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Abstract—Distributed reflection denial of service (DrDoS) attacks are a prevalent and troublesome form of DDoS attack. Fake service

requests trigger a flood of services responses, typically in large packet sizes, that are sent to targeted hosts via public servers. As

public servers are legitimate, and their services are necessary for targeted hosts, DrDoS attacks cannot be effectively blocked through

firewalls or most solutions to DDoS floods. This paper leverages the software-defined networking (SDN) technique and proposes an efficient

countermeasure with NAPT and two-stage detection (EC-NTD) scheme to safeguard against DrDoS attacks, where NAPT refers to network

address port translation. We consider that attack sources (i.e., botnet members that send fake requests to public servers) may be outside or

inside an SDN-based network where DrDoS targeted hosts reside. To guard against external attacks, filtering rules and NAPT are used in

gateways to distinguish normal responses from those caused by attacks. To recognize internal attacks, the controller detects anomalies in the

quantity of requests and their source IP addresses. Additionally, the adaptive adjustment of the attack detection period length helps alleviate

the controller’s load while maintaining effective defense. Simulation results reveal that the EC-NTD scheme can efficiently safeguard against

DrDoS attacks with different services.

Index Terms—DrDoS attack, NAPT, SDN.
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1 INTRODUCTION

DUE to their low costs and high destructiveness, distributed
denial of service (DDoS) attacks continue to be serious

threats on the Internet [1]. Instead of intruding into sys-
tems, such attacks take advantage of properties of network
protocols like sending specific packets to exhaust resources
(e.g., computing resources and bandwidth) of targeted hosts.
DDoS attacks are usually performed using a botnet, which
is composed of compromised computers or Internet-of-Things
devices whose security has been breached. To launch an attack,
the attacker instructs these devices to send numerous packets
to a targeted host to ask for connections or processing. This
substantially reduces the performance of the targeted host, or
even renders it incapable of providing services [2].

DDoS floods are a fundamental form of DDoS attack,
in which a targeted host is overwhelmed with packets sent
by botnet members. For example, in a TCP-SYN flood, the
targeted host is engaged in answering SYN-ACK packets due
to receiving many SYN packets. In a UDP flood, the targeted
host is forced to keep reassembling large UDP packets or
looking over small UDP packets, thereby consuming a lot of
computing resources. In an HTTP flood, the targeted host is
flooded with malicious GET or POST requests, which makes
it unable to respond to legitimate requests. There have been
various methods proposed to resist DDoS floods, from packet
statistics [3] to principal component analysis [4], IP entropy [5],
and deep learning [6].

In this paper, we aim at another common variant of DDoS
attacks, namely distributed reflection denial of service (DrDoS)
attacks. Unlike DDoS floods, botnet members do not directly
transmit packets to a targeted host. Instead, they send many
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service requests whose source IP addresses are forged as the
IP address of the targeted host to public servers. Thus, public
servers return corresponding service responses to the targeted
host. Because of the substantial volume of service responses
and their large packet sizes, the targeted host will be inevitably
busy processing them1, thereby consuming resources. DrDoS
attacks are more challenging. Traditional firewalls (using IP
and port filtering) and the above solutions to DDoS floods can-
not be applied to counter DrDoS attacks due to three reasons.
First, as discussed later in Section 2.1, various network services
can be used to carry out DrDoS attacks. Some of them are even
indispensable for network operations. Second, public servers
are legal and necessary, so they cannot be blacklisted (e.g., by
a firewall). In addition, high IP variability is a symptom of
DDoS floods [7], but the IP variability of responses sent by
public servers is generally low. Third, the targeted host may
also send requests to public servers. Dropping responses from
public servers (during a DrDoS attack) prevents the targeted
host from getting the services that it requests. This can be
viewed as a form of denial-of-service.

Software-defined networking (SDN) is a promising technique
to bring programmability and flexibility to networks. SDN
decouples control and data planes and displaces the control
plane from switches to a central entity called a controller. Since
the controller can query switches about their statuses, it be-
comes easy to monitor a network. Furthermore, users can write
programs on the controller to implement their methods, and
the controller instructs switches to process packets accordingly
by installing flow rules (e.g., using OpenFlow). In this way,
SDN can facilitate network management and help accelerate
the development of network technology [8].

1. For example, the targeted host has to check these responses and
determine whether to drop them. In addition, numerous responses will
occupy bandwidth of the link between the targeted host and its switch.
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The focus and scope of this paper is to leverage the SDN
technique to safeguard against DrDoS attacks. In particular,
we consider that DrDoS targeted hosts reside in an SDN-
based network. Depending on the locations of attack sources,
DrDoS attacks are divided into two categories: 1) external
botnet member (EBM) attacks and 2) internal botnet member
(IBM) attacks. EBM attacks are DrDoS attacks coming from
external networks, while IBM attacks originate from botnet
members inside the SDN-based network. Then, we propose an
efficient countermeasure with NAPT and two-stage detection (EC-
NTD) scheme, where NAPT stands for network address port
translation. To resist EBM attacks, the controller sets filtering
rules on gateways to block service responses by default. Then,
it employs the NAPT protocol to allow legitimate responses
whose corresponding requests were sent by targeted hosts to
pass through gateways. To identify IBM attacks, the controller
checks the number of service requests and their source IP
addresses. On detecting attacks, the controller directs switches
to discard malicious requests. To reduce the controller’s load
and maintain effective defense, the period length for attack
detection is adaptively adjusted based on the frequency of
attacks. Through simulations, we show that the proposed EC-
NTD scheme can quickly and correctly block DrDoS attacks
with different services, as compared with existing solutions
also using SDN.

The rest of this paper is organized as follows: Section 2 pro-
vides background knowledge, and Section 3 discusses related
work. The system model is presented in Section 4. We detail
the EC-NTD scheme in Section 5 and evaluate performance
in Section 6. Finally, Section 7 concludes this paper and gives
future work.

2 PRELIMINARY

In this section, we briefly introduce DrDoS attacks, SDN and
OpenFlow, and NAPT.

