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Abstract—In a virtual world, a group of virtual characters can interact with each other, and these characters may leave a group to join

another. The interaction among individuals and groups often produces interesting events in a sequence of animation. The goal of this

paper is to discover social events involving mutual interactions or group activities in multicharacter animations and automatically plan a

smooth camera motion to view interesting events suggested by our system or relevant events specified by a user. Inspired by

sociology studies, we borrow the knowledge in Proxemics, social force, and social network analysis to model the dynamic relation

among social events and the relation among the participants within each event. By analyzing the variation of relation strength among

participants and spatiotemporal correlation among events, we discover salient social events in a motion clip and generate an overview

video of these events with smooth camera motion using a simulated annealing optimization method. We tested our approach on

different motions performed by multiple characters. Our user study shows that our results are preferred in 66.19 percent of the

comparisons with those by the camera control approach without event analysis and are comparable (51.79 percent) to professional

results by an artist.

Index Terms—MOCAP, multicharacter animation, event analysis, social network analysis.
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1 INTRODUCTION

MOTION capture data have emerged as important
resource for making computer animation and digital

special effects in recent years. As there are more and more
motion capture data, automatic camera control for dis-
covering and viewing interesting events in motion capture
data can be very useful for many applications such as 3D
authoring tools, motion capture data preview, game
recording and replaying functions. In computer games like
massively multiplayer online role-playing games
(MMORPGs) and second life, which allow many users to
interact with each other in virtual worlds, the users of such
a virtual world often want to know about interesting events
happening or happened in the virtual world. These events
are sometimes planned/scripted, but sometimes happen
spontaneously as a result of interaction among the users.
An automatic camera control approach that respects
interaction events will help the users to browse or under-
stand the activities occurring in the virtual world. As
mentioned in [6], a summary of a past gameplay can help
users maintain engaged in their games.

In a multiple-character animation, a group of characters
may interact with each other, e.g., passing objects or moving
objects collaboratively. The interaction among individuals
and groups often produces interesting events. In this paper,
our goal is to identify social events involving mutual
interactions or group activities in multicharacter animations
and automatically plan a smooth camera motion to view
interesting events suggested by our system or relevant
events specified by a user. Although previous work has
addressed the camera control problem for single-character
animations and achieved nice results, camera control for
multicharacter animations has rarely been addressed so far.
This problem appears to be more challenging due to the
following reasons. First, the shot selection becomes more
difficult as there may be concurrent events in a sequence of
motion. We need a good metric to determine the importance
of each event. Second, camera motion planning becomes
more complicated as the number of participants varies
dynamically in each event; people may leave a group to join
another, or a group of people may dynamically form or
dismiss from time to time. The interaction among individuals
and groups often produces a complex motion, which causes
camera motion planning to be very challenging since there
would be frequent occlusions between characters and the
environment. We need to take these issues into account to
generate smooth camera motion and transition.

In this paper, we propose a camera motion planing
approach that can generate an overview video of interesting
events in multicharacter animations (Fig. 1). We focus on
the discovery of events involving interactions among
multiple characters within a close distance. To successfully
discover events as well as important participants of an
event, a computational model that can analyze the interac-
tion among characters is crucial; however, it is very
difficult, if not impossible, to analyze various types of the
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interactions among multiple characters using a single
computational model. The interactions may be local or
even subtle, such as chatting with rich facial expression and
gesture movement, or even an eye contact; the interaction
may be global, such as a group of people gathering,
marching, or separating. Interactions are often initiated
with the gathering of people or involved with movements
of people. This suggests that the relative position and
motion between characters is very important information
for describing interactions and discovering important
events in multicharacter animations. In fact, several
computational models based on the relative position of
people have been proposed to describe the interaction
between a group of people in sociological studies [12], [14],
[17]. Although these models do not take local interactions
into account (such local or subtle interactions are beyond
the scope of this paper), it has been shown that many
interactions in multiperson motions can be represented by
these models. Therefore, we apply the studies of Proxemics
[14], social force [17], and social network analysis [12] to
analyze the dynamic relation among events and the relation
among the participants within each event. For the above
reason, we refer to events that can be characterized by the
relative position of participants and hence be well described
by these sociological models as social events.1

By analyzing the variation of relation strength among
participants and spatiotemporal correlation among events,
we are able to discover both important events and the
leading participant of each event in a motion clip. In
particular, we propose to use an event relation graph to
model the relation among events and participants. The
intuition of the event relation graph is that the importance
of an event cannot be solely defined based on the event
itself. Rather, the importance of the event is defined based
on its influences to other events. More specifically, the
importance of an event can be considered from three
aspects: 1) the content of the event, 2) the importance of
other events involved with this event, and 3) the importance
of its participants. If we can identify the time and location

that have large variations in these aspects, we can discover
multiple important events that may happen concurrently
and generate an overview video respecting these events.

The novelties of our work are proposing: 1) a sociology-
based approach that utilizes techniques in social force and
social network analysis to model the complex relation
among individuals and events and to analyze the impor-
tance of all events in a multicharacter animation; 2) a
camera control optimization approach to generate an
overview video that respects concurrent social events
discovered in motion clips.

Approach overview. Fig. 2 shows an overview of the
proposed approach. The inputs are several motion clips in
which multiple persons may interact with one another. We
use the mean shift algorithm to cluster the participants of
each event based on their moving trajectories. We then use
the direction and location of characters in event importance
analysis (Section 3). In addition, we also use motion capture
data to compute the visibility information that is needed in
camera motion planning. We analyze the relation among
the participants of an event and the relation between events
to determine the overall importance of each event at each
time frame (Section 4). Based on the overall importance of
events, we segment the motion clips and generate a camera
control path for each split shot that optimizes for the
importance of viewing events and the smoothness of
camera control. The continuity between consecutive shots
is handled by incorporating cinematography editing rules
in the optimization process. Finally, we produce a video
clip using the generated camera path (Section 5).

