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Abstract Generating rising up motions is an important
problem but has less been addressed in computer animation.
This problem is challenging as rising motions involve com-
plex motor skills and exhibit wide varieties due to various ly-
ing postures and environments. In this paper, we present an
approach that utilizes motion planning and dynamics filter-
ing to produce physically plausible rising motions. Our mo-
tion planning algorithm connects a given posture to a closest
posture in a database of 14 rising motions. Then the dynam-
ics filtering generates a physically plausible motion from a
planned motion path. Our experiments show that a variety of
motions of rising from various lying postures and different
environments with obstacles can be generated easily by our
approach.

Keywords Rising motion - Motion planning - Character
animation

1 Introduction

Rising up is a very common and important motion for hu-
mans. Although there have been many great approaches pro-
posed to animate a wide variety of human motions such as
walking, dancing, running, jumping, and manipulating, gen-
erating rising motions from various lying postures has rarely
been addressed in computer animation. Existing work on
rising up animation addressed the problem of reproducing
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the motion by robustly tracking a reference motion while
adapting to different characters and environments [4, 18].
Nevertheless, rising motion exhibits large varieties as it in-
volves complex motor skills and coordination strategy as
well as rich interactions with environments [8, 27, 28]. It
is important to reflect physical plausibility as well as mo-
tion varieties when animating rising motions from arbitrary
lying postures. As a first step toward this goal, we address
the problem of generating rich rising motions from various
lying postures in this paper.

From the view of enriching the style and variety of a type
of motions, data-driven approach [11, 16] is very appealing
for generating rising motions; however, it is not practical to
collect all cases of rising motions considering that a char-
acter may rise up from various postures. A good strategy is
then combing a motion database that contains some typical
rising motions and a motion synthesis approach that can pro-
duce the motion variations due to different initial lying pos-
tures. According to several biomechanics studies on catego-
rizing the movement patterns of rising motions [27, 28], the
varieties of movement patterns mostly present in the phases
from lying to sitting or squatting. Thus, it is reasonable and
effective to generate a rising motion by synthesizing a tran-
sition motion from an arbitrary lying posture to a posture in
the rising motion database.

A popular choice for motion synthesis is spacetime-
optimization-based approaches [17, 23, 29], which perform
very well on many kinds of motions whose dynamic char-
acteristics can be quantitatively described by an objective
function and constraints; however, it is difficult to mathe-
matically describe the motor skills and strategy used in ris-
ing motion from arbitrary lying postures. Thus, we turn to
the motion planning approach for motion synthesis. Mo-
tion planning has been used widely in robotics and com-
puter animation for generating locomotion and manipulat-
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ing tasks [1, 12, 30]. Nevertheless, rising motion involves
lots of contacts with environments and self-collisions be-
tween body segments. This makes planning rising motions
from arbitrary lying postures more difficult since the con-
figuration space is constrained by obstacles, body segments
(self-collision), and joint limits and the feasible path usually
needs to pass a narrow passage. Hence, a more sophisticated
motion planning approach is needed.

In this paper, we propose an approach to generate mo-
tions of rising up from various lying postures by combing
motion planning and dynamics filtering techniques. In the
motion planning stage, we modified Rapidly-exploring Ran-
dom Tree Blossom (RRT-blossom) algorithm [9] to synthe-
size a motion path that connects a given initial posture to
a similar posture in our rising motion database. A user can
also specify an initial posture and a key posture. Our mo-
tion planning algorithm can then generate a rising motion
that passes these two postures and connects to the motion
database. In addition, we develop a loose-to-strict and spa-
tiotemporally local refinement strategy to improve the path-
finding capability of rising motion planning. Our motion
planning algorithm can plan a rising motion path that avoids
self-collisions and static obstacles in an environment. To
convert a motion path, which is a sequence of postures, into
a physically plausible motion trajectory, we set a smoothed
motion path as a reference trajectory for tracking in dynam-
ics simulation. The output of dynamics simulation is the fi-
nal motion. This process can be conceptually considered as
dynamically filtering [31].

The combination of motion planning and motion database
in the proposed approach effectively increases the flexi-
bility, richness, and naturalness of the motion, while the
dynamics filter further guarantees the physical plausibil-
ity of the generated motion. We demonstrate the effec-
tiveness of our approach by testing it on randomly gener-
ated lying postures and user specified key postures. Fur-
thermore, we show that our approach can be applied to
generating rising motion in environments that are different
from those in the motion database. Our user study shows
that our results achieve comparable naturalness as human
motions. In addition to the applications in character ani-
mation, our approach can also be applied to plan/generate
reference rising motions for humanoid robots. Through our
simulation system, our approach can produce more natu-
ral and physically plausible reference motions for humanoid
robots.

