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Abstract Animating rising motions is an important
problem but has been less addressed in computer ani-
mation. This problem is challenging as rising motions
involve complex motor skills and exhibit wide varieties
due to various lying postures and environments. In this
paper, we present an approach that utilizes motion plan-
ning and dynamics filtering to produce physically plau-
sible rising motions. Our motion planning algorithm
connects a given posture to a closest posture in a database
of 14 rising motions. Then the dynamics filtering gener-
ates a physically plausible motion from a planned mo-
tion path. Our experiments show that a variety of mo-
tions of rising from various lying postures and different
environments with obstacles can be generated easily by
our approach.

Keywords Rising motion · Motion planning ·
Character Animation

1 Introduction

Rising up is a very common and important motion
for humans. Although there have been many great ap-
proaches proposed to animate a wide variety of human
motions such as walking, dancing, running, jumping,
and manipulating, generating rising motions from var-
ious lying postures has rarely been addressed in com-
puter animation. Existing work on rising up animation
addressed the problem of reproducing the motion by
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robustly tracking a reference motion while adapting to
different characters and environments[3,17]. Neverthe-
less, rising motion exhibits large varieties as it involves
complex motor skills and coordination strategy as well
as rich interactions with environments[27,26,7]. It is
important to reflect physical plausibility as well as mo-
tion varieties when animating rising motions from arbi-
trary lying postures. As a first step toward this goal, we
address the problem of generating rich rising motions
from various lying postures in this paper.

From the view of enriching the style and variety of a
type of motions, data-driven approach[10,15] is very ap-
pealing for generating rising motions; however, it is not
practical to collect all cases of rising motions consider-
ing that a character may rise up from various postures.
A good strategy is then combing a motion database
that contains some typical rising motions and a motion
synthesis approach that can produce the motion varia-
tions due to different initial lying postures. According to
several biomechanics studies on categorizing the move-
ment patterns of rising motions[26,27], the varieties of
movement patterns mostly present in the phases from
lying to sitting or squatting. Thus, it is reasonable and
effective to generate a rising motion by synthesizing a
transition motion from an arbitrary lying posture to a
posture in the rising motion database.

A popular choice for motion synthesis is spacetime-
optimization-based approaches[28,16,22], which perform
very well on many kinds of motions whose dynamic
characteristics can be quantitatively described by an
objective function and constraints; however, it is dif-
ficult to mathematically describe the motor skills and
strategy used in rising motion from arbitrary lying pos-
tures. Thus, we turn to the motion planning approach
for motion synthesis. Motion planning has been used
widely in robotics and computer animation for generat-
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ing locomotion and manipulating tasks[11,1,29]. Never-
theless, rising motion involves lots of contacts with en-
vironments and self-collisions between body segments.
This makes planning rising motions from arbitrary ly-
ing postures more difficult since the configuration space
is constrained by obstacles, body segments (self-collision)
and joint limits and the feasible path usually needs to
pass a narrow passage. Hence, a more sophisticated mo-
tion planning approach is needed.

In this paper, we propose an approach to gener-
ate motions of rising up from various lying postures by
combing motion planning and dynamics filtering tech-
niques. In the motion planning stage, we modified Rapidly-
exploring Random Tree Blossom (RRT-blossom) algo-
rithm[8] to synthesize a motion path that connects a
given initial posture to a similar posture in our rising
motion database. A user can also specify an initial pos-
ture and a key posture. Our motion planning algorithm
can then generate a rising motion that passes these
two postures and connects to the motion database. In
addition, we develop a loose-to-strict and spatiotem-
porally local refinement strategy to improve the path-
finding capability of rising motion planning. Our mo-
tion planning algorithm can plan a rising motion path
that avoids self-collisions and static obstacles in an en-
vironment. To convert a motion path, which is a se-
quence of postures, into a physically plausible motion
trajectory, we set a smoothed motion path as a ref-
erence trajectory for tracking in dynamics simulation.
The output of dynamics simulation is the final motion.
This process can be conceptually considered as dynam-
ically filtering[30].

The combination of motion planning and motion
database in the proposed approach effectively increases
the flexibility, richness and naturalness of the motion,
while the dynamics filter further guarantees the phys-
ical plausibility of the generated motion. We demon-
strate the effectiveness of our approach by testing it
on randomly generated lying postures and user speci-
fied key postures. Additionally, we show that our ap-
proach can be applied to generating rising motion in
environments that are different from those in the mo-
tion database. Our user study shows that our results
achieve comparable naturalness as human motions.