2 RELATED WORK

Our work is related to the camera control problem in
computer graphics, and the social force and social network
analysis in sociology. As camera control and social network
analysis have rich literature, it is beyond the scope of this
paper to thoroughly survey both fields. Therefore, we will
only review closely related work in these two fields. We
refer the readers to [7] for a comprehensive survey on
camera control techniques.
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Fig. 1. Our camera control approach discovers and analyzes important events in a multicharacter animation to generate a motion overview video.
(a), (b) Two snapshots of our results; (c) and (d) are the results by Assa et al. [4] at the same time frame of (a) and (b), respectively. Our results can
capture multiple important events simultaneously and thus provides a clearer overview of motions.

1. In the rest of this paper, event and social event will be used
interchangeably.



2.1 Camera Control

Camera control was originally studied in cinematography
where a set of standard rules of camera configurations and
transitions, such as don’t cross the line, avoid jump cuts, use
establishing shots, and other principles, has been developed
over the years [21]. Following these rules, researchers in
computer graphics, artificial intelligence, and robotics
studied the camera control problem from the computing
perspective. For instance, He et al. [16] constructed a state
machine to describe cinematography idioms to control a
camera. Several constraint-based approaches [5], [11], [15],
[26] that treat cinematography principles as different
camera movement constraints were also proposed. Re-
cently, Vieira et al. [30] introduced intelligent design
galleries, which apply supervised learning techniques to
generate good camera positions for various scenes. Turkay
et al. [29] proposed a camera placement approach for
simulated crowd motion. They determine the interest points
of the camera by simply analyzing the 2D positions and
velocities of individuals in a crowd using information
theory. In general, although most of these studies address
the interaction between scene actors and the cinematic
idioms, they do not pay attention to the events created by a
group of people, which is a focus of our work.

Camera control approaches designed for human motions
have been proposed recently [2], [4], [23]. Kwon and Lee [23]
introduced a camera control technique for character anima-
tion. They focus on selecting a series of static camera positions
and then interpolating them to generate a camera path. Assa
et al. [4] proposed a global optimization approach to compute
the required camera movement along all scene frames while
satisfying the camera motion constraints. They also handle
multiple shots conditions, while considering the pose
saliency to better illustrate the significant poses in motion.
Kardan and Casanova [20] addressed camera control for
groups of multiple characters using cinematographic rules;

they focused on conversational agents, in which audio input
is needed to extract events. Lino et al. [25] planned a sequence
of shots based on the events given by the input of narrative
elements, which provide a description of the actions
performed in the environment. An online view selection
system for motions involving two or few characters was
proposed by Assa et al. [2]. Their approach computes the
correlation between the animation and the camera output and
selects views that have high correlation. The correlation-
based approach works effectively for motion with a few
characters, but it does not scale easily to deal with a large
group of characters. Though our camera control method is
also based on an optimization formulation similar to Assa et
al. [4], our approach is fundamentally different as we need to
generate a motion overview of many characters. Specifically,
the objective function in our camera control optimization
problem respects concurrent salient events using techniques
developed in social force and social network analysis.

Video and animation summarization has also been
gaining attention in recent years. Assa et al. [3] utilize the
detection of saliency for fast browsing a movie. Similar
work for selecting key frames for the purpose of summar-
ization has also been demonstrated using image features in
[10]. Cheong et al. [6] converted game logs into a plan data
structure and selected important action from summarized
logs to produce gameplay videos. Besides, a visualization
approach that depicts the variations between different
MOCAP data has been proposed recently [18]. In this
paper, although we adopt a similar concept of detecting
salient events, we generate a continuous, time-varying
overview of multicharacter animation rather than a sum-
mary consisting of image snapshots.

2.2 Social Force and Social Network Analysis

Our approach on event importance analysis mainly benefits
from the studies on social force and social network analysis.
The social force concept was introduced by Lewin [24] who
applied the field theory into the social context and
suggested that the behavior among a group of people is
guided by social forces. In particular, our definition of
relation strength between individuals is inspired by the
social force model used for describing pedestrian dynamics
[17], [19] and detecting abnormal crowd behaviors [27].
Social network analysis views social relationships among
individuals in terms of the theory of networks consisting of
nodes and ties [12]. In social network analysis, centrality
gives a rough measurement of the social power of a node
based on how well they connect the network [32].

3 EVENT DISCOVERY

An event occurs when there are interactions generated
among a group of people, which we call the participants of
the event. A participant of an event can be a person or an
object. Since an event is formed by participants, we can
discover an event by grouping the participants of the event.
We analyze each participant’s trajectory in the input motion
clips, and find the participants of each event by clustering
the trajectories of all participants. To utilize higher level
information of participants, we propose a two-pass cluster-
ing approach. At the first pass, trajectories of individuals
and objects are sorted into groups according to their
spatiotemporal distance (3D position þ 1D frame index).
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Fig. 2. Overview of our approach. We discover important events in the
input animation by analyzing the dynamic relations among participants
of an event and the spatiotemporal correlation among events based on
related studies in sociology. An overview video is then generated based
on the optimal camera path that respects event importance and
maintains smooth camera control.



At the second pass, we refine the clustering of participants
by including their destination information that is acquired
from the first pass. As we do not know the destination of
each participant initially, we can only include the destina-
tion information after the first-pass clustering.

Fig. 3 illustrates our idea. Each green curve represents
the trajectory of a participant, where each node denotes
one’s position at a time frame. For simplicity of illustration,
we assume each participant moves in a 1D space, but in our
implementation, these trajectories actually exist in a 4D
space (3D position plus time). We use a feature vector to
represent the property of each node and cluster all nodes in
the input motion using the adaptive mean-shift algorithm
[28], which is more efficient in the high-dimension cluster-
ing. At the first pass, the feature vector of a node is a 4D
vector storing the 3D position and frame index. Fig. 3b
shows the clustering results of the first pass, where each
dashed circle is a cluster representing the spatiotemporal
range of an event. The solid circle inside each cluster
denotes the center of each cluster, which is considered as
the destination of a participant as shown in Fig. 3c. Note
that the destination vector always points forward tempo-
rally (or causally), i.e., when a participant passes an event
center, its destination is the center of the event it is going to
join. At the second pass, the feature vector of a node is a 7D
vector including the position, destination, and frame index.
The mean-shift clustering results are illustrated in Fig. 3d.
In this paper, an event can be regarded as a social gathering
or activity at a specific time period and spatial region. After
clustering, each cluster has its temporal and spatial
boundaries, and it represents a social event consisting of
several participants, which are denoted by nodes with the
same color in Fig. 3d, i.e., a distinct color for each cluster
(event). Including the destination information in the
second-pass clustering produces better clustering results.
Fig. 4 shows an example of clustering results without and
with destination information. Curve segments in the same
color represent the trajectories of all participants of the same
event. One can observe that the clustering results with
destination (the cyan and yellow curves at right image) are
better than those without including destination information.