2.1 DrDoS Attacks

A DrDoS attack is a variant of a DDoS attack. The attacker
sends numerous service requests to public servers, typically
through a botnet. The source IP addresses of these requests are
falsified as the IP addresses of targeted hosts. This way, public
servers will send back many service responses to targeted
hosts, thereby draining their resources.

The attacker usually exploits services with larger response
packets than request ones to boost the efficacy of a DrDoS
attack. Hence, small traffic can be exchanged for large attack
traffic, which achieves several times the traffic amplification
effect. In particular, five network services are widely used to
carry out DrDoS attacks:

• Domain name system (DNS): DNS converts easily mem-
orized domain names into IP addresses, which are
required to locate and identify services and hosts on the
Internet. With DNS, the locations of services and hosts
can be changed without affecting users who continue
to employ the same hostnames.

• Network time protocol (NTP): NTP takes charge of syn-
chronizing the clocks of hosts over a network to a
common time base. It belongs to the TCP/IP suite and
typically runs in a client-server model.

• Lightweight directory access protocol (LDAP): LDAP al-
lows users to remotely lookup directory data, which

TABLE 1: Bandwidth amplification factor of a DrDoS attack using different
services.

service bandwidth amplification factor
DNS 28∼ 54
NTP 556.9

LDAP 46∼ 55 (CLDAP: 56∼ 70)
SNMP 6.3
SSDP 30.8

contains information about users, servers, or other
equipment. Connectionless LDAP (CLDAP) is an en-
hancement to reduce the burden of creating a con-
nection and performing session binding operations in
connection-oriented LDAP.

• Simple network management protocol (SNMP): SNMP is
widely used in monitoring devices for network man-
agement. It collects and organizes information about
managed devices on IP networks. SNMP can change
the behavior of devices by modifying the information.

• Simple service discovery protocol (SSDP): SSDP advertises
and discovers network services supported by the uni-
versal plug-and-play protocol in a small network (e.g.,
a home network). SSDP is an HTTP-like protocol that
exchanges messages using UDP.

Since public servers that offer these services have the effect
of increasing small request traffic into large response traffic,
they are also known as amplifiers or reflectors. The bandwidth
amplification factor is a metric used to measure the effect of a
DrDoS attack, which is defined by

BAF =
average payload size of responses

average payload size of requests
. (1)

Table 1 gives the bandwidth amplification factor of a DrDoS
attack using different services [9].

2.2 SDN and OpenFlow

A network can be logically divided into control and data planes,
where the control plane takes charge of management and
decision-making and the data plane deals with packet process-
ing and forwarding. In the traditional network architecture,
both planes are coupled up in each switch. Applying new
policies or algorithms to large networks is usually tricky, as
involved switches may require reconfiguration individually
[10]. Hence, SDN displaces the control plane from switches
to a controller to help users manipulate switches and monitor
the network state more easily. Specifically, users can write pro-
grams on the controller to apply their policies or algorithms.
Then, the controller sets flow rules into the switches sponta-
neously to perform the policies or algorithms. The controller
can also query a switch about its status (e.g., the number and
types of packets forwarded).

OpenFlow is a southbound protocol widely used to sup-
port SDN [11]. It provides an application program interface
to let the controller communicate with switches. Specifically,
each switch maintains flow tables that consist of flow entries. A
flow entry has match fields for the switch to check if a packet
meets certain conditions. If so, the switch forwards or discards
the packet following instructions given in the flow entry.
The controller builds a secure connection with each switch
and adds flow entries to its flow table or removes existing
ones. Hence, the switch’s behavior on handling packets can
be dynamically changed. Each flow entry is associated with
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a priority. When a packet meets conditions of multiple flow
entries, the one with the highest priority is chosen to execute
its instruction.

2.3 NAPT

NAPT was first introduced in RFC 3022 [12], which is a
protocol used to translate network addresses. NAPT maps the
local IP addresses and port numbers of internal hosts to regis-
tered, public IP addresses (referred to as alias IP addresses) and
corresponding ports. It enables connections of many hosts with
external networks by employing just a few alias IP addresses.

NAPT is performed by a switch or router. When an inter-
nal host requests a connection with the external network, its
packets have to pass through an NAPT switch/router. Doing
so will translate the host’s IP address and port number into
an alias IP address and port number (owned by the NAPT
switch/router). In practice, the NAPT switch/router is gener-
ally assigned one alias IP address. This means that multiple
internal hosts have the same IP address with different port
numbers to access external networks. For example, suppose
that the local IP address of an internal host is 192.168.0.1 and its
port number is 4323. Let an NAPT switch/router be configured
with an alias IP address of 140.117.1.1. Then, when the host’s
packets leave the NAPT switch/router, the IP addresses and
port numbers of these packets will be changed to 140.117.1.1
and 3612.

3 RELATED WORK

In this section, we first survey DrDoS countermeasures in the
traditional network architecture. Then, we discuss the defense
methods against DrDoS attacks using the SDN technique.

3.1 DrDoS Countermeasures in a Traditional Network

Liu et al. [13] judge whether responses are far more than
requests using IP entropy. If so, a DrDoS attack is presumed
to occur in bilateral traffic. For a unilateral flow, they check
if responses to or requests from the same IP address are
beyond a threshold to identify attacks. However, they do
not differentiate between normal and malicious responses.
Yadav et al. [14] apply a filter to classify responses with large
payload sizes and discard these responses based on a variable
probability. Consequently, some legitimate responses would be
dropped, resulting in a high number of false alarms. Fujinoki
[15] assumes that there are many mirror servers in a cloud
environment. If the load of incoming traffic exceeds a limit,
it is split and forwarded recursively to two mirror servers
until DrDoS reflectors can be identified. Nevertheless, doing
so significantly raises the hardware cost.