The contributions of this paper are proposing: (1) a frame-
work that integrates motion planning and dynamics filtering
to generate rising motions from various lying postures with
rich variations; (2) the loose-to-strict spatiotemporal local
refinement strategy that effectively improves path-finding
capability of motion planning.
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2 Related work
2.1 Computer animation

Generating rising motions has less been addressed in com-
puter animation. Faloutsos et al. [4] illustrate an application
of their approach on rising from a supine position. They
focused on combining the controllers of different kinds of
motion, not generating different rising motions from various
postures. Liu et al. [18] recently proposed a sampling-based
approach to reconstruct the control underlying a given ref-
erence motion. Their approach demonstrates excellent ro-
bustness while preserving physical correctness on contact-
rich motions including rolling, get-up, and kip-up. This
sampling-based approach can produce small motion varia-
tions that can be treated as noise; however, reference mo-
tions are still needed for producing larger motion variations.
Our work can be considered as a complementary module
to their approach since rising motion trajectories with rich
variations can be easily generated by our approach.

Our motion planner is an RRT-based approach, which has
been applied to manipulation planning in computer anima-
tion by Yamane et al. [30]. They used motion planning to
compute a path of an object to be manipulated. For each
planned object orientation and position, the pose of the char-
acter is computed to satisfy geometric, kinematic and pos-
ture constraints. Instead of planning in the object space, we
plan in the posture space using the RRT-blossom algorithm.
The concept of connecting a physically simulated motion
to a MOCAP motion in our approach is similar to that in
Zordan et al. approach [32]; however, they focused on gen-
erating dynamic response of MOCAP motions by tracking a
desired trajectory, which is formed by linearly interpolating
the intermediate postures from the two motion capture se-
quences before and after the transition. Their approach can-
not be applied to our problem since we need to synthesize a
trajectory from two postures with large differences. In par-
ticular, an arbitrary lying posture or key posture can be very
different from any postures in a limited motion database.
More importantly, given two postures, our motion planning
approach can generate various trajectories, but the liner in-
terpolation approach used in [32] always produces the same
trajectory.

2.2 Robotics

Generating rising motions has become an important prob-
lem in robotics owing to the rapid development on humanoid
robots. Morimoto and Doya [6, 21] proposed a hierarchi-
cal reinforcement learning method to generate standing-up
movements on a simplified character. Hirukawa et al. [7] and
Fujiewara et al. [6] divided a rising motion into several con-
tact states and used a contact-state graph to represent them.
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This approach works well on robots, but it is difficult to de-
fine a proper contact-state graph for human motions rising
from various lying postures. Kanehiro et al. [10] generated
getting-up motions by linearly interpolating any given lying
posture to its most similar posture in a predefined falling
state graph. Their work focuses on generating a smooth se-
quence of rising postures while we address on producing
a physically plausible rising motion. Besides, our approach
can generate motions with more varieties and flexibilities
since we use a motion planning algorithm instead of linear
interpolation and allow a user to specify a key posture.

2.3 Biomechanics

McCoy and VanSant [20] and Ford-Smith and VanSant [5]
compared movement patterns of people rising from a bed
in different ages. For adolescents, they developed four cat-
egories of movement patterns: far upper extremity, near up-
per extremity, axial region and lower extremities. In the age
between 30 and 59, they developed four categories of move-
ment patterns: left upper limb movement patterns, right up-
per limb movement patterns, head and trunk movement pat-
terns and lower limb movement patterns. They experimented
and computed the probability of each movement pattern.
The goal of these biomechanics studies is to analyze rather
than generate the rising motion.

3 Background on motion planning

Motion planning is used to search the system configuration
space of one or more geometric bodies for a collision-free
path that connects a given start and goal configuration while
fulfilling constraints imposed by obstacles. We adopt and
modify the rapidly-exploring random trees blossom (RRT-
blossom) algorithm [9] to solve our motion planning prob-
lem due to its computational efficiency and path-finding ca-
pability.

3.1 Rapidly-exploring random tree (RRT)

The rapidly-exploring random tree (RRT) [14] consists
of an efficient data structure and sampling scheme that
can quickly search high-dimensional configuration spaces,
which may have both algebraic constraints arising from ob-
stacles and differential constraints arising from nonholon-
omy and dynamics. The key idea of the RRT is to bias the
exploration toward unexplored portions of the configuration
space. At each iteration, the algorithm attempts to extend
the RRT by adding a new node that is biased by a randomly-
selected configuration xppg. The right subtree in Fig. 1 il-
lustrates this EXTEND operation, which selects the nearest
node xpeyr in the existing RRT to a given sample configura-
tion Xrang and proposes a new node xpey by moving toward

Xrand
.\ Y

X0 EXTEND

Fig. 1 EXTEND operation in RRT-connect

Xrand With some fixed incremental distance €. xpew 1S tested
for collision. Three situations may occur during this move-
ment: Reached, xppnq is directly added to the T since Xpew
is within & of xpanq; Advanced, where a new node xpew iS
added to the T'; Trapped, where the proposed new node is
rejected because it does not lie in a collision-free space.

Although RRT performs well and is simple to implement,
it suffers from slow convergence rate. To improve RRT’s
computational efficiency, Kuffner and LaValle developed
the RRT-connect algorithm [13] for the path planning prob-
lem involving no differential constraints. Their approach is
based on two ideas: the CONNECT heuristic that attempts
to move over a longer distance, and the growth of two RRTs
from both initial node xjy;; and goal node xgoa by alterna-
tively executing the EXTEND and CONNECT operations.
Figure 1 shows the basic operation of the RRT-connect al-
gorithm. Instead of extending an RRT by a single step, the
CONNECT heuristic greedily explores the space by repeat-
ing the EXTEND step until xg, Or an obstacle is reached.
The CONNECT operation thus allows a much larger move-
ment than the EXTEND operation.