The contributions of this paper are proposing: (1)
a framework that integrates motion planning and dy-
namics filtering to generate rising motions from vari-
ous lying postures with rich variations; (2) the loose-
to-strict spatiotemporal local refinement strategy that
effectively improves path-finding capability of motion
planning.

2 Related Work

Computer animation. Generating rising motions has
been less addressed in computer animation. Faloutsos
et al.[3] illustrate an application of their approach on
rising from a supine position. They focused on com-
bining the controllers of different kinds of motion, not
generating different rising motions from various pos-
tures. Liu et al.[17] recently proposed a sampling-based
approach to reconstruct the control underlying a given
reference motion. Their approach demonstrates excel-
lent robustness while preserving physical correctness on
contact-rich motions including rolling, get-up, and kip-
up. This sampling-based approach can produce small
motion variations that can be treated as noise; how-
ever, reference motions are still needed for producing
larger motion variations. Our work can be considered
as a complementary module to their approach since ris-
ing motion trajectories with rich variations can be easily
generated by our approach.

Our motion planner is an RRT-based approach, which
has been applied to manipulation planning in computer
animation by Yamane et al.[29]. They used motion plan-
ning to compute a path of an object to be manipulated.
For each planned object orientation and position, the
pose of the character is computed to satisfy geometric,
kinematic and posture constraints. Instead of planning
in the object space, we plan in the posture space using
the RRT-blossom algorithm. The concept of connect-
ing a physically simulated motion to a MOCAP mo-
tion in our approach is similar to that in Zordan et
al.’s approach[31]; however, they focused on generating
dynamic response of MOCAP motions by tracking a
desired trajectory, which is formed by linearly interpo-
lating the intermediate postures from the two motion
capture sequences before and after the transition. Their
approach cannot be applied to our problem since we
need to synthesize a trajectory from two postures with
large differences. In particular, an arbitrary lying pos-
ture or key posture can be very different from any pos-
tures in a limited motion database. More importantly,
given two postures, our motion planning approach can
generate various trajectories, but the liner interpola-
tion approach used in [31] always produces the same
trajectory.

Robotics. Generating rising motions has become
an important problem in robotics owing to the rapid de-
velopment on humanoid robots. Morimoto and Doya[20,
5] proposed a hierarchical reinforcement learning method
to generate standing-up movements on a simplified char-
acter. Hirukawa et al.[6] and Fujiewara et al.[5] divided
a rising motion into several contact states and used a
contact-state graph to represent them. This approach
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works well on robots, but it is difficult to define a proper
contact-state graph for human motions rising from vari-
ous lying postures. Kanehiro et al. [9] generated getting-
up motions by linearly interpolating any given lying
posture to its most similar posture in a predefined falling
state graph. Their work focuses on generating a smooth
sequence of rising postures while we address on produc-
ing a physically plausible rising motion. Besides, our
approach can generate motions with more varieties and
flexibilities since we use a motion planning algorithm
instead of linear interpolation and allow a user to spec-
ify a key posture.

Biomechanics. McCoy and VanSant [19] and Ford-
Smith and VanSant [4] compared movement patterns of
people rising from a bed in different ages. For adoles-
cents, they developed four categories of movement pat-
terns: far upper extremity, near upper extremity, ax-
ial region and lower extremities. In the age between
30 to 59, they developed four categories of movement
patterns: left upper limb movement patterns, right up-
per limb movement patterns, head and trunk movement
patterns and lower limb movement patterns. They ex-
perimented and computed the probability of each move-
ment pattern. The goal of these biomechanics studies
is to analyze rather than generate the rising motion.

3 Background on Motion Planning

Motion planning is used to search the system config-
uration space of one or more geometric bodies for a
collision-free path that connects a given start and goal
configuration while fulfilling constraints imposed by ob-
stacles. We adopt and modify the rapidly-exploring ran-
dom trees blossom (RRT-blossom) algorithm [8] to solve
our motion planning problem due to its computational
efficiency and path-finding capability.