Biagioni [16] proposes a weak authentication mechanism to
deal with DrDoS attacks. When a public server gets a request,
it sends a keepalive packet with a bit stream calculated by
a hash function to the request’s sender. If the response to
this keepalive packet is sent back to the public server, the
request is legitimate. Otherwise, the public server neglects the
request. However, the protocols performed by public servers
need to be modified to support weak authentication. Khooi
et al. [17] consider a network architecture composed of access
routers and border routers. Access routers record the number
of response packets, while border routers store the number of
request packets. If a border router finds that a flow has many
requests, it negotiates with the corresponding access router to

judge whether an attack has occurred and blocks malicious
requests. However, access routers and border routers may
frequently exchange messages for attack judgment, causing a
high message overhead.

3.2 Defenses Against DrDoS Attacks Based on SDN

Some studies aim at DNS amplification attacks, a type of
DrDoS attack. Ozdincer and Mantar [18] assume that DNS
servers and targeted hosts coexist in an SDN-based network.
To detect attacks, the controller monitors variations in the
amplification factor (i.e., the ratio between the size of a request
to a DNS server and the size of the corresponding response)
and the time-to-live value (obtained from packet headers).
Xing et al. [19] analyze the transmission speed of DNS request
packets and the entropy of their source IP addresses to check
if an attack is taking place. Gupta et al. [20] employ bloom
filters as a data structure to build a one-to-one mapping of
DNS requests and responses. If some DNS responses have
no mapping requests, they are treated as malicious. Han et
al. [21] propose a DNS amplification attack defender (DAAD)
method. In DAAD, when a switch receives a new DNS query
from an internal host, the controller sets a flow rule in the
switch for upcoming DNS responses. Thus, some malicious
DNS responses caused by EBMs can be filtered out by the
switch.

Chen et al. [22] copy DNS and NTP responses passing
through gateways to a detection agent and classify these
responses using a support vector machine to detect both DNS
and NTP amplification attacks. Zhauniarovich and Dodia [23]
collect information about ongoing DrDoS attacks through a
honeypot and then sets up flow rules to prevent malicious
service requests from reaching public servers. Gupta et al. [24]
make response packets be sent via the same path as request
packets, so attack packets are diverted back to botnet members
instead of victims. Lukaseder et al. [25] apply NAT (network
address translation) to cope with DrDoS attacks. When an
internal host sends a service request to a public server, the
source IP address in the request will be replaced by an alias IP
address. Afterward, the gateway checks if the service response
uses the alias IP address. If not, the response is dropped.

Table 2 presents a comparison between prior studies based
on SDN and our EC-NTD scheme. For network services used
to launch DrDoS attacks, many studies consider DNS and NTP.
Zhauniarovich and Dodia [23], Lukaseder et al. [25], and EC-
NTD additionally take account of other services (e.g., CLDAP,
SNMP, and SSDP). Regarding attack sources, the majority
of studies focus solely on EBM attacks or solely on IBM
attacks. Gupta et al. [24] and EC-NTD handle both EBM and
IBM attacks. However, Gupta’s method relies on symmetric
routing, which lacks flexibility. Compared to prior studies,
the proposed EC-NTD scheme provides more comprehensive
defense against DrDoS attacks in terms of considering more
types of services and locations of attack sources. Moreover, EC-
NTD does not require extra components (e.g., detection agent,
honeypot, and symmetric routing). This highlights the differ-
ences between our work and existing SDN-based solutions to
DrDoS attacks.

4 SYSTEM MODEL

This section introduces the network model, threat model, and
problem description.
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TABLE 2: Comparison between prior studies using SDN and our EC-NTD scheme.

network services attacks

studies DNS NTP CLDAP SNMP SSDP EBM IBM extra components
Ozdincer & Mantar [18]

√ √ √
no need

Xing et al. [19]
√ √

no need
Gupta et al. [20]

√ √
no need

Han et al. [21]
√ √

no need
Chen et al. [22]

√ √ √
detection agent

Zhauniarovich & Dodia [23]
√ √ √ √ √

honeypot
Gupta et al. [24]

√ √ √
symmetric routing

Lukaseder et al. [25]
√ √ √ √ √ √

no need
EC-NTD

√ √ √ √ √ √ √
no need
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Fig. 1: Network model.

4.1 Network Model

Fig. 1 shows the network model. We consider an SDN-based
network composed of 1) a controller, 2) multiple switches that

support OpenFlow, and 3) a set Ĥ of hosts. The controller
takes charge of managing the network. As mentioned in Sec-
tion 2.2, each switch notifies the controller of its status. On the
other hand, the controller can issue instructions to switches
by setting corresponding flow entries. When a switch is also
connected to an external network (e.g., switch s1), it is referred
to as a gateway.

An attacker selects some hosts in Ĥ as targeted hosts and
manipulates a botnet to attack them. Botnet members take
advantage of public servers outside the SDN-based network
to perform DrDoS attacks. As discussed in Section 2.1, they
send many service requests to public servers, where the source
IP addresses of these requests are tampered with as the IP ad-
dresses of targeted hosts. Hence, public servers return numer-
ous service responses to the targeted hosts, thereby exhausting
their resources. Depending on locations, botnet members are
classified into two categories: if a botnet member is outside the

SDN-based network (i.e., not in Ĥ), it is known as an EBM;
otherwise, we call it an IBM.

4.2 Threat Model

Fig. 2(a) presents the threat model for DrDoS attacks launched
by EBMs. Suppose that the IP address of a targeted host
in the SDN-based network is aIPj . EBMs send many service
requests to public servers by setting their source IP addresses
to aIPj . Thus, public servers send numerous service responses
whose destination IP addresses are aIPj . These responses pass
a gateway and eventually reach the targeted host to consume
its resources. Since EBMs are located in external networks, we
cannot prevent them from sending requests to public servers.
However, we can avoid malicious responses entering the SDN-
based network (e.g., blocking them by the gateway) and being
sent to the targeted host. Consequently, the main threat will be
responses (caused by attacks) sent from public servers.

EBM

Public server

Targeted host

(IP: aj  )
IP

Request

(src: a j  
)IP

Response

(dst: aj  )
IP

Response

(dst: aj  )
IP
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network

External

networks

Threat

Gateway

(a) DrDoS attacks launched by EBMs
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IP

Response
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IP

SDN-based

network

External
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Request

(src: aj  )
IP

Request

(src: aj  )
IP

Threat

Gateway

(b) DrDoS attacks launched by IBMs

Fig. 2: Threat models (src: source, dst: destination).