3.2 RRT-blossom

RRT-blossom [9] is a variant of the RRT-connect. It per-
forms well on both loosely-constrained and highly-con-
strained environments. The key idea of RRT-blossom is
an implicit flood-fill-like mechanism, which is particularly
suited for escaping from local minima in highly constrained
problems. The main difference between RRT-connect and
RRT-blossom is the EXTEND function. Figure 2 shows the
EXTEND function used in RRT-blossom, where the SIM
function instantiates a new node by moving a sampled node
Xnear With a control input u. u is selected from U, which de-
fines all possible control actions. FAILURE function checks
if the transition from x to xpew incurs a collision or vio-
lates any global constraints. The implementation of SIM and
FAILURE is application-dependent. We discuss how we im-
plement these two functions in Sect. 4.2.

RRT-blossom can explore a configuration space more
quickly because it adds multiple new nodes by spanning a
subtree within a range rather than a single node at each time.
To avoid searching all spanning nodes in the subtree, RRT-
blossom utilizes a regression operation to regress the surplus
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function BUILD_RRT_BLOSSOM(xiyit, Xgoal)
T, init(xinit)
Tp.init(xgoa1)
while TIME_ELAPSED() < MAX_TIME do
Xrand < RANDOM_CONFIG()
x4 < EXTEND_BLOSSOM(T,, Xtand)
if x, then
xp < EXTEND_BLOSSOM(Tp, x4)
if x; then
if dist(x,, xp) < ¢ then
return PATH(T,, Tp)
SWAP(T,, Tj,)
return Failure

function EXTEND_BLOSSOM(T, x)
New_node_added = False
Xnear < NEAREST_NEIGHBOR(T, x)
for u € U do
Xnew < SIM(Xnear, )
if FAILURE(xpear, Xnew, #) then
next u
if REGRESSION(T, Xpear, Xnew) then
next u
T .add_node(xpew)
T .add_edge(xnear, Xnew)
New_node_added = True
if New_node_added then
return the new node closest to x
return False

function REGRESSION(T', Xparent> Xnew)
for node n € T do
if dist(n, Xnew) < dist(Xparent> Xnew) then
return True
return False

Fig. 2 RRT-blossom algorithm

nodes that are close to other nodes in the existing tree. Fig-
ure 3 illustrates the blossom and regression operations in the
RRT-blossom algorithm. The regression operation improves
the performance of RRT-blossom algorithm; however, it in-
duces a new problem that all viable paths may be regressed
if the blocked expansion incidentally lies close to a narrow
passage as shown in Fig. 4 of [9]. RRT-blossom solves this
viability problem by labeling an edge as one of the following
four states: untried, live, dormant, or dead. Figure 4 shows
the progression of the viability states of an edge. The un-
tried edges are ones that have not yet been considered for
expansion. They become /ive upon instantiation. An edge
is marked dormant if the expansion is not allowed due to
regression. Finally, edges that have been found to have col-
lision in space are marked dead. RRT-blossom only searches
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(a) Blossom (b) Regression

Fig.3 (a) The possible expansions (red dashed edges) for anode xpey;-
(b) All the red expansions are regressing since a foreign node is closer
than the parent (these occurrences are indicated with ellipses). Only
the blue edge is suitable for instantiation in this case

All children dormant

Blocking node died
or child woke up

Fig. 4 Progression of the viability state of an edge

the edges in live state. There are two ways that a live edge
may change their state. One is all children dormant, and
the other is all children dead. When an edge close to ob-
stacles is dead, the edge’s parent may be dead, and the path
towards the obstacles also disappears. This edge-receding
mechanism prevents RRT-blossom from being trapped in lo-
cal minima.

4 Approach

Figure 5 shows an overview of our approach, which con-
sists of three main stages: connecting posture selection, mo-
tion planning and dynamics filtering. Given an initial pos-
ture Pp specified by a user, the most similar posture to Py
in the rising motion database is automatically found in the
connecting posture selection stage. The selected posture is
denoted as P.op. If the user wants to have more control on
the generated rising motion, our approach also allows the
user to specify Pgon as a key posture. In the motion planning
phase, we plan a motion to connect Pjn;; and Pcop. Finally, in
the dynamics filtering phase, we further refine the planned
motion by smoothing and dynamics filtering to ensure the
physical plausibility.