Although our event discovery approach works well for
most motion clips in our examples, there are occasional
situations that the clustering results are not totally
satisfactory, e.g., at the boundary frames of events. In those
situations, we optionally allow a user to edit the range of
each event by modifying the clustering results. This user
intervention is minimal and only used in the boundary
frames in few cases. For the rest of our approach, no
additional user intervention is needed.

4 AUTOMATIC EVENT IMPORTANCE ANALYSIS

We compute the importance of an event by accumulating the
importance from the local to global scope. At the local scope,
the intrinsic importance of an event describes the relation
changes among characters. The social force means the
strength of influence between participants. The variation of
social force reflects the relation changes. Therefore, the
intrinsic importance is obtained by analyzing the variations
of social forces among all participants of the event. At the
global scope, we consider the interactions across different
events by observing the spatiotemporal overlap of events.
The importance of an event is reinforced if the event has large
overlap (or strong correlation) with other events spatially or
temporally. This is similar to a voting process in which
events with interactions vote for each other to increase their
importance. Given the reinforced intrinsic importance of all
events, we also define the importance of a participant by
summing the reinforced importance of all events joined by
the participant. This helps to locate important participants
within an event.

Besides the interactions among events measured by their
spatiotemporal overlaps, we also consider the interaction/
correlation between important participants and important
events. The assumption is that if a participant joins more
important events, then the participant is more important and
vice versa. Hence, we compute the overall importance of the
event by summing the importance of all its participants. We
define the intrinsic importance EI and the overall impor-
tance EO of an event in the following sections.

4.1 Intrinsic Importance of an Event EI

We evaluate the intrinsic importance of an event based on
the variations of social forces in the event since the behavior
of a group of people are affected by social forces among
them [24]. Social forces are originally modeled as a force
field called social field. As it is not easy to directly measure
the social field for complex interactions among a group of
people, we instead measure social forces by observing their
effects on each participant of an event. Inspired by the social
force model for pedestrian dynamics [17], [19], we use the
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Fig. 3. Illustration of our two-pass clustering approach. (a) Trajectories of
all participants plotted in a space-time space (assuming 1D time and 1D
space for simplicity). (b) The first-pass clustering result using the mean-
shift algorithm. (c) The destination of each participant is included in the
second-pass clustering. (d) The second-pass clustering results. In (d),
nodes color coded with same color belong to the same cluster
representing a particular event. Note that some nodes are not clustered
into any event and are color coded with gray.

Fig. 4. Comparison of the clustering results without and with destination
information. Curve segments in the same color represent the trajectories
of all participants of an event. The clustering results with destination
(cyan and yellow curves at right image) are better than those without
including destination information.



facing direction of each participant to represent the
potential walking direction and the mutual distance
between two participants to model social forces as they
are the most significant effects caused by social forces. In
addition, we compute the trajectory similarity of indivi-
duals to model the group behaviors. The intuition is that the
members of a group of people usually have similar
trajectories within a period of time even though some
members of the group may not be within a close distance.
Trajectory similarity is also useful for modeling important
events that exhibit long-range interactions, e.g., a character
followed by other characters in a distance. This kind of
long-range interaction cannot be modeled by facing direc-
tion and mutual distance, so we take trajectory similarity
into account when measuring social forces.

We follow [4] to use the shoulder orientation of a human
participant and the tangent vector of the trajectory of an
object participant to compute the facing direction of a
participant i at frame t, ~fiðtÞ. Following this definition, the
variation of facing direction �iðtÞ is the angle between ~fiðtÞ
and ~fiðt� 1Þ. The mean variation of facing direction caused
by social forces of an event within a time window centered
at frame t is then defined as

F ðtÞ ¼
XN
i¼1

1

2H

XtþH�1

m¼t�H

�iðmÞ þ �iðmþ 1Þ
2

� e�
ðm�tÞ2

2�2 ; ð1Þ

where N is the total number of participants of the event and
the length of time window is 2H. Fig. 5a shows the facing
direction variations of different motions (events of a single
participant). The box throwing motion has the largest
variation since the participant’s facing direction changes
rapidly, while the box pushing motion has the smallest
variation. This example shows that facing direction varia-
tion is a good measurement of social force variations.

Furthermore, we adopt the studies in social network
analysis to model the relationship among the participants of
an event using an undirected graph called relation graph
[12]. The nodes and edges in the relation graph represent
the participants and their relationship, respectively. Each
edge stores the relation strength between two participants it
connects. We define the relation strength based on the
Proxemics study introduced by Hall [14]. According to
Proxemics, the influence of two people on each other is
inversely proportional to the square or even the cube of
their mutual distance. For simplicity, we define the relation
strength sij between two participants i and j as the
reciprocal of their mutual distance

sij ¼
1

k~pi �~pjk þ 1
; ð2Þ

where ~pi and ~pj are the position of participant i and j,
respectively, and k � k is the L2-norm. We use the adjacency
matrix S to represent the relation strength of the relation
graph of an event. Each element of the adjacency matrix is the
relation strength between two participants sij defined in (2).