Fig. 2(b) illustrates the threat model for DrDoS attacks
launched by IBMs. Like EBMs, IBMs send service requests
whose source IP addresses are aIPj to public servers. This leads
to a significant number of service responses being returned
to the targeted host by public servers. In fact, we have the
opportunity to stop such an attack in its infancy, as IBMs
are also located in the SDN-based network. Specifically, if we
prevent IBMs’ malicious requests from being sent to public
servers, no subsequent responses will be generated by public
servers. Hence, the main threat can be viewed as requests sent
from IBMs.

4.3 Problem Description

Based on the above threat models, our problem asks how
to quickly and correctly stop DrDoS attacks, which has two
objectives. First, we shall prevent malicious service responses
(caused by EBMs and IBMs) from entering the SDN-based
network and thus consuming the targeted host’s resources.
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TABLE 3: Summary of acronyms.

acronym full name
DAAD DNS amplification attack defender

DDoS/DrDoS distributed (reflection) denial of service
DNS domain name system

EBM/IBM external/internal botnet member
EC-NTD efficient countermeasure with NAPT and

two-stage detection
LDAP lightweight directory access protocol

(CLDAP: connectionless LDAP)
LNPF lightweight NAT-based packet filtering

NAT/NAPT network address (port) translation
NTP network time protocol
SDN software-defined networking

SNMP simple network management protocol
SSDP simple service discovery protocol

TABLE 4: Summary of notations.

notation definition

Ĥ set of hosts in the SDN-based network

aIPj , aMACj IP and MAC addresses of a host hj ∈ Ĥ
ξk port k of a switch si
py UDP port for a network service

αL, αH priorities for flow rules (αL < αH)
Tpoll period length for IBM attack detection

δtREQ, δtEPT thresholds for the number of requests and their
entropy in period t

Second, if the targeted host sent service requests to public
servers, we need to ensure that its service responses will not
be blocked (i.e., avoiding false alarms).

Four metrics are used to measure the performance of attack
detection: accuracy, recall, precision, and F1-score. According to
the judgment and the true answer, there are four combinations
of the detection result for each service response xi: (1) True
positive: xi is judged as an attack packet, and it indeed is. (2)
True negative: xi is judged not to be an attack packet, and it
indeed is not. (3) False positive: xi is judged as an attack packet,
but it actually is not. (4) False negative: xi is judged as not an
attack packet, but it actually is. Let fTP, fTN, fFP, and fFN be the
number of occurrences for true positives, true negatives, false
positives, and false negatives, respectively. These four metrics
are calculated as follows:

Accuracy = (fTP + fTN)/(fTP + fTN + fFP + fFN), (2)

Recall = fTP/(fTP + fFN), (3)

Precision = fTP/(fTP + fFP), (4)

F1-score = 2(Recall × Precision)/(Recall + Precision). (5)

Tables 3 and 4 summarize the acronyms and notations used in
the paper.

5 THE PROPOSED EC-NTD SCHEME

Fig. 3 gives the architecture of our EC-NTD scheme, which con-
sists of two modules. The EBM attack resisting module is used
to defend against DrDoS attacks launched by botnet members
outside the SDN-based network, which will be discussed in
Section 5.1. The IBM attack resisting module protects targeted
hosts when some botnet members also located in the SDN-
based network launch DrDoS attacks, which will be detailed
in Section 5.2. Then, Section 5.3 discusses the superiority and
limitations of the EC-NTD scheme.

Mechanism 1

Filtering responses

Mechanism 2

Forwarding requests

Mechanism 3

Applying NAPT

Mechanism 1

Period adjustment

Mechanism 2

Two-phase detection

Mechanism 3

Blocking requests

EBM attack 

resisting module

IBM attack 

resisting module

EC-NTD Scheme

Fig. 3: Architecture of the EC-NTD scheme.

5.1 EBM Attack Resisting Module

This module is used primarily in gateways to drop malicious
service responses caused by EBMs. It contains three mecha-
nisms:

• Filtering responses: The controller sets filtering rules on
gateways to ask them to block response packets sent

from public servers to any host in Ĥ by default.

• Forwarding requests: If some hosts in Ĥ send requests to
public servers, the controller finds routing paths from
them to gateways and installs forwarding rules on the
switches along these paths.

• Applying NAPT: We apply NAPT to gateways, enabling
legitimate response packets to be returned to those

hosts in Ĥ that have ever sent requests to public servers.

Below, we elaborate on each mechanism and then remark on
the EBM attack resisting module.

5.1.1 Filtering Responses

Since we cannot prevent EBMs from sending requests with
fabricated IP addresses to public servers, a feasible solution
to combat EBM attacks is to block malicious response packets
(caused by attacks) via gateways. However, as mentioned in
Section 2.1, various network services can be used to perform
DrDoS attacks. If the controller is asked to execute protocol
analysis and issue flow rules every time each gateway receives
a response packet, it will become busy and thus significantly
degrade SDN performance. Hence, instead of doing so, we let
gateways block all response packets from public servers by
default and then allow legitimate ones to pass so that the hosts

in Ĥ can utilize the services of public servers.
Based on OpenFlow, the controller issues the following

filtering rule to each gateway to block the response packets
from public servers:

[Match fields] in port=ξe, eth type=0x0800, ip proto=0x11,

udp src=py

[Priority] αL [Action] Drop

In the match fields, the term “in port=ξe” means to handle
packets from the gateway’s port ξe, which links to an external
network. Take Fig. 1 as an example. For gateway s1, since
it uses port 1 to connect with an external network, we have
ξe = 1. The term “eth type=0x0800” indicates IPv4 packets.
When IPv6 is used, we can set the eth type field to 0x86DD.
The term “ip proto=0x11” implies that we employ UDP, and
the udp src field gives the UDP source port. For example, to
filter out DNS-based and NTP-based DrDoS packets, we can
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TABLE 5: Three tables used to manage hosts and find packet routes in the
SDN-based network.