3.1 Rapidly-exploring random tree (RRT)

The rapidly-exploring random tree (RRT) [13] consists
of an efficient data structure and sampling scheme that
can quickly search high-dimensional configuration spaces,
which may have both algebraic constraints arising from
obstacles and differential constraints arising from non-
holonomy and dynamics. The key idea of the RRT is to
bias the exploration toward unexplored portions of the
configuration space. At each iteration, the algorithm at-
tempts to extend the RRT by adding a new node that
is biased by a randomly-selected configuration xrand.
The right subtree in Figure 1 illustrates this EXTEND
operation, which selects the nearest node xnear in the
existing RRT to a given sample configuration xrand and

proposes a new node xnew by moving toward xrand

with some fixed incremental distance ε. xnew is tested
for collision. Three situations may occur during this
movement: Reached, xrand is directly added to the T

since xnew is within ε of xrand; Advanced, where a new
node xnew is added to the T ; Trapped, where the pro-
posed new node is rejected because it does not lie in a
collision-free space.

Fig. 1 EXTEND operation in RRT-connect.

Although RRT performs well and is simple to imple-
ment, it suffers from slow convergence rate. To improve
RRT’s computational efficiency, Kuffner and LaValle
developed the RRT-connect algorithm [12] for the path
planning problem involving no differential constraints.
Their approach is based on two ideas: the CONNECT
heuristic that attempts to move over a longer distance,
and the growth of two RRTs from both initial node xinit

and goal node xgoal by alternatively executing the EX-
TEND and CONNECT operations. Figure 1 shows the
basic operation of the RRT-connect algorithm. Instead
of extending an RRT by a single step, the CONNECT
heuristic greedily explores the space by repeating the
EXTEND step until xgoal or an obstacle is reached.
The CONNECT operation thus allows a much larger
movement than the EXTEND operation.

3.2 RRT-blossom

RRT-blossom [8] is a variant of the RRT-connect. It
performs well on both loosely-constrained and highly-
constrained environments. The key idea of RRT-blossom
is an implicit flood-fill-like mechanism, which is partic-
ularly suited for escaping from local minima in highly
constrained problems. The main difference between RRT-
connect and RRT-blossom is the EXTEND function.
Figure 2 shows the EXTEND function used in RRT-
blossom, where the SIM function instantiates a new
node by moving a sampled node xnear with a control
input u. u is selected from U , which defines all pos-
sible control actions. FAILURE function checks if the
transition from x to xnew incurs a collision or violates
any global constraints. The implementation of SIM and
FAILURE is application-dependent. We discuss how we
implement these two functions in section 4.2.
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function BUILD RRT BLOSSOM(xinit, xgoal)
Ta.init(xinit)
Tb.init(xgoal)
while TIME ELAPSED() < MAX TIME do

xrand ← RANDOM CONFIG()
xa ← EXTEND BLOSSOM(Ta, xrand)
if xa then

xb ← EXTEND BLOSSOM(Tb, xa)
if xb then

if dist(xa, xb) < ε then
return PATH(Ta, Tb)

SWAP(Ta, Tb)
return Failure

function EXTEND BLOSSOM(T , x)
New node added = False
xnear ← NEAREST NEIGHBOR(T, x)
for u ∈ U do

xnew ← SIM(xnear, u)
if FAILURE(xnear, xnew, u) then

next u
if REGRESSION(T , xnear, xnew) then

next u
T .add node(xnew)
T .add edge(xnear, xnew)
New node added = True

if New node added then
return the new node closest to x

return False

function REGRESSION(T , xparent, xnew)
for node n ∈ T do

if dist(n, xnew) < dist(xparent, xnew) then
return True

return False

Fig. 2 RRT-blossom algorithm.

RRT-blossom can explore a configuration space more
quickly because it adds multiple new nodes by span-
ning a subtree within a range rather than a single node
at each time. To avoid searching all spanning nodes in
the subtree, RRT-blossom utilizes a regression opera-
tion to regress the surplus nodes that are close to other
nodes in the existing tree. Figure 3 illustrates the blos-
som and regression operations in the RRT-blossom al-
gorithm. The regression operation improves the perfor-
mance of RRT-blossom algorithm; however, it induces
a new problem that all viable paths may be regressed
if the blocked expansion incidentally lies close to a nar-
row passage as shown in Figure 4 of [8]. RRT-blossom
solves this viability problem by labeling an edge as one
of the following four states: untried, live, dormant or
dead. Figure 4 shows the progression of the viability
states of an edge. The untried edges are ones that have
not yet been considered for expansion. They become
live upon instantiation. An edge is marked dormant if
the expansion is not allowed due to regression. Finally,
edges that have been found to have collision in space
are marked dead. RRT-blossom only searches the edges

(a) Blossom (b) Regression

Fig. 3 (a)The possible expansions (red dashed edges) for a
node xnear. (b)All the red expansions are regressing since
a foreign node is closer than the parent (these occurrences
are indicated with ellipses). Only the blue edge is suitable for
instantiation in this case.