Having defined the relation strength on each edge of the
relation graph of an event, we can evaluate the relative
importance of each participant of the event. We apply the
centrality concept used in social network analysis [12] to
measure the importance of a participant, which says that

the importance of a person within a social network can be
measured by the centrality of a node within a graph. There
are various measures of centrality, such as degree
centrality, betweenness centrality, closeness centrality,
and eigenvector centrality. The degree centrality is simply
the degree of a node; Betweenness centrality is the total
number of the shortest paths in the graph passing through
a node; The closeness centrality is defined as the mean
geodesic distance. We choose to use the eigenvector
centrality because it can measure the importance of a node
more precisely and globally according to the social net-
work study [13].

Given the relation graph of an event, we can compute the
eigenvector centrality of all participants by solving

Sc ¼ �c; ð3Þ

where S is the adjacency matrix of the relation graph, and � is
the largest eigenvalue of S. c ¼ ½c1; c2; . . . ; cN �T is the
corresponding eigenvector in which each component ci is
the centrality of the ith node. The fluctuation of the centrality
of each node can be used to measure how much information
comes out in this frame. Let ciðtÞ be the centrality of node i at
frame t. The mean centrality of a participant i within a time
window centered at frame t is defined as follows:

ciðtÞ ¼
1

2H þ 1

XtþH
m¼t�H

ciðmÞ � e�
ðm�tÞ2

2�2 : ð4Þ
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Fig. 5. (a) Facing direction variations of a box-throwing motion is much
larger than a jumping motion or a turning motion. (b) Centrality index
variation of each participant of an event. The horizontal axes in (a) and
(b) represent frame number.



We call ciðtÞ the centrality index of the participant i at frame
t. In Section 5, centrality index is used to segment motion
clip and weight the influence of each participant to camera
control optimization. Fig. 5b shows an example of how the
centrality index of each participant of an event varies as
their mutual distance changes. At frame 1, pink and blue
participants have large centrality values since they are
closely located at the center of the event region. At frame 50,
as green and pink participants move toward each other and
orange and blue participants leave the event center, green
and pink participants’ centralities increase and the other
participants’ centralities decrease. Finally, the blue partici-
pant is the farthest one to the other participants, so its
centrality is the lowest.

The centrality of an event at frame t is the summation of
the centrality index of all participants

CðtÞ ¼
XN
i¼1

ciðtÞ: ð5Þ

Similar to computing the centrality of a node (partici-
pant) defined in (2) to (3), we can compute the trajectory
similarity of a participant simply by replacing (2) with a
trajectory similarity metric between participant i and j and
then applying the eigenvector analysis to obtain the
trajectory similarity of each participant. We adopt the
Longest Common Subsequence (LCSS) [31] as our metric for
trajectory similarity since LCSS allows temporal stretching
and spatial translation of trajectories, and more importantly,
it is very robust to noise.

The trajectory similarity of a participant ti reflects the
similarity of a participant i’s trajectory and the other
participants’ trajectories in an event. The trajectory similar-
ity of an event Ts is defined as a summation of the trajectory
similarity of all participants of this event

Ts ¼
XN
i¼1

ti: ð6Þ

Ts represents the trajectory regularity of an event. The higher
Ts is, the more similar the trajectories of the participants of
this event are. Trajectory similarity is very useful for
detecting a group of people performing similar motion. It
can capture the overall direction of the entire group while
reducing the effect of some outliers of the group motion such
that a smoother target path for camera motion planning can
be obtained. The target path is where we want a camera to
focus on. Specifically, the shooting target of the camera at
frame t is defined as a weighting combination of the position
of participants

TpðtÞ ¼
PN

i¼1 ti �~piðtÞPN
i¼1 ti

; ð7Þ

where ti is the trajectory similarity of participant i. A
participant that does not follow the group will be excluded
from the computation of camera target path. Fig. 6 shows
the differences of the target path and the importance of
participants with and without computing trajectory simi-
larity. One can observe that the target path obtained with
trajectory similarity (left in Fig. 6a) is smoother because the

blue trajectory, which only intersects with the other
trajectories at a short period, is separated and excluded
from target path computation (bottom in Fig. 6b).

An event at a time frame is considered to be more
important if it has larger social force variations, larger
centrality, or higher trajectory similarity. Therefore, we
define the intrinsic importance of an event at a frame t as
follows:

EIðtÞ ¼ �F ðtÞ þ �CðtÞ þ Ts; ð8Þ

where F ðtÞ and CðtÞ are the variation of social forces and
the centrality of an event at frame t, respectively, and Ts is
the trajectory similarity. The weighting of F ðtÞ, CðtÞ, and Ts
represents the preference of three types of group behaviors.
Increasing � would increase the importance of the events
with more individual behaviors, e.g., jumping, box throw-
ing, etc. Increasing � would force the camera to focus on the
group with more dynamic formation. The last one, Ts,
represents the regularity of a group. Increasing the
weighting of Ts causes the camera to target on those events
of which participants have similar trajectories. These
weights influence the definition of “important events.” In
our implementation, F ðtÞ, CðtÞ, and Ts are normalized to
½0; 1� and then scaled by � and � so that their means are the
same. In this way, � and � are automatically set and these
three types of group behaviors can all be discovered.

4.2 Overall Importance of an Event EO

The key idea of the overall importance measurement is
voting. According to the interaction and relation between
each event, we let every event vote each other to determine
their relative importance. Similar to the relation graph of an
event introduced in Section 4.1, we can also use a relation
graph to model and measure the spatiotemporal correlation
among events. To distinguish with the relation graph
among participants, we will call the relation graph among
events the event relation graph.

4.2.1 Temporal Correlation ET

Time is an important factor of an event. To determine the
temporal importance of events, we consider the overlapping
of events along the time axis. Intuitively, if there are many
events happening at the same time, this time period should
be important since we need to pay more attention when
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Fig. 6. (a) Trajectory similarity of four participants. The trajectory with
more reddish color has higher similarity with the trajectory of other
participants. The dotted lines in the left and right plot are the target paths
obtained with and without considering trajectory similarity, respectively.
The target path is smoother when the trajectory similarity is considered.
(b) Importance of each participant in (a). Top: without measuring
trajectory similarity; Bottom: with trajectory similarity, the blue trajectory
is clearly separated from the others.



there are more events happening simultaneously. For

example, a fighter defeats four enemies within a short

period is more important than defeating two enemies at the

same time. Or at the end of performance, all people

applauding at the same time is an important event.
Fig. 7 illustrates our idea of measuring the temporal

correlation of events using the event relation graph. We

arrange all events in a motion clip on a storyboard with

several time tracks as shown in Fig. 7a, in which each

alphabet denotes an event. If two events overlap tempo-

rally, we connect them with an edge weighted by the length

of the overlap time. By connecting all events that have time

overlap, we can construct the event relation graph of the

events on the storyboard as shown at the bottom of Fig. 7a.