4.1 Connecting posture selection

A posture is defined by P = {p, g, V}, where p is the global
position of the root, g is the global orientation of the root
represented in quaternion, and V = (v, ..., v") is a vector
that describes the joint angles of all joints of the skeleton
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Initial posture

| Key posture || Environment I

Ground
collision

Cut illegal motion
Adjust constraint

Stage Il

Smoothing and
dynamics filtering

Fig.5 Our approach consists of three stages: posture selection, motion
planning, and dynamics filtering. Note that the input of key posture is
optional. If a key posture is specified by a user, it is used as a connecting
posture in the motion planning phase

Stage Ill

excluding the root joint. i denotes the ith DOF of a skele-
ton and v’ is represented in an Euler angle. One may con-
sider using quaternion or exponential map to represent all
3D joints; however, quaternion would increase the dimen-
sion of V causing the difficulty of motion planning while
the exponential map takes more computational time in mo-
tion planning since it needs special treatment for the blos-
som and extend operations. Therefore, to avoid the gimbal
lock problem that may occur at the root joint more likely
and make the implementation of RRT-blossom easier, we
use quaternion to represent the rotation at the root joint and
Euler angle to represent the other joints.

To measure the difference between two postures P| =
{p1,q1, V1} and P> = {p2, g2, V»}, we define a posture dis-
tance metric as follows:

dist( Py, Pr) = wy -dis Q(q1, q2) +dis V(Vy, Va), (1)

where the first term measures the difference between the
global orientation of the root joints of P; and P»; the second
term computes the posture differences at the other joints. w,
weights these two terms, which are defined as

dis Q(q1. 2) = [[log(q1 ') | 2)

disV(Vi, V)= | > wi - (v} —v})’. 3)

i=1

wi’s are the weighting of the importance of each joint. v’i
and v5 are the Euler angle of the ith DOF of P; and P,
respectively. Note that the global position and facing direc-
tion of P; and P, are roughly aligned before their posture
difference is computed.

The posture difference metric defined in (1) is used to
find the connecting posture in our motion database. To in-
crease the search speed, we apply the K -means algorithm to
cluster all postures in our motion database into N groups.
We then use an N-ary tree to represent these groups. Each
node of the tree stores a group of postures and the root node
contains the representative posture of each group. The rep-
resentative posture of a group is the mean of all postures in
the group. Once the tree of clustered postures is constructed,
our posture selection process can be efficiently performed.

4.2 Motion planning

Motion planning is applied to generate a motion path that
connects an initial posture Pjpj; to a connecting posture Peop.
Our motion planning approach is developed based on the
RRT-blossom algorithm; however, as RRT-blossom is orig-
inally applied to a 2D path planning problem, we make
several modifications to RRT-blossom so that it can be ap-
plied to high-dimensional motion planning for human char-
acters. At the low-level, we modify the EXTEND function
in RRT-blossom to handle posture data consisting of differ-
ent physical quantities and take into account joint limit con-
straint, obstacle avoidance and self-collision check under the
framework of RRT-blossom. At the high-level, we propose
a loose-to-strict and spatiotemporally local refinement plan-
ning strategy to improve the path-finding capability of mo-
tion planning.

4.2.1 Modifications of RRT-blossom to handle posture
space

We modified the new node generation procedure in the SIM
function of RRT-blossom (Fig. 2). In RRT-blossom, u is set
as a constant moving step ¢ whose direction is randomly
chosen within a spanning angle of the main direction from
Xnear tO an intermediate goal x as shown in Fig. 3(a). In our
implementation of RRT-blossom, a node representing a pos-
ture is defined as x = {p, ¢, V}, which consists of different
types of physical quantities. We need to plan all 6 DOFs
of the root joint if P and Peop differ in the root joint’s
6 DOFs. This usually happens when P, is a user-specified
key posture. We first plan a path for the global position of the
root using the conventional RRT-blossom. The remaining
global orientation and joint angles are then planned together
using the modified RRT-blossom algorithm. We expand the
subtree of different physical quantity separately in the node
blossom operation. We first compute a new node Xpew =
{ Pnew> gnew»> Vnew} toward a sample node x = {p, g, V} us-
ing (4) and (5),

&
=5l ,q,1), 1= — 1 ) 4
Gnew = slerp(gnear, 4, 1) dis O (Gnears 7) 4)
&
Vaew = Viear + - (V- Vnear)y (5)

dis V (Vhear, V)
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loint angle vector path Joint angle vector

after some
iterations

)

Orientation path Orientation

Fig. 6 Illustration of the unsynchronized termination problem. (Left)
When the global orientation path connects, the joint angle vector path
has not connected yet. (Right) When the joint angle vector path con-
nects, the global orientation path has generated some surplus segments

where x is an intermediate goal randomly generated; ¢, and
&, are the fixed moving step of u for global orientation g and
joint angle vector V, respectively. Other new nodes are then
instantiated (or blossom) within a spanning angle of the first
new node. For a joint angle vector, a span of +15 degrees
for each DOF toward the intermediate goal direction is used
in our approach.

Planning a full-body motion consisting of global orien-
tation and joint angles can cause an unsynchronized termi-
nation problem in which the path for global orientation and
joint angles may connect the subtrees from two ends at dif-
ferent iterations as illustrated in Fig. 6. To resolve this prob-
lem, the connected goal value will be fixed as long as either
the global orientation or joint angle vector reaches the fi-
nal goal value while only the remaining unconnected part is
planned.