Fig. 4 Progression of the viability state of an edge.

in live state. There are two ways that a live edge may
change their state. One is all children dormant, and the
other is all children dead. When an edge close to ob-
stacles is dead, the edge’s parent may be dead, and the
path towards the obstacles also disappears. This edge-
receding mechanism prevents RRT-blossom from being
trapped in local minima.

4 Approach

Figure 5 shows an overview of our approach, which con-
sists of three main stages: connecting posture selection,
motion planning and dynamics filtering. Given an ini-
tial posture Pinit specified by a user, the most similar
posture to Pinit in the rising motion database is au-
tomatically found in the connecting posture selection
stage. The selected posture is denoted as Pcon. If the
user wants to have more control on the generated ris-
ing motion, our approach also allows the user to specify
Pcon as a key posture. In the motion planning phase, we
plan a motion to connect Pinit and Pcon. Finally, in the
dynamics filtering phase, we further refine the planned
motion by smoothing and dynamics filtering to ensure
the physical plausibility.

4.1 Connecting posture selection

A posture is defined by P = {p, q, V }, where p is the
global position of the root, q is the global orientation of
the root represented in quaternion, and V = (v1, ..., vn)
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Fig. 5 Our approach consists of three stages: posture selec-
tion, motion planning, and dynamics filtering. Note that the
input of key posture is optional. If a key posture is specified
by a user, it is used as a connecting posture in the motion
planning phase.

is a vector that describes the joint angles of all joints of
the skeleton excluding the root joint. i denotes the ith
DOF of a skeleton and vi is represented in Euler angle.
One may consider using quaternion or exponential map
to represent all 3D joints; however, quaternion would
increase the dimension of V causing the difficulty of
motion planning while the exponential map takes more
computational time in motion planning since it needs
special treatment for the blossom and extend opera-
tions. Therefore, to avoid the gimbal lock problem that
may occur at the root joint more likely and make the
implementation of RRT-blossom easier, we use quater-
nion to represent the rotation at the root joint and Eu-
ler angle to represent the other joints.

To measure the difference between two postures P1

= {p1, q1, V1} and P2 = {p2, q2, V2}, we define a posture
distance metric as follows:

dist(P1, P2) = wq · disQ(q1, q2) + disV (V1, V2), (1)

where the first term measures the difference between
the global orientation of the root joints of P1 and P2;
the second term computes the posture differences at
the other joints. wq weights these two terms, which are
defined as

disQ(q1, q2) =‖ log(q1
−1q2) ‖ (2)

disV (V1, V2) =

√√√√ n∑
i=1

wi · (vi
1 − vi

2)2. (3)

wi’s are the weighting of the importance of each joint.
vi
1 and vi

2 are the Euler angle of the ith DOF of P1

and P2, respectively. Note that the global position and

facing direction of P1 and P2 are roughly aligned before
their posture difference is computed.

The posture difference metric defined in Eq. 1 is
used to find the connecting posture in our motion database.
To increase the search speed, we apply the K-means al-
gorithm to cluster all postures in our motion database
into N groups (N=50 in our experiments). We then use
an N -ary tree to represent these groups. Each node of
the tree stores a group of postures and the root node
contains the representative posture of each group. The
representative posture of a group is the mean of all pos-
tures in the group. Once the tree of clustered postures
is constructed, our posture selection process can be ef-
ficiently performed.