We compute the temporal correlation of an event by taking

the temporal average of the intrinsic importance of all

events that have time overlap with the event. Specifically,

the temporal correlation of event i is defined as follows:

ET ðiÞ ¼
1

Tie � T ib

XTie
t¼T i

b

XJ
j¼1

Ej
IðtÞ; ð9Þ

where T ib and T ie are the beginning and end frame number

of the event i, respectively. Ej
IðtÞ is the intrinsic importance

of the jth event. J is the total number of events taking place

during the time span ½T ib ; T ie �. Note that the intrinsic

importance of an event is zero when it does not take

place, i.e., Ej
IðtÞ ¼ 0 if t < Tjb or t > Tje . Fig. 7b illustrates

the idea of the computation of temporal correlation of the

event A, where the green bars inside the time window of

event A represent the intrinsic importance of all temporally

overlapped events. In this case, there are three events

taking place at the same time (J ¼ 3). We sum up the area

of these bars and divide the sum by the length of the time

window to obtain the temporal correlation of the event A.

4.2.2 Spatial Correlation ES

If there are many events occurring in the same region, this
region should be important. Hence, the spatial importance
of an event increases if the “event density” at which the
event takes place increases. For instance, an event happens
near the basket is more important than midcourt in a
basketball motion clip. Similar to the computation of
temporal correlation, we can compute the spatial correla-
tion of an event i by summing the intrinsic importance of all
events occurring nearby

ESðiÞ ¼
X
j2MðiÞ

Ej
I � e

�dði;jÞ
2

2�2 ; ð10Þ

where MðiÞ is the set of all events linked to i event in the
event relation graph. Ej

I is the summation of the intrinsic
importance of event j over the duration of the event. dði; jÞ
is the distance between the center positions of events i and
j. Fig. 8 illustrates the computation of spatial correlation.

4.2.3 Overall Importance EO

Because an important participant will participate in
important events and vice versa, we compute the impor-
tance of a participant by summing the importance of all
events joined by the participant. On the other hand, the
importance of an event is determined based on who
participates in the event. The importance of participant i
is defined as follows:

EP ðiÞ ¼
X
j2MðiÞ

ET ðjÞ þ �ESðjÞ; ð11Þ

where MðiÞ is the set of all events participated by the
participant i, and � is a constant to weight the temporal and
spatial correlation term. Finally, we measure the overall
importance of an event by summing the importance of all of
its participants,

EOðiÞ ¼
1

Ni

XNi

j¼1

EP ðjÞ
Lj
Li
; ð12Þ

where Ni is the number of participants of event i, Lj is the
duration that the jth participant joins the event, and Li is
the duration of the event i.

5 CAMERA CONTROL OPTIMIZATION

Camera control for multicharacter animation needs to fulfill
several requirements. First, the camera needs to focus on the
core of the most important event while also being able to see
other important events concurrently as much as possible at
the background. To achieve this, we compute a shooting
target of the camera at each frame using (7). This helps
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Fig. 7. (a) We view all events in a motion clip arranged on a storyboard
with several time tracks and construct an event relation graph. (b) We
measure the temporal correlation of events that overlap on the time axis.

Fig. 8. (a) Spatially-correlated events vote each other to reinforce the
importance of important events. (b) The importance of a participant is
also affected by the importance of events that the participant has joined.



people understand the spatial relation between each event
and obtain an overview of the events in the motion. Second,
the camera shot should be illustrative. That is, we would
like the camera to keep the viewing direction perpendicular
to participants’ moving direction. For participants not
moving significantly, we prefer to see their frontal view.

We formulate our camera control problem as an
optimization problem. To reduce the dimension of optimi-
zation, we divide a long motion clip into several segments
and solve the optimization problem for each segment. The
optimal moving path and viewing direction of the camera
for each segment is obtained by minimizing the following
objective function:

E ¼ Einternal þ �Eexternal þEcontinuity; ð13Þ

where Eexternal is an external energy term that describes the
viewpoint quality and event importance at each location
and time; Einternal is an internal energy term that enforces
smoothness on the generated camera path; � is a constant to
weight the influence of internal and external energy terms.
To ensure the continuity between consecutive shots,
Econtinuity is added to the objective function. For the first
motion segment, its Econtinuity is zero; For the other motion
segments, this term is computed based on the shot
continuity between the current and previous motion
segments. We describe how we segment a motion clip
and define the external and internal energy terms as well as
the continuity term in the following paragraphs.

5.1 Motion Clip Segmentation

As our goal is to generate an overview video for the events
in a multicharacter animation, it is a natural and reasonable
choice to segment a motion clip according to the events
occurring in the motion clip. This motivates us to generate
several split camera shots for our input animation as shot
splitting is a common cinematographic technique to build
up an idea or change a scene. We use this technique as well
as fade and dissolve to achieve a smooth transition between
salient events. Furthermore, it is faster to do camera
optimization for several short paths separately than a single
long path. Using our event discovery approach described in
Section 3, we can arrange all events on a storyboard as
shown in Fig. 9a. We then use the start and end points of all
events to slice the motion clip and get the initial segmenta-
tion. For each segment, we identify the most important
event based on the overall importance defined in (12). The
circled segments in Fig. 9b represent these most important
events. Moreover, we compute the target point of the event
using (7). The target point of the most important event at a
segment is the target point of the segment.

