to applying the
proposed technique of data hiding behind the
watermarking process for other applications of
information hiding.

References

[1] P. Haeberli, “Paint by Numbers: Abstract Image
Representations,” Proceedings of SIGGRAPH
90, pp. 207-214, Dallas, Texas, USA, 1990.

[2] A. Hausner, “Simulating decorative mosaics,”
Proceedings of SIGGRAPH 01, pp. 573-580,
Los Angeles, CA, USA, Aug. 2001.

[3] K. Hoff, J. Keyser, M. Lin, D. Manocha and T.
Culver, “Fast computation of generalized
voronoi diagrams using graphics hardware,”
Proceedings of SIGGRAPH 99, pp. 277-286,
Los Angeles, CA, USA, Aug. 1999.

[4] S. Lloyd, “Least Square Quantization in PCM,”
IEEE Transactions on Information Theory, vol.
28, pp. 129-137, 1982.

[5] Y. Dobashi, T. Haga, H. Johan and T. Nishita,
“A method for creating mosaic images using
voronoi diagrams,” Proceedings of
Eurographics 02, pp. 341–348, Saarbrucken,
Germany, Sept. 2002.

[6] G. M. Faustino and L. H. De Figueiredo,

“Simple adaptive mosaic effects,” Proceedings
of SIBGRAPI 2005, Natal, Brazil, Aug. 2005.

[7] G. D. Blasi and G. Gallo, “Artificial Mosaics,”
The Visual Computer, vol. 21, pp. 373-383,
2005.

[8] G. Elber and G. Wolberg, “Rendering traditional
mosaics”, The Visual Computer, vol. 19, pp.
67-78, 2003.

[9] W. L. Lin and W. H. Tsai, “Data hiding in image
mosaics by visible boundary regions and its
copyright protection application against
print-and-scan attacks,” Proceedings of
International Computer Symposium 2004,
Taipei, Taiwan, Dec. 2004.

[10] S. C. Hung, D. C. Wu, and W. H. Tsai, “Data
hiding in stained glass images,” Proceedings of
2005 International Symposium on Intelligent
Signal Processing and Communications
Systems, pp. 129-132, Hong Kong, Dec. 2005.

[11] C. Y. Hsu and W. H. Tsai, “Creation of a new
type of image - circular dotted image - for data
Hiding by a dot overlapping scheme,”
Proceedings of 2006 Conference on Computer
Vision, Graphics and Image Processing,
Taoyuan, Taiwan, Aug. 2006.

[12] T. C. Wang and W. H. Tsai, “Creation of
tile-overlapping mosaic images for information
hiding,” Proceedings of 2007 National
Computer Symposium, pp. 119-126, Taichung,
Taiwan, Dec. 2007.

[13] P. P. Chen and W. H. Tsai, “Copyright
protection of palette images by a robust lossless
visible watermarking technique,” Proceedings
of 5th Workshop on Digital Archives
Technologies, Taipei, Taiwan, Aug. 2006.

Fig. 5: A binary watermark image of size 256×256.

(a)

(b)

Fig. 6: An experimental result. (a) Input image.
(b) Watermarked image created from (a)
with Fig. 5 embedded. (c) Recovered
image obtained with a right key. (d)
Recovered image obtained with a wrong
key.

(c)

(d)

Fig. 6: An experimental result. (a) Input image.
(b) Watermarked image created from (a)
with Fig. 5 embedded. (c) Recovered
image obtained with a right key. (d)
Recovered image obtained with a wrong
key. (continued)

	Chun-Pei Chang (張均培)
	Wen-Hsiang Tsai (蔡文祥)*
	Dept. of Computer Science
	National Chiao Tung University, Hsinchu, Taiwan 30010
	Email: whtsai@cs.nctu.edu.tw