4.2.2 Joint limit constraint and collision detection

We impose the joint limit constraint in the SIM function, i.e.,
any new node generated by the SIM function should satisfy
the joint limit constraint. Additionally, we check if any body
segment collides with ground, obstacles or other body seg-
ments in the motion planning process. This is implemented
in the FAILURE function in Fig. 2. For computational effi-
ciency, Sphere-Swept Volume (SSV) is applied for collision
detection [3].

4.2.3 Loose-to-strict spatiotemporally local refinement
strategy

Our motion planning algorithm consists of full-body and
partial-body motion planning. The former plans the full
body motion that avoids ground penetration, while the lat-
ter focuses on planning the motion of those body segments
that collide with obstacles or other body segments (self-
collision). An iterative refinement strategy is adopted in both
full-body and partial-body motion planning. We repeat the
RRT-blossom algorithm to refine the planned motion by
gradually reducing the tolerance of violation of constraints
until all constraints are satisfied.
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At the first iteration, we set the horizon of the ground at
the lowest position of all body segments of Pjyi; and Peon
and reduce all obstacles’ size to zero by setting the radius
of SSV of each obstacle as zero. That is, there are no obsta-
cles and ground in the environment initially and the motion
planner can generate a collision-free motion easily. We then
gradually enlarge the obstacle size or raise the horizon of
the ground at each iteration of motion planning until the ob-
stacle size and ground level meet the originally set values
and there is no collision in the generated motion. In our ex-
perience, setting the incremental of SSV radius and ground
level per iteration at 0.025 works well. Thus, 0.025 is used
in all of our experiments. Loose-to-strict spatiotemporally
local refinement strategy makes our motion planning more
flexible and efficient as it can be performed locally both in
space (partial-body motion planning) and time (illegal mo-
tion segment replanning).

4.2.4 Cut and merge illegal motion segments

In full-body and partial-body motion planning, if any part
of the character collides with the ground or any obstacle,
the posture of the character is considered as an illegal pos-
ture and those motion frames containing illegal postures are
called an illegal motion segment. We cut an illegal motion
segment from a planned motion path and then insert a new
motion segment replanned by the RRT-blossom algorithm.
If there are multiple illegal motion segments in a planned
motion, we merge and replan those illegal motion segments
that are temporally close. Our cut-and-merge process re-
duced the complexity of motion planning and improves the
smoothness of the planned motion.

It is noteworthy that RRT-blossom finds a collision-free
path instead of the shortest path. This increases the variabil-
ity of planned motions since different posture sequences can
be generated given the same Piyj and Pgon. On the other
hand, the regression operation avoids similar postures to be
added to the planned path. This implies that there is no “go-
ing back” in the path and might slightly reduce the variabil-
ity of generated motions, e.g., high-frequency motions like
quiver may be forbidden. Nevertheless, as high frequency
noise does not appear often in natural motions, this restric-
tion does not harm the naturalness of planned motions.

4.3 Smoothing and dynamics filtering

A result planned by RRT-blossom is simply a sequence of
postures. A path formed by directly connecting these pos-
tures is not smooth and does not contain temporal infor-
mation. Therefore, we need to generate a physically plau-
sible motion trajectory from this posture sequence. We use
cubic Bézier curve to generate a smoothed path by treat-
ing the planned posture sequence as control points. All pos-
tures are represented in quaternion when constructing this



Animating rising up from various lying postures and environments

419

Bézier curve. We then generate a motion trajectory from the
smoothed curve using a velocity profile of constant speed.
This trajectory is a rising motion that is smooth but not phys-
ically correct.

We treat the smoothed motion trajectory as a reference
motion trajectory and apply tracking control and forward
dynamics simulation to generate a physically-plausible mo-
tion. We call this process dynamics filtering since it is con-
ceptually similar to the dynamics filter proposed by Ya-
mane and Nakamura [31]. We adopt Open Dynamics En-
gine (ODE) for forward dynamics simulation and use the
velocity-driven control method [25] to track the reference
motion. Additionally, we apply the virtual actuator control
[22] to assist trajectory tracking. The basic idea is to apply
an “external” force generated by a virtual actuator to con-
trol a body segment. This external force is then converted
into internal joint torques distributively generated by those
joints that would affect the motion of the body segment to
be controlled. In our implementation, we control the cen-
ter of mass of the body by converting a control force into
joint torques of the joints of limbs that have contact with the
environment. This is helpful for maintaining balance while
rising up. Using velocity-driven control and virtual actua-
tor control, we are able to track all planned and smoothed
motion trajectories from lying to sitting or squatting suc-
cessfully and then connect to a closest squatting-to-standing
trajectory in our MOCAP database. To increase the smooth-
ness of this connection, we search between a simulated mo-
tion and MOCAP motion database to find two postures from
each of them that have the smallest difference. We then con-
nect the simulated motion to a MOCAP rising motion from
the most similar frame. Motion blending is applied to those
frames around the connecting frame. This connecting frame
is constrained to be located after the frame of the key pos-
ture so that the user-specified key posture can be preserved
in the final motion.