After initial segmentation, we merge two short motion
segments that are less than 3 seconds if they are subsequent
temporally and their target points are close. The merging
process repeats until there are no short segments in the
overview video. For example, as the first segment of event G
in Fig. 9b is less than 3 seconds and the target points of events
F and G are close, we can merge the first segment of event G
to the last segment of event F. The merged result is event F
shown in Fig. 9c. After we merge these two segments, the
optimized camera path would keep focus on event F while

covering other concurrent events as much as possible until
the occurrence of event H. In this way, we avoid dividing a
motion clip into many small segments that cause too many
split shots.

5.2 Internal Energy Term

We adopt the internal force energy proposed in [4] to
measure the smoothness of a camera path. Here, we briefly
describe their definition of the internal energy. For better
control over the camera speed, the internal energy prefers a
static camera if possible. In cases where movement is
required, camera speed should be as constant as possible or
at least with minimal acceleration, and should be smaller
than a maximal speed limit

Einternal ¼
X
t

c1ðqt�1 � 2qt þ qtþ1Þ2

þ c2
qtþ1 � qt�1

2 _Smax

� �4

>1

þ c3ð�t�1 � 2�t þ �tþ1Þ2

þ c4
�tþ1 � �t�1

2 _�max

� �4

>1

� c5
qtþ1 � qt�1

2 _Fmin

� �2

<1

;

ð14Þ

where the condition operator bc is defined as follows:

xb ccondition¼
x condition is true
0 otherwise

� �
: ð15Þ

qt and �t are the camera location and viewing angle to the
target in frame t. _Smax, _�max, and _Fmin are the maximal
speed, angular speed, and minimal friction of the camera. In
all of our examples, _Smax, _�max, and _Fmin are set to
character height=6, 20 degrees, and character height=20,
respectively. c1::5 are the coefficients of the different terms.
In all of our examples, they are set to 10, 10, 5, 5, 2,
correspondingly.

5.3 External Energy Term

The external energy term measures the viewpoint quality at
each location and time. Specifically, the external energy
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Fig. 9. (a) The events discovered in the motion clip. (b) Initial segments
obtained by dividing the motion clip according to the start and end
points of all events. At each segment, the most important event is
circled. (c) Final segments by merging small segments that are
temporally or spatially close.



term is the weighted sum of the viewpoint quality for all
participants of all events in the entire motion clip

Eexternal ¼ �
X
t

SF ðtÞ
X
e2MðtÞ

X
i2MðeÞ

ciðtÞViðt; qt; �tÞ; ð16Þ

where SF ðtÞ is the frame saliency that weights the influence
of frame t. It is defined as the sum of the importance of all
events occurring at frame t

SF ðtÞ ¼
X
e2MðtÞ

EOðeÞ; ð17Þ

where EO is defined in (12). ciðtÞ is the centrality index
(defined in (5)) of participant i that weights the influence of
the participant. MðtÞ and MðeÞ denote the set of all events at
frame t and the set of all participants of event e,
respectively. Viðt; qt; �tÞ is the viewpoint quality of the
camera at position qt and viewing angle �t for participant i
at frame t.

The viewpoint quality of a participant is decided based
on several attributes, including visibility, frontal view,
perpendicular moving, and best viewing distance. The
visibility attribute Evis is determined by the area inside the
convex hull of a participant projected on the image plane. It
encourages camera to shoot where significant characters are
most visible. The frontal view attribute Efront prefers the
camera viewing the frontal face of the participant. The
perpendicular moving attribute Emove favors the camera
viewing direction that is perpendicular to the moving
direction of the participant so that the most significant
movement would be best seen. Finally, the viewing distance
attribute Edist keeps the distance between the camera and
the participant from being too close or too far. This attribute
only takes effect when the distance to the participant distðiÞ
is out of a desired range ½distnear; distfar�. The following
equations summarize these attributes adopted in our
viewpoint quality for the participant i at frame t:

Viðt; qt; �tÞ ¼ c6Evis þ c7Efront þ c8Emove þ c9Edist: ð18Þ

Evisði; qt; �tÞ ¼ ConvexHullAreaðiÞ ð19Þ

Efrontði; qt; �tÞ ¼ �~vcam � ~fi ð20Þ

Emoveði; qt; �tÞ ¼ 1� k~vcam �~vik ð21Þ

Edistði; qt; �tÞ ¼ distnear � distðiÞb cdistðiÞ<distnear
þ distðiÞ � distfar
� �

distðiÞ>distfar ;
ð22Þ

where c6::9 are the weighting coefficients of the various
terms. ~vcam is the viewing direction of the camera; ~fi and ~vi
are the facing direction and moving direction of the
participant i. Note that all these attributes are time varying
and depend on the camera position qt and viewing angle �t,
but we omit variables t, qt, and �t in all of these equations
for simplicity of notations.

We use the simulated annealing method to compute the
camera path by minimizing the energy function in (13). The
initial guess is obtained as follows: For each motion
segment, we create a bounding box that can cover the

region of all events in the starting frame of the segment. We

then uniformly distribute sample points inside the box as

static cameras and find the best location as the initial guess

for the camera control optimization.

5.4 Continuity between Shots

To ensure the shot continuity between motion segments, we

incorporate editing rules of cinematography in the optimiza-

tion process. First, we avoid jump cut between consecutive

shots by adding a penalty term in the objective function. The

basic idea of jump cut avoidance is to make spatial

discontinuity of characters unnoticeable. The rule prevents

an object from appearing in two consecutive shots with a

similar but different view (shooting angle) as human eyes

can easily track the object’s motion and notice any

discontinuity caused by small view variations. On the

contrary, if the shooting angles of two consecutive shots

differ a lot, human eyes would not be able to track the object’s

motion easily and be less likely to notice the discontinuity.