4.2 Motion planning

Motion planning is applied to generate a motion path
that connects an initial posture Pinit to a connecting
posture Pcon. Our motion planning approach is devel-
oped based on the RRT-blossom algorithm; however, as
RRT-blossom is originally applied to a 2D path plan-
ning problem, we make several modifications to RRT-
blossom so that it can be applied to high-dimensional
motion planning for human characters. At the low-level,
we modify the EXTEND function in RRT-blossom to
handle posture data consisting of different physical quan-
tities and take into account joint limit constraint, obsta-
cle avoidance and self-collision check under the frame-
work of RRT-blossom. At the high-level, we propose
a loose-to-strict and spatiotemporally local refinement
planning strategy to improve the path-finding capabil-
ity of motion planning.

Modifications of RRT-blossom to handle pos-
ture space. We modified the new node generation pro-
cedure in the SIM function of RRT-blossom (Figure 2).
In RRT-blossom, u is set as a constant moving step
ε whose direction is randomly chosen within a span-
ning angle of the main direction from xnear to an in-
termediate goal x as shown in Figure 3(a). In our im-
plementation of RRT-blossom, a node representing a
posture is defined as x = {p, q, V }, which consists of
different types of physical quantities. We need to plan
all 6 DOFs of the root joint if Pinit and Pcon differ in
the root joint’s 6 DOFs. This usually happens when
Pcon is a user-specified key posture. We first plan a
path for the global position of the root using the con-
ventional RRT-blossom. The remaining global orien-
tation and joint angles are then planned together us-
ing the modified RRT-blossom algorithm. We expand
the subtree of different physical quantity separately in
the node blossom operation. We first compute a new
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node xnew = {pnew, qnew, Vnew} toward a sample node
x = {p, q, V } using Eqs. 4 and 5,

qnew = slerp(qnear, q, t), t =
εq

disQ(qnear, q)
, (4)

Vnew = Vnear +
εe

disV (Vnear, V )
· (V − Vnear), (5)

where x is an intermediate goal randomly generated; εq

and εe are the fixed moving step of u for global orien-
tation q and joint angle vector V , respectively. Other
new nodes are then instantiated (or blossom) within a
spanning angle of the first new node. For a joint angle
vector, a span of ± 15 degrees for each DOF toward the
intermediate goal direction is used in our approach.

Planning a full-body motion consisting of global ori-
entation and joint angles can cause an unsynchronized
termination problem in which the path for global orien-
tation and joint angles may connect the subtrees from
two ends at different iterations. Figure 6 illustrates the
problem, where the global orientation qa of a node on
subtree Ta reaches qb on the other subtree Tb first, but
Va and Vb have not connected. Hence, the global ori-
entation path would keep growing until the joint an-
gle path connects. To resolve this problem, the con-
nected goal value will be fixed as long as either the
global orientation or joint angle vector reaches the fi-
nal goal value. Specifically, our SIM function gener-
ates a new node as follows: (1)if disQ(qa, qb) < εq and
disV (Va, Vb) < εe, the goal reaches; (2) if disQ(qa, qb)
< εq and disV (Va, Vb) ≥ εe, q is fixed thereafter and
Vnew is computed using Eq. 5; (3) if disQ(qa, qb) ≥ εq

and disV (Va, Vb) < εe, V is fixed thereafter and qnew

is computed using Eq. 4; (4) if disQ(qa, qb) ≥ εq and
disV (Va, Vb) ≥ εe, generating a new node that both
Vnew and qnew are computed.

Fig. 6 Illustration of the unsynchronized termination prob-
lem. (Left) When the global orientation path connects, the
joint angle vector path has not connected yet. (Right) When
the joint angle vector path connects, the global orientation
path has generated some surplus segments.

Joint limit constraint and collision detection.
We impose the joint limit constraint in the SIM func-
tion, i.e., any new node generated by the SIM function
should satisfy the joint limit constraint. Additionally,
we check if any body segment collides with ground, ob-
stacles or other body segments in the motion planning
process. This is implemented in the FAILURE function

in Figure 2. For computational efficiency, Sphere-Swept
Volume (SSV) is applied for collision detection[2].

Loose-to-strict spatiotemporally local refine-
ment strategy. Our motion planning algorithm con-
sists of full-body and partial-body motion planning.
The former plans the full body motion that avoids ground
penetration, while the latter focuses on planning the
motion of those body segments that collide with ob-
stacles or other body segments (self-collision). An iter-
ative refinement strategy is adopted in both full-body
and partial-body motion planning. We repeat the RRT-
blossom algorithm to refine the planned motion by grad-
ually reducing the tolerance of violation of constraints
until all constraints are satisfied.