(a) path table:

(source, destination) path
(s2, s1) [s2, s1]
(s3, s1) [s3, s2, s1]
(s4, s1) [s4, s1]

(b) host table:

host switch
(h1, 10.0.0.1, 00 : 00 : 00 : 00 : 00 : 01) (s3, 1)
(h2, 10.0.0.2, 00 : 00 : 00 : 00 : 00 : 02) (s3, 2)
(h3, 10.0.0.3, 00 : 00 : 00 : 00 : 00 : 03) (s4, 1)

(c) link table:

switch pair port pair
(s1, s2) (2, 2)
(s2, s3) (1, 4)
(s3, s4) (3, 3)
(s4, s1) (2, 3)

set udp src to 53 and 123, respectively. Then, the priority of this
flow rule is set to αL, where αL ∈ Z

+. When packets coming
from an external network (via the gateway’s port ξe) satisfy
the conditions in the match fields, the gateway will drop these
packets based on the instruction in the action field.

In this flow rule, we do not specify the IP address of any
public server for two reasons. First, public servers employ
well-known protocol ports in their packets to offer network
services. Thus, the gateway can check if a packet comes from a
public server by examining the packet’s UDP source port (i.e.,
udp src=py). Second, doing so can provide flexibility. When
public servers are added or removed, there is no need to
update filtering rules installed in gateways. In addition, the
flow rule considers only UDP packets. In TCP, the source must
build a connection with the destination. Suppose that an EBM
sends fake requests using TCP. Since the targeted host did not
build connections with a public server, due to TCP’s property,
it will neglect subsequent packets sent from the public server.
Hence, we do not need to consider TCP packets in the flow
rule.

5.1.2 Forwarding Requests

The controller adopts three tables to manage hosts and find
packet routes in the SDN-based network. The path table gives
the shortest path between any two switches. The entry format
is 〈(si, sj), [si, sl1 , · · · , sln , sj ]〉, where si is the source switch,
sj is the destination switch, and the path is si → sl1 → · · · →
sln → sj . The host table stores the mapping of IP and MAC
addresses for each host and the host’s connection relationship
with a switch. Its entry format is 〈(hj , a

IP
j , aMACj ), (si, ξk)〉,

meaning that a host hj whose IP address is aIPj and MAC
address is aMACj connects to a switch si via its port ξk. Here, the
mapping information of IP and MAC addresses can be easily
obtained using the address resolution protocol (ARP) [26]. The
link table records how two adjacent switches connect with each
other via their ports. The entry format is 〈(si, sj), (ξu, ξv)〉,
where switch si uses its port ξu to connect with the port ξv
of another switch sj . Given the network topology in Fig. 1,
Table 5 shows an example of these three tables.

When a host hi ∈ Ĥ wants to send data to another host
hj , the controller uses the host table to find the source switch
that hi attaches to and the destination switch to which hj

links. If hj is not in Ĥ (i.e., an external host), the destination
switch is a gateway. Based on the path table, the shortest path

between source and destination switches can be built. Then,
the controller sets forwarding rules for switches on the path
by referring to the link table. However, when hi wants to send
a request to a public server, the controller needs to issue a
special forwarding rule to the source switch. Let us take Fig. 1
as an example, where host h1 wants to send a request to a
public server whose IP address is aIPs . Moreover, the shortest
path is s3 → s2 → s1. For switch s3 (i.e., the source switch),
the forwarding rule is as follows:

[Match fields] in port=1, eth type=0x0800, ip proto=0x11,

eth src=aMAC1 , ipv4 src=aIP1 , ipv4 dst=aIPs , udp dst=py

[Action] Forward 4

In the match fields, terms “ipv4 src=aIP1 ” and “ipv4 dst=aIPs ”
mean that the source IP address is aIP1 (i.e., h1’s IP address) and
the destination IP address is aIPs (i.e., the public server’s IP ad-
dress). Compared to regular forwarding rules, we additionally
indicate the source host’s MAC address (i.e., eth src=aMAC1 ) and
the destination UDP port for the request (i.e., udp dst=py).
These two terms are used to identify IBM attacks, as discussed
later in Section 5.2. Then, the instruction in the action field
is to forward the packet to s3’s port 4 (to relay the packet to
switch s2). On the other hand, a regular forwarding rule is set
in switch s2 (i.e., a non-source switch) as follows:

[Match fields] in port=1, eth type=0x0800, ip proto=0x11,

ipv4 src=aIP1 , ipv4 dst=aIPs
[Action] Forward 2

Forwarding rules are used to route packets in the SDN-based
network. Their priorities are not specified because they will
not clash with other flow rules used for attack defense.

5.1.3 Applying NAPT

When some hosts in Ĥ send requests to public servers, the
requests are relayed to a gateway. The gateway translates the
source IP addresses and port numbers in the requests. Then, it
allows only the response packets (returned by public servers)
whose destination IP addresses are translated addresses to
enter the SDN-based network. This way, even if EBMs forge
IP addresses (using the IP address of a targeted host) and send
many requests to public servers, causing public servers to send
numerous response packets to the targeted host, these packets
will be discarded by the gateway. The reason is that EBMs have
no idea about the translated IP addresses and port numbers.
They can only use the targeted host’s original IP address to
launch a DrDoS attack. Due to the filtering rule mentioned in
Section 5.1.1, malicious response packets will be blocked by
the gateway.