Therefore, we restrict the variation of viewing angles

between consecutive shots to be larger than 30 degrees to

prevent the jumping effect between shots. This 30-degree

rule is suggested by Corrigan and White [8] as “the transition

between two shots less than 30 degrees apart might be

perceived as unnecessary or discontinuous.” Second, we

enforce the 180-degree rule, which says that the camera

movement should keep at the same side of main characters

and preserve the consistent viewing direction of group

motion [1]. For example, two characters in the same scene

should always have the same left/right relationship to each

other in two consecutive shots. Similar to the jump cut

penalty, we penalize the displacement of camera in

consecutive shots that cross the 180-degree line. Formally,

we define Econtinuity as follows:

Econtinuity ¼ Ejump þ E180; ð23Þ

where

Ejump ¼ 1b c ~vcamðt�1Þ�~vd
k~vcamðt�1Þkk~vdk

>cosð30�Þ;

E180 ¼ 1b cð~vcamðt�1Þ�~veðt�1ÞÞ�ð~vcamðtÞ�~veðt�1ÞÞ<0:

TpðtÞ is defined in (7). As shown in Fig. 10, ~vcamðtÞ ¼
qt � TpðtÞ is the viewing direction of frame t. ~vd ¼
qt � Tpðt� 1Þ is a directional vector from target position of

frame t� 1 to the camera position of the first frame of the

second shot. We constrain that the angle between the first

and second shots is larger than 30 degrees and the camera

positions, qt�1 and qt, must be on the same side of the

motion direction ~veðtÞ defined by

~veðtÞ ¼
PN

i¼1 ti � ~fiðtÞPN
i¼1 ti

; ð24Þ

where ti and ~fiðtÞ are defined in (6) and (20). ~veðtÞ is the

weighted average of the facing directions of all participants

of a targeted event. It represents the motion direction of the

event at frame t.
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6 RESULTS AND DISCUSSION

We tested our approach on multicharacter animations with
different types of interactions, ranging from simple tasks
such as one character passing an object to another, to
complex group behaviors involving many characters inter-
acting with one another and the environment. As it is more
expensive to capture multicharacter motions, to increase the
variety of data, we also use the multicharacter motion
editing approach [22] to generate some motion clips from
MOCAP examples. To validate the effectiveness of event
importance analysis, we generate two types of motion
overview videos obtained with and without event impor-
tance analysis. Videos without event importance analysis
are produced by setting the weighting factor of each
participant as its trajectory similarity, i.e., treat all characters
in an animation as the participants of the same event.
Figs. 11a, 11b, 11c, and 11d show four snapshots taken from
the video generated with event importance analysis while
(e)-(h) show the snapshots of the video generated without
event importance analysis at corresponding time frames. In

Fig. 11a, our approach shoots toward the facing direction of
the pink character and focuses on a box pushing event while
the video without event importance analysis in Fig. 11e does
not capture this event at a good viewing angle and distance.
In Fig. 11b, our approach not only focuses on the active
event (a jumping blue character) but also covers the entire
activity properly; however, in Fig. 11f, the shot is pointless.
In Fig. 11c, our approach generates a good shot to illustrate
two important events (box passing and box throwing
between characters). On the contrary, without event
analysis, the box throwing motion cannot be captured well
since it is far from the camera as shown in Fig. 11g.
Similarly, Figs. 11d and 11h demonstrate that our approach
can target at important events and provide a better shot than
the approach without event importance analysis. For better
demonstration of our results, please see a comparison in the
main video, available in the online supplemental material.

Fig. 12 shows four of our results on motion clips of
multiple characters and objects. In Example 1, the camera
first focuses on two events: box passing and box pushing
between two characters. Once the box is passed, the camera
switches its focus to characters stacking boxes in the scene.
This example illustrates the interaction between important
participants and events as shown in Fig. 8b. The importance
of the box is reinforced as it “participates” in several
important events (being carried by different people); In
Example 2, there are 10 characters carrying boxes in the
motion clip. These characters form several groups. One can
see that our camera control approach tracks the largest
group and selects a good view to cover the entire crowd
successfully; In Example 3, several characters push, move,
and stack boxes. Our approach presents the major event
clearly in two shots. Example 4 shows nine characters
forming several social events dynamically. Our approach
identified several important events, such as high-five and
box passing between characters. Moreover, all camera shots
follow the editing rules of 180-degree and avoiding jump
cut. From our results in Figs. 11 and 12, it appears that our
approach can successfully trace important events in motion
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Fig. 11. (a), (b), (c), and (d) are three images, respectively, taken at the 6th, 11th, 17th, and 23rd second of the motion overview video generated by
our approach. (e), (f), (g), and (h) are images taken at corresponding time of the video generated without event importance analysis. Please see the
main video, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.273, for better
demonstration.

Fig. 10. Illustration of the constraints between two consecutive shots.
The violet dotted lines are the target path of the camera. ~veðt� 1Þ is the
weighted average of facing directions of all participants of the targeted
event. The red space is a forbidden region for the camera path of the
second shot starting at frame t.



clips and generate smooth camera paths as well as reason-

able shot transitions. An important feature of our camera

control approach is that it can simultaneously capture

multiple events since the objective function in (16) sums the

importance of all events at a time frame. This feature is best

illustrated in Examples 1 and 4. Please also see the

accompanying videos, available in the online supplemental

material, for these results.
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Fig. 12. Snapshots of some of our results. The rightmost image shows the trajectories of participants and camera paths.



User study. We also conducted a user study to evaluate
the smoothness and comprehensibility of camera control in
our results. In the first part of the study, we compare our
results with overview videos generated without event
analysis and by an artist. We tested on four animation
data, so there is a total of 12 motion overview videos. We
performed our user study using the method of paired
comparisons [9] for the statistical evaluation of subjective
preferences. In this method, items are presented side-by-
side in pairs to a human subject, who then selects a
preferred one in each pair. Following this method, we
prepared a web-based survey showing pairs of motion
overview videos. For each pair, a subject needs to vote
which one is more stable, professional and narrative. There
were 70 subjects participating in our user study including
60 males and 10 females, 9 (of 70) subjects have art
background. Each subject watched 12 pairs of videos, so
each approach was compared 4� 3� 70 ¼ 840 times. To
reduce the bias in our user study, we randomized the
playing order of video pairs and provided only the most
necessary information to the subjects.