At the first iteration, we set the horizon of the ground
at the lowest position of all body segments of Pinit and
Pcon and reduce all obstacles’ size to zero by setting the
radius of SSV of each obstacle as zero. That is, there
are no obstacles and ground in the environment initially
and the motion planner can generate a collision-free mo-
tion easily. We then gradually enlarge the obstacle size
or raise the horizon of the ground at each iteration of
motion planning until the obstacle size and ground level
meet the originally set values and there is no collision
in the generated motion. In our experience, setting the
incremental of SSV radius and ground level per itera-
tion at 0.025 works well. Thus, 0.025 is used in all of
our experiments. Loose-to-strict spatiotemporally local
refinement strategy makes our motion planning more
flexible and efficient as it can be performed locally both
in space (partial-body motion planning) and time (ille-
gal motion segment replanning).

Cut and merge illegal motion segments. In
full-body and partial-body motion planning, if any part
of the character collides with the ground or any obsta-
cle, the posture of the character is considered as an ille-
gal posture and those motion frames containing illegal
postures are called an illegal motion segment. We cut
an illegal motion segment from a planned motion path
and then insert a new motion segment replanned by
the RRT-blossom algorithm. If there are multiple illegal
motion segments in a planned motion, we merge and re-
plan those illegal motion segments that are temporally
close. Our cut-and-merge process reduced the complex-
ity of motion planning and improves the smoothness of
the planned motion.

4.3 Smoothing and dynamics filtering

A result planned by RRT-blossom is simply a sequence
of postures. A path formed by directly connecting these
postures is not smooth and does not contain temporal
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information. Therefore, we need to generate a physi-
cally plausible motion trajectory from this posture se-
quence. We use cubic Bézier curve to generate a smoothed
path by treating the planned posture sequence as con-
trol points. All postures are represented in quaternion
when constructing this Bézier curve. We then generate
a motion trajectory from the smoothed curve using a
velocity profile of constant speed. This trajectory is a
rising motion that is smooth but not physically correct.

We treat the smoothed motion trajectory as a refer-
ence motion trajectory and apply tracking control and
forward dynamics simulation to generate a physically-
plausible motion. We call this process dynamics filter-
ing since it is conceptually similar to the dynamics fil-
ter proposed by Yamane and Nakamura[30]. We adopt
Open Dynamics Engine(ODE) for forward dynamics
simulation and use the velocity-driven control method[24]
to track the reference motion. Additionally, we apply
the virtual actuator control[21] to assist trajectory track-
ing. The basic idea is to apply an ”external” force gen-
erated by a virtual actuator to control a body segment.
This external force is then converted into internal joint
torques distributively generated by those joints that
would affect the motion of the body segment to be con-
trolled. In our implementation, we control the center
of mass of the body by converting a control force into
joint torques of the joints of limbs that have contact
with the environment. This is helpful for maintaining
balance while rising up. Using velocity-driven control
and virtual actuator control, we are able to track all
planned and smoothed motion trajectories from lying to
sitting or squatting successfully and then connect to a
closest squatting-to-standing trajectory in our MOCAP
database. To increase the smoothness of this connec-
tion, we search between a simulated motion and MO-
CAP motion database to find two postures from each
of them that have the smallest difference. We then con-
nect the simulated motion to a MOCAP rising motion
from the most similar frame. Motion blending is ap-
plied to those frames around the connecting frame. This
connecting frame is constrained to be located after the
frame of the key posture so that the user-specified key
posture can be preserved in the final motion.

Although our dynamics filter mainly works on ris-
ing motions from a lying state to a sitting or squat-
ting state, the effect of dynamics filtering is still signifi-
cant. We demonstrate several examples that reflect the
motion variations due to the change of physical prop-
erties in our results. In fact, according to the compo-
nent actions summarized in [27,26], a rising motion can
be roughly divided into four phases: 1) lying and/or
rolling, 2) moving to sitting (supine/lateral) or get-
ting up on all fours (prone/lateral), 3) squatting or half

kneel, and 4) standing up. The first two phases exhibit
larger variations and more varieties[27,25]. Therefore,
it is actually reasonable to focus on the first two phases
in terms of generating rising motions with varieties and
flexibilities. Besides, similar to the idea promoted in
[31], it is computationally more efficient to exploit MO-
CAP data as much as possible since motion planning
and dynamics filtering needs additional computation.