To perform the above translation, we adopt the NAPT
technique discussed in Section 2.3. In particular, the controller
uses a port pool that contains unused protocol ports to allocate
an alias port for each flow and maintains an NAPT-mapping

table to record the allocation. Suppose that a host hj ∈ Ĥ
sends a request whose source IP address is aIPj and whose
source port is po to a public server whose IP address is aIPs .
The controller picks a port pr from the port pool and adds
an entry 〈(aIPj , po), pr〉 to the NAPT-mapping table. Then, it
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issues the following flow rule to the gateway that handles hj ’s
request (received via its port ξk) to conduct translation:

[Match fields] in port=ξk, eth type=0x0800, ip proto=0x11,

ipv4 src=aIPj , ipv4 dst=aIPs , udp dst=py

[Priority] αL

[Action] Set-Field ipv4 src=aIPc , udp src=pr; Forward ξe

The conditions in the match fields include UDP packets
from the gateway’s port ξk (i.e., in port=ξk, eth type=0x0800,
ip proto=0x11), and these packets are hj ’s requests that
will be forwarded to the public server (i.e., ipv4 src=aIPj ,
ipv4 dst=aIPs , udp dst=py). In the action field, the instruction
“Set-Field ipv4 src=aIPc , udp src=pr” allows the gateway to
modify two fields of the packet header in hj ’s requests: 1)
change the source IP address from aIPj (i.e., hj ’s original IP
address) to an alias IP address aIPc , and 2) change the UDP
source port from po (i.e., hj ’s original port) to an alias port pr .
After modifying packet headers, the gateway can send these
requests to the public server (via its port ξe that connects to
the external network).

To ensure that hj can receive responses from the public
server, the gateway has to replace the alias IP address and port
back to hj ’s IP address and port in the response packets. This
is known as reverse translation. To do so, the controller needs to
issue another flow rule to the gateway:

[Match fields] in port=ξe, eth type=0x0800, ip proto=0x11,

ipv4 src=aIPs , ipv4 dst=aIPc , udp src=py , udp dst=pr

[Priority] αH

[Action] Set-Field ipv4 dst=aIPj , udp dst=po; Forward ξk

In the match fields, the term “in port=ξe” asks the gate-
way to handle packets from the external network. The
terms “ipv4 src=aIPs ”, “ipv4 dst=aIPc ”, “udp src=py”, and
“udp dst=pr” mean that the packet is a response sent from
the public server (whose IP address is aIPs and UDP port is
py) to the SDN-based network (using alias IP address aIPc and
alias port pr). Then, the instructions in the action field let the
gateway perform reverse translation (i.e., replacing aIPc by aIPj
in the destination IP address and replacing pr with po in the
UDP destination port of the packet header) and forward the
modified packet to hj (via the gateway’s port ξk). Here, we
set the priority of this flow rule to αH, where αH ∈ Z

+ and
αH > αL. In other words, the flow rule is given precedence over
the default filtering rule. Hence, legitimate response packets
will not be dropped by the gateway.

5.1.4 Remark on the EBM Attack Resisting Module

For EBMs, we cannot stop them from sending malicious re-
quest packets to public servers using forged source IP ad-
dresses (i.e., the targeted host’s IP address). However, since
response packets from public servers to the targeted host must
pass through a gateway, we can let the gateway weed out
attack response packets. By adopting the policy of security
by default2, the gateway blocks all response packets to any

host in Ĥ. When a host hj ∈ Ĥ ever sent requests to a
public server, legitimate response packets sent from that public
server to hj will be allowed to enter the SDN-based network

2. Security by default means that the default configuration settings are
the most secure. In an operating system, this typically implies that no
network ports are open after installation. Only when a service is required
will the corresponding port be allowed to open [27].

and be forwarded to hj . To do so, we implement the NAPT
functions in the gateway using an NAPT-mapping table and
setting appropriate flow rules. Using NAPT has two benefits.
First, compared to other similar techniques like NAT, NAPT
can effectively reduce the usage of alias IP addresses required
for address translation [28]. Second, the targeted host and
EBMs will not be aware of IP translation by NAPT. Hence, the
targeted host can request services from public servers using
normal procedures without making any changes. On the other
hand, EBMs cannot attack the targeted host, as they do not
know how to translate the alias IP address to the targeted
host’s IP address.

Like existing DrDoS countermeasures discussed in Sec-
tion 3, our objective is to avoid malicious service responses
(caused by attacks) entering the SDN-based network and
consuming the targeted host’s resources. Therefore, we let the
gateway drop malicious responses. However, these malicious
responses might occupy bandwidth of the gateway’s external
link. This problem can be mitigated by using some techniques
such as setting delimitations for link capacity or traffic clean-
ing. However, these techniques have to be applied to the ISP
router at the other endpoint of the gateway’s external link. The
ISP router is not a part of the SDN-based network and thus
cannot be instructed by the controller. Since the above issue is
beyond the scope of this paper, we leave the details in [29].

5.2 IBM Attack Resisting Module

Since the sources of IBM attacks are some hosts in Ĥ, the
IBM attack resisting module aims to prevent their malicious
requests from being sent to public servers. Specifically, this
module is composed of three mechanisms:

• Period adjustment: To strike a good balance between the
cost and performance on identifying attacks, the con-
troller adaptively adjusts the period length for attack
detection.

• Two-phase detection: In each period, the controller judges
whether IBM attacks occur by checking if there are
anomalies in the number of requests and their source
IP addresses.

• Blocking requests: On detecting attacks, the controller
identifies malicious requests sent from IBMs and asks
switches to drop them to block attacks.

Next, we detail these three mechanisms and discuss the IBM
attack resisting module.