Although our dynamics filter mainly works on rising mo-
tions from a lying state to a sitting or squatting state, the
effect of dynamics filtering is still significant. We demon-
strate several examples that reflect the motion variations due
to the change of physical properties in our results. In fact,
according to the component actions summarized in [27, 28],
a rising motion can be roughly divided into four phases:
(1) lying and/or rolling, (2) moving to sitting (supine/lateral)
or getting up on all fours (prone/lateral), (3) squatting or
half kneel, and (4) standing up. The first two phases exhibit
larger variations and more varieties [26, 28]. Therefore, it is
actually reasonable to focus on the first two phases in terms
of generating rising motions with varieties and flexibilities.
Besides, similar to the idea promoted in [32], it is computa-
tionally more efficient to exploit MOCAP data as much as
possible since motion planning and dynamics filtering needs
additional computation.

5 Experimental results

We collect 14 rising motions including rising from 6 supine
positions, 4 prone positions, and 4 lateral positions from the
CMU MOCAP database to construct our motion database.
All these motions are rising from flat ground without ob-
stacles. The weight of each joint for the posture difference
(equations (1) and (3)) are set as follows: root = 5, head =
0.5, wrist = 0.5, hand = 0.3, fingers = 0.1, thumb = 0.1,
foot = 0.7, toes = 0.1, and all the other joints = 1. The num-
ber of groups in the K-means clustering is N = 50 in our
experiments and the size of groups ranges from 5 to 2442.
The dynamics filter is performed by the Open Dynamics En-
gine (ODE) version 0.11. All the experiments were run on a
2.66 GHz Intel Core2 Duo CPU E6750 computer with 3GB
of RAM. The average computational time of motion plan-
ning and dynamics filtering with nonoptimized code is about
11.87 seconds and 5.3 seconds, respectively. In the accom-
panying video, we labeled in each motion the portion which
is planned and dynamics filtered.

5.1 Rising up from random initial postures and key
postures

We first test our algorithm in an obstacle-free environment.
We randomly generate 60 initial lying postures for testing,
include 20 in supine position, 20 in prone positions and 20 in
lateral position. Motion planning from all 60 lying postures
are successfully done. Figure 7 shows some of these testing
postures in our experiment. As our posture selection method
often finds a connecting posture close to an initial posture,
the planned and dynamics filtered motion usually only ap-
pears a short period in the generated animations when only
an initial posture is given. In other cases when an additional
key posture is given or there are obstacles, the portion of
planned and dynamics filtered motion increases consider-
ably.

Our approach also allows a user to specify a key pos-
ture in addition to an initial posture. Figure 8 shows some
of our results of rising from supine, lateral, and sitting pos-
tures. One can find that key postures are closely performed
in these examples. More results can be seen in the accom-
panying video. There are some cases that the key posture
is not achieved since the dynamics filtering in our approach
prefers physical plausibility to user’s control. This is good
for novice users as they may assign a key posture violating
dynamical constraints, but our approach can still produce
a physically plausible motion while matching the key pos-
ture as close as possible. Note that if a key posture is not a
posture in our motion database, motion planning is applied
again to connect the key posture to a posture in our motion
database. This provides the user more flexibility to choose a
desired key posture. On the other hand, we can also restrict a
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Fig. 7 Some of the random initial postures used in our experiment

o

(a) rising from supine with a lateral key pose.

| P

(b) rising from lateral with a supine key pose

B .

(c) rising from sitting with a hand-push key pose

Fig. 8 Snapshots at the initial and key frames of three rising motions.
The images at the right column shows the key posture specified by the
user. The key posture is closely followed in the generated motions

user to pick a key posture from the existing motion database.
This may reduce the range of key postures that a user can
choose if the size of the motion database is limited; however,
it also provides a good guidance for the user to select a more
natural posture. Whether a key posture is in the database or
not, our approach can generate a smooth rising up motion
that connects the initial and key postures. In our opinion, if
the database of rising motion is large enough, then picking
a key posture from the motion database might be a better
choice; however, if the size of the motion database is lim-
ited like ours, allowing the user to arbitrarily specify a key
posture is more feasible solution.

5.2 Rising up in different environments

Although our motion database only contains rising up on flat
ground without obstacles, our approach can generate various
rising motions that adapt to different environments. Figure 9
shows an example that a character rises up from a prone po-
sition with face on a wood beam. One can see how the char-
acter adjusts his hand motion to utilize the wood beam for
supporting his upper body while avoiding collision with the
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wood beam. Figure 10(a, b) shows rising up from a low bed
with two different lying positions: one with upper legs out-
side the bed and the other on the bed. The character’s arm
motion adapts to the lying position by pushing the bed and
ground with different parts of his arms and hands. In this ex-
ample, only the initial lying posture is given. In Fig. 10(c),
we simulated rising up from a soft bed by setting the con-
tact model between the body and the slope as a soft con-
straint, i.e., a virtual soft spring to penalize penetration. The
initial lying posture and position are the same with those
at (a). In Fig. 11, we demonstrate rising up from a lateral
position under a table. An initial posture and a key posture
lying laterally with the head facing outward are given, our
approach generates a physically plausible motion without
collision with the environment.