Table 1 lists the pairwise voting results in each aspect.
One can find that our approach is the most narrative while
being comparably as stable and professional as artist-made
videos. Table 2 shows the overall preference by summing
the votes in all aspects for each method across subjects. For
example, in a comparison of methods 1 and 2, if method 1 is
voted by a subject in the stable and professional aspects
while method 2 is preferred in the narrative aspect, then the
preference times of method 1 and 2 are 2 and 1,
respectively. The preference times from different subjects
for each method are summed to obtain Table 2. It shows
that our approach is clearly preferred over the camera
control without event analysis since our results were
favored in 66.19 percent (556 of 840) of the comparisons
with the camera control without event analysis. When
compared with the professional results by an artist, our
results were still preferred in 51.79 percent (435 of 840),
while the results without event analysis were only favored
in 34.76 percent (292 of 840). Overall, the subjects favored
our method in 39.33 percent (991 of 2,520) of the compar-
isons, while the preference for the artist’s results and the

results without event analysis are 37.82 percent (953 of
2,520) and 22.86 percent (576 of 2,520), respectively. The
intraobserver variability, Kendall’s coefficient of consis-
tence 	 2 ½0; 1�, had a very high average of 	 ¼ 0:88 and a
small standard deviation � ¼ 0:15. This indicates that each
subject is rather consistent when making his/her choices.
The interobserver variability, Kendall’s coefficient of agree-
ment, is u ¼ 0:065 for Table 2, with a p-value <0:01. Hence,
there is a statistically significant agreement among the
subjects regarding the three approaches. We refer readers to
[9] for a detailed explanation of these indicators.

In the second part of our user study, we judge the
comprehensibility of our results by conducting a question-
naire survey, which asks subjects some questions related to
the comprehension of a scene via our motion overview
videos and artist-made videos. We asked each subject to
watch a video before showing questions. We then recorded
each subject’s answer and response time, which is counted
starting from when the questions were shown. To reduce
the bias in our user study, we randomized the playing order
and question sets to make sure that the same question
would not be read twice by each subject. 70 subjects
participated in this study. Each of them answered two
questions for each video. For the details of our question-
naire, please see the online supplementary material. Table 3
summarizes the survey results. This survey attested that the
results generated by our approach are quite understandable
to the user. The comprehensibility of our results are also
comparable to that of the artist’s results.

Interactive event clustering and selection. Although our
approach can generate an overview video of social events
based on sociological studies, the suggested events in the
overview video may not totally satisfy a user’s personal
preference. To enhance the usability of our system, we also
develop a convenient interface to allow a user to manually
edit event clustering of participants. In the accompanying
video, available in the online supplemental material, we
demonstrate an interface in which users can modify the
event clustering results or add a new cluster to create a new
event. In addition, if the user wants to see the events
relevant to a specific character, an object or a specific group
of participants, the user can increase the weighting of
selected participants. In this way, the importance of the
events related to these participants will be enhanced such
that these events will be focused in the overview video. Our
interface provides a great flexibility that allows a user to
perform not only high-level control on event selection but
also low-level editing on event clustering.
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TABLE 1
Pairwise Voting Results in Each Aspect

TABLE 2
Preferences of 70 Subjects for Three Camera Control
Approaches, e.g., an Entry n in Row 1 and Column 2

Means the Result of Approach 1 Was Preferred
n-Times to the Result of Approach 2

TABLE 3
Correct Rate and Average Response Time in the

Questionnaire Study of Comprehensibility



Computational performance. We implemented our ap-
proach using C# code on an Intel Core i7 machine. The
computational time depends on the total number of
characters and frames in a motion clip. Table 4 lists the
computational time of our approach in different examples
with different types of motions and interactions. To test the
scalability of our approach, we also tested our approach on
an artificially-made crowd motion C1. There are three groups
of people in example C1, where C1(1), C1(1,2), and C1(1,2,3)
represent the cases that only the first group, the first and
second groups, and all groups are considered in event
analysis and camera control, respectively. For clips with 441-
990 frames and 4-59 participants (3-59 characters, 1-10 boxes),
the computational time ranges from 2 to 12 minutes. Our
event analysis needs to perform all-pair computation among
participants of each event several times. Thus, the computa-
tional time of event analysis depends on the number of
participants and the length of each event. Besides, as
evaluating viewpoint quality in the optimization process is
the most time consuming, more computational time is
required if the number of participants is larger or the
duration of an event is longer.

Limitations. Currently, there are two main limitations of
our approach. First, our approach can only generate a
motion overview in a “linear” manner with respect to time.
There may be many important events at the same time;
however, the camera can only focus on few of them at each
time instant. Therefore, in crowd animation (with hundreds
or thousands of people), there will be too many events
occurring if the crowd does not have high motion
coherence, e.g., marching. It will be very difficult to locate
events that the viewer may be interested in. Our method
cannot deal with such cases. The nonlinear camera editing
capability would allow concurrent events to be viewed
sequentially and a single event to be viewed multiple times
at different viewpoints. It is debatable whether all people
would favor this style of video results though. More future

work will be done toward this direction. Second, our event
analysis currently cannot measure the decaying of the
importance within an event. If there is no preemptive
incoming event, an important long event may become
overwhelming and force camera to focus on the entire event
even though its importance may be decaying. We will
address these issues in our future work.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced a sociology-based approach to
model the dynamic relations among individuals and events
in multicharacter animation. This approach measures the
importance of events and their participants. Based on the
measured importance in animation, our approach auto-
matically computes the optimal camera path that not only
maintains smooth camera control but also respects event
importance. We evaluate the validness and effectiveness of
our approach by comparing our results with those
generated without event analysis and handcrafted by an
artist. The comparison shows that our approach can better
capture multiple important events in animation. In addi-
tion, the user study participated by 70 subjects indicates
that our results are preferred in 66.19 percent of the
pairwise comparisons with those generated without event
analysis and are comparable (51.79 percent) to the artist’s
results. Currently, our approach does not consider indivi-
duals’ local and subtle actions to discover important events
or interesting individual actions from multicharacter
animation. We will consider these in our future study. We
would also like to improve the computational performance
and extend our approach for virtual cinematography
applications that allow nonlinear-time motion overview of
multicharacter animation.
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