5.2.1 Period Adjustment

The controller detects the occurrence of IBM attacks, period
by period. The length Tpoll of a period determines not only
the burden on the controller but also the performance of
resisting attacks. In particular, if Tpoll is set too short, the
controller needs to frequently query switches about packet
information, which imposes a heavy load and wastes network
bandwidth. On the contrary, if Tpoll is set too long, many
malicious requests may not be blocked in time, causing signif-
icant damage to targeted hosts. Hence, borrowing the notion
of binary exponential backoff [30], we adaptively adjust the
period length as follows:

Tpoll = Tbase × 2⌊min{τu,τmax}/τ⌋, (6)

where Tbase is the basic period length (in seconds), τu is the
number of consecutive periods in which no IBM attack was
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Fig. 4: Growth curve of period length Tpoll.

detected, and τ is a constant used to control the exponential
growth. Here, we have τ ∈ Z

+ and τ ≥ 2. To avoid excessive
growth of the exponent, making Tpoll too long, we use an
upper bound τmax in Eq. (6), where τmax ∈ Z

+ and τmax > τ .
The adaptive adjustment of the period length for attack

detection can help alleviate the controller’s load while main-
taining effective defense against IBM attacks. On one hand, if
no IBM attacks occur since the last attack, due to the design
of Eq. (6), the period length will show a stepwise exponential
growth (until reaching the maximum value Tbase × 2⌊τmax/τ⌋).
Fig. 4 shows the growth curve of period length Tpoll as the
number of consecutive periods without IBM attacks (i.e., τu)
increases, where Tbase = 3s, τ = 10, and τmax = 40. The
maximum period length is 3× 2⌊40/10⌋ = 48s. In this case, the
time interval for the controller to collect packet information
from switches for attack detection will increase gradually and
significantly. Hence, as long as no IBM attacks occur for a
long time, the burden on the controller can be substantially
reduced. On the other hand, once the controller has detected
IBM attacks, τu will become zero, making Tpoll reset to Tbase
(i.e., the basic period length). This way, the controller can
perform the next attack detection in a short period of time
to effectively combat the attack.

5.2.2 Two-Phase Detection

In each period, the controller queries each switch si about
service requests sent from its attaching hosts and store the
information in a request statistics table. The format of each
entry is 〈(aIPj , aMACj , si, ξk, px), Nj , Lj〉, which means that a host
whose IP address is aIPj and whose MAC address is aMACj

has sent Nj requests via si’s port ξk, and px is their UDP
ports3. In addition, Lj is a label used to distinguish between
legitimate and malicious requests. Specifically, Lj is set to
zero (i.e., legitimate) for each entry in the beginning, and it
may be changed to one (i.e., malicious) by the mechanism in
Section 5.2.3. Table 6 presents an example. Here, some hosts
(i.e., IBMs) may forge source IP addresses in their requests.
Thus, there could be multiple entries that record hosts with
the same IP address but different MAC addresses (e.g., entries
e1 and e4).

Then, the controller judges whether IBM attacks occur
using the two-phase detection mechanism. In phase 1, the
controller checks if the number of service requests is unusually

3. Recall that in Section 5.1.2, si has a forwarding rule to send the host’s
request, which indicates the host’s IP and MAC addresses (i.e., aIPj and

aMACj ), si’s port ξk , and UDP port px. To obtain Nj , si can count how many
requests are sent using this forwarding rule.

TABLE 6: Example of the request statistics table.

entry (IP, MAC, switch, port, UDP port) packet count label
e1 (10.0.0.1, 00:00:00:00:00:01, 3, 1, 53) 25 0
e2 (10.0.0.2, 00:00:00:00:00:02, 3, 2, 123) 271 0
e3 (10.0.0.3, 00:00:00:00:00:03, 4, 1, 123) 42 0
e4 (10.0.0.1, 00:00:00:00:00:03, 4, 1, 53) 323 0

large, which can be considered a symptom of attacks. If so,
the controller performs judgment in phase 2, which estimates
the entropy of the source IP addresses of request packets. If
the entropy is small, meaning that many request packets come
from just a few sources, the controller infers that an IBM attack
is taking place. In this case, the mechanism in Section 5.2.3 is
used to block malicious requests.

Phase 1: The criterion to identify anomalies in the number
of service requests is whether the average number of requests
sent per second exceeds a threshold δtREQ. Since there is vari-
ability in the network, this threshold should be dynamically
adjusted based on the network status. Hence, we adopt the
exponentially weighted moving average model, which is widely
used to handle serial data and forecast the value of the current
time series according to the observed value [31]. Given the
number of request packets sent per second in the previous pe-
riod (denoted by Γt−1), threshold δtREQ is calculated as follows:

δtREQ = (1− βREQ)× δt−1
REQ + βREQ × Γt−1, (7)

where βREQ ∈ [0, 1] is a coefficient revealing the degree of
weighting. Using a dynamic threshold via Eq. (7), the con-
troller can recognize anomalies in the number of requests sent
by hosts once IBMs launch an attack.

Phase 2: In a DrDoS attack, botnet members send many
service requests to public servers using a targeted host’s IP
address as source IP addresses. Hence, concentrated source
addresses in request packets will be a distinctive feature. To
assess the degree of concentration, the controller computes the
Shannon entropy of source IP addresses in request packets as
follows:

E(Â) = −
∑

aIP
j
∈Â

P (aIPj )× log2 P (aIPj ), (8)

where Â is the set of source IP addresses of all request packets
sent in a period. Moreover, P (aIPj ) is the probability that an
IP address aIPj appears, which is defined by the number of
request packets whose source IP addresses are aIPj divided

by the number of all request packets. The value of E(Â)
is between 0 and log2 |Â|, and a smaller E(Â) value (i.e.,
lower entropy) implies that source IP addresses are more
concentrated. In phase 2, the criterion to identify anomalies

in source IP addresses is whether entropy E(Â) is below a

dynamic threshold δtETP (at period t). Similarly, let Et−1(Â)
be the value of E(Â) estimated by Eq. (8) at period t − 1.
Threshold δtETP is calculated as follows:

δtETP = (1− βETP)× δt−1
ETP + βETP × Et−1(Â), (9)

where the value of coefficient βETP is between zero and one.