5 Experimental Results

We collect 14 rising motions including rising from 6
supine positions, 4 prone positions, and 4 lateral po-
sitions from the CMU MOCAP database to construct
our motion database. All these motions are rising from
flat ground without obstacles. The dynamics filter is
performed by the Open Dynamics Engine (ODE) ver-
sion 0.11. All the experiments were run on a 2.66 GHz
Intel Core2 Duo CPU E6750 computer with 3GB of
RAM. The average computational time of motion plan-
ning and dynamics filtering with non-optimized code is
about 11.87 seconds and 5.3 seconds, respectively. In
the accompanying video, we labeled in each motion the
portion which is planned and dynamics filtered.

Rising up from random initial postures and
key postures. We first test our algorithm in an obstacle-
free environment. We randomly generate 60 initial lying
postures for testing, include 20 in supine position, 20 in
prone positions and 20 in lateral position. Motion plan-
ning from all 60 lying postures are successfully done.
Figure 7 shows some of these testing postures in our ex-
periment. As our posture selection method often finds
a connecting posture close to an initial posture, the
planned and dynamics filtered motion usually only ap-
pears a short period in the generated animations when
only an initial posture is given. In other cases when an
additional key posture is given or there are obstacles,
the portion of planned and dynamics filtered motion
increases considerably.

Our approach also allows a user to specify a key
posture in addition to an initial posture. Figure 8 shows
some of our results of rising from supine, lateral, and
sitting postures. One can find that key postures are
closely performed in these examples. More results can
be seen in the accompanying video. There are some
cases that the key posture is not achieved since the dy-
namics filtering in our approach prefers physical plau-
sibility to user’s control. This is good for novice users
as they may assign a key posture violating dynamical
constraints, but our approach can still produce a phys-
ically plausible motion while matching the key posture
as close as possible.
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Fig. 7 Some of the random initial postures used in our ex-
periment.

(a) rising from supine with a lateral key pose.

(b) rising from lateral with a supine key pose

(c) rising from sitting with a hand-push key pose

Fig. 8 Snapshots at the initial and key frames of three rising
motions. The images at the right column shows the key pos-
ture specified by the user. The key posture is closely followed
in the generated motions.

Rising up in different environments. Although
our motion database only contains rising up on flat
ground without obstacles, our approach can generate
various rising motions that adapt to different environ-
ments. Figure 9 shows an example that a character rises
up from a prone position with face on a wood beam.
One can see how the character adjusts his hand motion
to utilize the wood beam for supporting his upper body
while avoiding collision with the wood beam. Figure 10
shows rising up from a low bed with two different lying
positions: one with upper legs outside the bed and the
other on the bed. The character’s arm motion adapts
to the lying position by pushing the bed and ground
with different parts of his arms and hands. In this ex-
ample, only the initial lying posture is given. In Figure
11, we demonstrate rising up from a lateral position un-
der a table. An initial posture and a key posture lying
laterally with the head facing outward are given, our
approach generates a physically plausible motion with-
out collision with the environment. Finally, we show
a comparison of rising up on icy and normal ground
in the accompanying video. These examples illustrates

that despite the environment change, our motion plan-
ning approach can still generate a collision-free path
and dynamics filtering can refine the path to produce
physically plausible motion that reflects the change of
the environment.

Motion retargeting. Our approach can be used
for motion retargeting. Figure 12 shows the motion vari-
ations at the same time frame due to the change of
character’s body: (a)original character; (b)shoulder is
two times as wide as the original; (c)arms are 1.6 times
as long as the original; (c)arms and upper body are 1.6
times and 2.2 times long as the original, respectively.
Note that the mass and inertia of the corresponding
body segments are also changed according to these bone
length changes. One can see the effects of dynamics fil-
tering on the character’s motions in the accompanying
video.

(a) (b)

(c) (d)

Fig. 12 Example of motion retargeting. A snapshot of each
motion at the same frame is presented: (a)original character;
(b)shoulder is two times as wide as the original; (c)arms are
1.6 times as long as the original; (c)arms and upper body are
1.6 times and 2.2 times long as the original, respectively. One
can observe from the accompanying video that the resulting
motions are dynamically different.