In addition to normal ground, our approach can also sim-
ulate rising up on different ground conditions. Figure 12
shows a comparison of rising up on icy and normal ground.
In the accompanying video, one can observe that the charac-
ter’s body slips on icy ground and the character eventually
face a different direction after standing up. Finally, we tested
our approach on rising up from lying on a slope. Figure 13
shows several snapshots of our result. This result demon-
strates that our approach can also adapt the rising motion to
a slope environment. The examples in Figs. 9-13 illustrate
that despite different environments, our motion planning ap-
proach can still generate a collision-free path and dynamics
filtering can refine the path to produce physically plausible
motion that reflects the change of the environment.

5.3 Motion retargeting

Our approach can be used for motion retargeting. Figure 14
shows the motion variations at the same time frame due
to the change of character’s body: (a) original character;
(b) shoulder is two times as wide as the original; (c) arms
are 1.6 times as long as the original; (d) arms and upper body
are 1.6 times and 2.2 times long as the original, respectively.
Note that the mass and inertia of the corresponding body
segments are also changed according to these bone length
changes. One can see the effects of dynamics filtering on
the character’s motions in the accompanying video.

5.4 User study and validation

We conducted a user study to evaluate the naturalness of
our results. Table 1 summarizes our user study result. We
prepared 25 animations including 7 motions from MOCAP
database and 18 motions from our results. Each subject
watched all 25 animations, which were played in a random
order on a computer screen, and gave a score to each motion
based on the naturalness. The range of score, from best to
worst, is 10 to 1. There are 27 males and 13 females aged
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Fig. 9 A rising motion with a wood beam below the face. One can see that the upper arm movements in the generated motion adapt to the wood
beam. The leftmost and rightmost images are the initial and key posture, respectively

(a)

Fig. 10 Rising from a low bed with different lying positions and rising
from a soft bed. Only the initial lying posture is given in this example.
(a) Upper and lower legs are outside the bed. (b) Only lower legs are
outside the bed. The character’s arm motion adapts to the lying posi-

tion by pushing the bed and ground with different parts of his arms and
hands. (¢) Rising from a soft bed. The initial lying posture is the same
as that on the fop row. One can observe how the rising motion adapts
to a soft surface

E LB LC EES

Fig. 11 A rising motion from an initial posture under a table. The leftmost and rightmost images are the initial and key postures, respectively

between 19 to 60 participated in the study. 21 of them have
graphics research background. The average score and stan-
dard deviation of MOCAP and our results are (6.92,2.22)
and (6.29, 2.27), respectively. It appears that the naturalness
of our results is slightly worse than, but perceptually com-
parable to that of human motions (MOCAP data). To vali-
date the effectiveness of our loose-to-strict spatiotemporally
local refinement strategy, we compare the average compu-
tational time of motion planning used in Figs. 9—11. One
can find in Table 3 that although our refinement strategy in-
creases the computational time slightly, it improves the path-
finding capability effectively.

To further verify the effect of motion planning and dy-
namics filtering, we conducted another user study as shown
in Table 2. We compare our results with those generated by
removing dynamics filtering from our approach and remov-
ing motion planning from our approach. Specifically, for the
approach without dynamics filtering, we only use motion
planning and smoothing o produce rising motions, while for
the approach without motion planning, we only use linear
interpolation and dynamics filtering to generate rising mo-
tions. We performed our user study using the method of
paired comparisons [2]. In this method, items are presented
side-by-side in pairs to a human subject, who then selects a
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Fig. 12 Comparison of rising up from icy ground (top) and normal ground (bottom). The character on the fop row was slipping on icy ground and

going to stand up toward a different direction

Fig. 13 Rising up from lying on a slope. One can see the character’s motion adapts to the slope and presents physical plausibility

(a) (b)
(©) (d)

Fig. 14 Example of motion retargeting. A snapshot of each motion
at the same frame is presented: (a) original character; (b) shoulder is
two times as wide as the original; (c) arms are 1.6 times as long as
the original; (d) arms and upper body are 1.6 times and 2.2 times long
as the original, respectively. One can observe from the accompanying
video that the resulting motions are dynamically different

preferred one in each pair. Following this method, we pre-
pared a web-based survey showing pairs of rising motion
videos. For each pair, a subject needs to vote which one
looks more natural. There were 24 subjects participating in
our user study including 17 males and 7 females, 13 (of 24)
subjects have graphics background. We compared on rising
from 3 different lying postures, so each approach was com-
pared 3 x 24 = 72 times. To reduce the bias in our user study,
we randomized the playing order of video pairs and pro-
vided only the most necessary information to the subjects.
Table 2 shows the overall preference by summing the
votes for each method across subjects. It shows that our ap-
proach is clearly preferred over that without dynamics filter-
ing since our results were favored in 73.61% (53 of 72) of
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the comparisons with the approach without dynamics filter-
ing. When compared with the results without motion plan-
ning, our results were still preferred in 72.22% (52 of 72).
Overall, the subjects favored our method in 48.61% (105 of
216) of the comparisons, while the preference for the results
without dynamics filtering and the results without motion
planning is are 28.24% (61 of 216) and 23.15% (50 of 216),
respectively. The interobserver variability, Kendall’s coeffi-
cient of agreement, is u = 0.1375 for Table 2, with a p-value
<0.01. Hence, there is a statistically significant agreement
among the subjects regarding the three approaches. We re-
fer readers to [2] for a detailed explanation of these indi-
cators. This user study verifies that both dynamics filtering
and motion planning are needed for generating natural rising
motions. It also shows motion planning has slightly more in-
fluence than dynamics filtering for generating natural rising
motions.