User study and validation. We conducted a user
study to evaluate the naturalness of our results. Table 1
summarizes our user study result. We prepared 25 an-
imations including 7 motions from MOCAP database
and 18 motions from our results. Each subject watched
all 25 animations, which were played in a random order
on a computer screen, and gave a score to each motion
based on the naturalness. The range of score, from best
to worst, is 10 to 1. There are 27 males and 13 females
aged between 19 to 60 participated in the study. 21 of
them have graphics research background. The average
score and standard deviation of MOCAP and our re-
sults are (6.92, 2.22) and (6.29, 2.27), respectively. It
appears that the naturalness of our results is slightly
worse than, but perceptually comparable to that of hu-
man motions (MOCAP data). To validate the effective-
ness of our loose-to-strict spatiotemporally local refine-
ment strategy, we compare the average computational
time of motion planning used in Figures 9-11. One can
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Fig. 9 A rising motion with a wood beam below the face. One can see that the upper arm movements in the generated motion
adapt to the wood beam. The leftmost and rightmost images are the initial and key posture, respectively.

Fig. 10 Rising from a low bed with different lying postures. Top: upper and lower legs are outside the bed. Bottom: Only
lower legs are outside the bed. The character’s arm motion adapts to the lying position by pushing the bed and ground with
different parts of his arms and hands. Only the initial lying posture is given in this example.

Fig. 11 A rising motion from an initial posture under a table. The leftmost and rightmost images are the initial and key
postures, respectively.

Table 1 User study on the naturalness of rising animations
from MOCAP and our approach. The score range is from
10 (best) to 1 (worst). From the 2nd to 6th columns are:
MOCAP, rising up from an initial posture, from an initial
and a key posture, with obstacles, from a sitting posture.
The 3rd row lists the total number of each type of motion.

Source MOCAP Our results
Type No-Obstacle No-Key Key Obstacle Sitting
Num 7 2 9 4 3
Mean 6.92 7.06 6.23 6.39 5.82
Std 2.22 2.50 2.20 2.23 2.26

Total 6.92, 2.22 Mean=6.29, Std=2.27

Table 2 Comparison of average computational time (in sec-
onds) of motion planning without and with loose-to-strict
spatiotemporally local refinement.

Figure 9 10(top) 10(bottom) 11
Without Fail 2.85 s 2.63 s Fail

With 6.18 s 2.92 s 3.06 s 20.45 s

find in Table 2 that although our refinement strategy
increases the computational time slightly, it improves
the path-finding capability effectively.

Limitations. Currently, our dynamics filtering mainly
works on rising motions from a lying state to a sitting
or squatting state. To capture more dynamic variations
of rising motions, especially balancing behaviors from
sitting/squatting to standing, it is desirable to simulate

the whole motion from lying to stance states. Several
recent approaches[23,18,17] can be applied to improve
our dynamics filtering. Besides, our motion planning
currently only consider lower-level constraints, such as
obstacle avoidance and joint limit. Higher-level con-
straint, such as naturalness or coordination strategy
may be included in the motion planner.

6 Conclusion and Future work

We present a simple and effective approach to generate
rising motion from various lying postures using motion
planning and dynamics filtering. In the motion plan-
ning stage, we use a modified RRT-blossom algorithm
and design a loose-to-strict spatiotemporally local re-
finement strategy to plan a path connecting a given pos-
ture and motion database. In smoothing and dynamics
filtering stage, velocity-driven control and virtual ac-
tuator control are applied in a dynamics simulator to
track a motion trajectory constructed from the planned
motion path. The simulation result is a physically plau-
sible rising motion. Our experiments show that a vari-
ety of motions of rising from various lying postures and
different environments with obstacles can be generated
by our approach easily. In particular, our motion plan-
ner can generate a collision-free path that adapts to the
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environment while dynamics filtering can produce phys-
ically plausible motions with variations that reflects the
change of physical properties.

In the future, we would like to add contact-dependent
constraints that only some DOFs are allowed to move.
For example, when a character lying prone with his
arm under his body, then the arm cannot move un-
less it push the ground. Besides, we may consider to
apply kinodynamic planning[14] to enforce dynamical
constraints to in the motion planning stage; however,
to make this idea feasible, we would need to solve the
curse of dimensionality problem first. Finally, we would
like to improve the computational performance of our
approach so that it can be applied to real-time appli-
cations such as games or virtual training.
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