5.5 Discussion and limitations

It is an interesting question that whether the closest key
posture is the best choice or not. We may verify this is-
sue by leaving one MOCAP motion out and then compare
our result with the MOCAP motion; however, this valida-
tion would need a larger database, which we do not have
currently. To make the transition strategy closer to the nat-
ural strategy, we can incorporate some findings in biome-
chanical studies that analyze the strategies used in rising
up motion. In our implementation of motion planning, the
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Table 1 User study on the naturalness of rising animations from MO-
CAP and our approach. The score range is from 10 (best) to 1 (worst).
From the 2nd to 6th columns are: MOCAP, rising up from an initial
posture, from an initial and a key posture, with obstacles, from a sitting
posture. The 3rd row lists the total number of each type of motion

Source MOCAP Our results

Type No-obstacle No-key Key Obstacle Sitting
Num 7 2 9 4 3
Mean 6.92 7.06 6.23 6.39 5.82
Std 222 2.50 2.20 223 2.26
Total 6.92,2.22 Mean = 6.29, Std =2.27

Table 2 Preferences of 24 subjects for 3 motion generation ap-
proaches, e.g., an entry n in row 1 and column 2 means the result of
approach 1 was preferred n-times to the result of approach 2

1 2 3 Total (216)
1. Our approach - 53 52 105
2. Without dynamics filtering 19 - 42 61
3. Without motion planning 20 30 - 50

computational time of each iteration of loose-to-strict re-
finement ranges from 0.41 to 4.9 seconds and its average
is about 0.787 seconds. In our experiments, we first try to
plan a motion satisfying the original (strict) constraints. If a
collision-free path cannot be found, we then apply the loose-
to-strict refinement strategy. Currently, we used a fixed in-
cremental for simplicity, so the total number of iterations is
40. Dynamically adjusting the incremental at each iteration
is a better strategy that can improve the computational effi-
ciency.

It may also be possible to first plan multiple paths from
Pinit to Peon and then select the best one according to motion
naturalness; however, it is still an open question of measur-
ing the naturalness of a motion. Choosing the best planned
path based on the physics compatibility is feasible, but our
dynamics filtering at the later stage would actually ensure
the physics compatibility. In fact, our motion planning cur-
rently only consider lower-level constraints, such as obsta-
cle avoidance and joint limit. Higher-level constraint, such
as naturalness or coordination strategy may be included in
the motion planner.

Currently, our dynamics filtering mainly works on rising
motions from a lying state to a sitting or squatting state.
To capture more dynamic variations of rising motions, es-
pecially balancing behaviors from sitting/squatting to stand-
ing, it is desirable to simulate the whole motion from lying
to stance states. Several recent approaches [18, 19, 24] can
be applied to improve our dynamics filtering. We will ex-
plore the above issues about motion planning and dynamics
filtering in the future.

Table 3 Comparison of average computational time (in seconds) of
motion planning without and with loose-to-strict spatiotemporally lo-
cal refinement

Figure 9 10 (top) 10 (bottom) 11
Without Fail 2.85s 2.63s Fail
With 6.18 s 2.92s 3.06s 20.45s

6 Conclusion and future work

We present a simple and effective approach to generate ris-
ing motion from various lying postures using motion plan-
ning and dynamics filtering. In the motion planning stage,
we use a modified RRT-blossom algorithm and design a
loose-to-strict spatiotemporally local refinement strategy to
plan a path connecting a given posture and motion database.
In smoothing and dynamics filtering stage, velocity-driven
control and virtual actuator control are applied in a dynam-
ics simulator to track a motion trajectory constructed from
the planned motion path. Our experiments show that a va-
riety of motions of rising from various lying postures and
different environments with obstacles can be generated by
our approach easily. In particular, our motion planner can
generate a collision-free path that adapts to the environment
while dynamics filtering can produce physically plausible
motions with variations that reflect the change of physical
properties.

In the future, we would like to add contact-dependent
constraints that only some DOFs are allowed to move. For
example, if a character lying prone with his arm under his
body, the arm cannot move unless it pushes the ground. Be-
sides, the samples in our rising motion database may not
reflect the real distribution of human motions found in [27,
28]. If more rising motions collected according to the statis-
tic of human rising motions, the naturalness of our results
can be further improved. Also, we currently use a constant
speed profile to generate a motion trajectory from a planned
posture sequence. A better way to specify the speed pro-
file may be based on the transition postures and the selected
MOCAP. Furthermore, we may consider to apply kinody-
namic planning [15] to enforce dynamical constraints in the
motion planning stage if the curse of dimensionality prob-
lem can be solved. Finally, we would like to improve the
computational performance of our approach so that it can
be applied to real-time applications such as games or virtual
training.
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