5.2.3 Blocking Requests

After discovering IBM attacks using the two-phase detection
mechanism, the controller identifies malicious requests and
issues flow rules to switches to block them. To do so, we
use the K-means method to divide entries in the request
statistics table into two groups based on their packet counts,
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Algorithm 1: Grouping entries in the request statistics
table using K-means

Data: entries {e1, e2, · · · , en} in the request statistics
table

Result: two groups (normal and abnormal)
1 Randomly choose two entries as the initial members of

two groups;
2 repeat
3 Assign each entry ej to a group whose average

packet count is the closest to that of ej ;
4 Update the average packet count for each group;
5 until the members in each group no longer change, or the

number of executed iterations exceeds a predefined upper
bound;

0
Packet 

count

e3 e2e1 e4

25 42 271 323

Normal group Abnormal group

Fig. 5: Example of grouping entries in the request statistics table.

where Algorithm 1 gives the pseudocode. The normal group
contains entries that have relatively fewer packet counts, while
the abnormal group includes entries whose packet counts are
unusually large (i.e., a sign of DrDoS attacks). However, those
requests indicated in entries of the abnormal group may not
necessarily be malicious. Some legitimate hosts might send
many requests to public servers for themselves. Hence, we fur-
ther check if the relationship between IP and MAC addresses
of such an entry (i.e., aIPj and aMACj ) is consistent with that
recorded in the host table. If not, the requests indicated in the
entry are malicious, so the controller changes its label Lj to
one.

Fig. 5 presents an example. The normal group has en-
tries e1 and e3, and the abnormal group contains entries
e2 and e4. Hence, we further check the relationship be-
tween IP and MAC addresses in entries e2 and e4. Sup-
pose that there are entries 〈h1, (10.0.0.1, 00:00:00:00:00:01)〉 and
〈h2, (10.0.0.2, 00:00:00:00:00:02)〉 in the host table. Since the
relationship indicated in entry e4 is inconsistent with that
recorded in the host table, the controller thus sets L4 = 1 (i.e.,
e4’s label).

For each entry ej = 〈(aIPj , aMACj , si, ξk, px), Nj , Lj〉 such that
Lj = 1, the controller issues the flow rule to switch si:

[Match fields] in port=ξk, eth type=0x0800, ip proto=0x11,

ipv4 src=aIPj , eth src =aMACj , udp dst=px

[Priority] αL [Action] Drop

In this way, si will drop subsequent malicious requests (using
UDP port px) sent by the host that claims its IP address to be
aIPj and MAC address to be aMACj .

5.2.4 Remark on the IBM Attack Resisting Module

For IBMs, their malicious requests will also be converted by
NAPT. Hence, attack response packets returned from public
servers can pass through a gateway and be sent to targeted
hosts. Consequently, IBM attacks are trickier than EBM attacks,
and their malicious responses cannot be blocked by gateways.
In this case, the controller shall differentiate between malicious

and legitimate requests sent by hosts in Ĥ. To avoid burden-
ing the controller with a heavy load, instead of making the
controller examine requests in each fixed-length period, we
adaptively adjust the period length (i.e., Tpoll) using Eq. (6). In
the case of no attacks, the controller can gradually extend the
period of time for collecting packet information and examin-
ing requests to reduce its burden. On the other hand, when
detecting an attack, the controller is capable of performing
the next attack detection in a short period of time for a fast
reaction to attacks. To discover IBM attacks, we design a two-
phase detection mechanism by checking for anomalies in the
number of requests and their IP entropy. When many requests
are sent and most of them have the same source IP address, we
infer that an IBM attack has taken place. Thus, the controller
identifies malicious requests and instructs switches to drop
them, thereby stopping attacks.

To identify malicious requests, the controller checks if the
IP-MAC relationship in each entry of the abnormal group in
the request statistics table is consistent with that in the host
table. If not, the entry indicates malicious requests. Here, we
employ MAC addresses for three reasons. First, the IBM attack
resisting module determines whether requests sent from inter-
nal hosts are malicious. In an SDN-based network, obtaining
the MAC address of each internal host is easy, as the host
must attach to a switch (with a functioning layer 2). Second,
the IP-MAC mapping information recorded in the host table
is acquired via ARP. In this case, it is difficult for IBMs to
spoof switches with fake MAC addresses (or otherwise, these
IBMs cannot receive their packets). Third, ARP is a basic
protocol that every host inherently performs. Getting the IP-
MAC relationship for internal hosts using ARP thus incurs no
extra overhead.

5.3 Superiority and Limitations of EC-NTD

Let us discuss the superiority and limitations of our EC-NTD
scheme. From a theoretical perspective, the superiority of EC-
NTD lies in its ability to effectively resist DrDoS attacks across
different network services. Specifically, to launch a DrDoS
attack, a network service that has a dedicated well-known
port must be used. EC-NTD employs UDP ports instead of IP
addresses to recognize service responses replied from public
servers. Therefore, when attackers use new network services
to launch DrDoS attacks, EC-NTD is capable of handing
these attacks by simply specifying their ports in flow rules.
From a practical perspective, EC-NTD’s superiority is that it
takes account of diverse attack sources (i.e., EBMs and IBMs)
and adopts different defense strategies. In this way, EC-NTD
can provide more comprehensive protection against DrDoS
attacks.

Regarding limitations, like all SDN-based solutions, our
EC-NTD scheme relies on OpenFlow-compatible switches
for operation. If replacing all switches in a network with
OpenFlow-compatible switches is difficult (for example, due
to budget considerations), we suggest that gateways should
be replaced by OpenFlow-compatible switches first. This way,
both mechanisms of filtering responses and applying NAPT in
Section 5.1 can be implemented (on gateways) to safeguard
against EBM attacks. However, as the IBM attack resisting
module in Section 5.2 cannot be fully implemented, EC-NTD’s
ability to deal with IBM attacks will be weakened.
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TABLE 7: Tools used to build the simulation.
item tool (software program) version

operating system Ubuntu 16.04
network simulator Mininet 2.3.0

SDN controller Ryu 3.27
switch Open vSwitch 2.8.1

southbound protocol OpenFlow 1.3
attack generation Tcprewrite and Tcpreplay 3.4.4

DNS

EBM

Controller

Targeted host

s5

s4

s2

s1

NTP

EBM

CLDAP
SSDP

SNMP

s3

s6

s7

Internet

IBM

IBM

IBM

IBM

...

SDN-based 

network

Gateway

Fig. 6: Network topology used in the simulation.

6 PERFORMANCE EVALUATION

We develop a simulation to evaluate system performance.
Section 6.1 introduces tools used to build the simulation and
also the network topology. Section 6.2 explains how to generate
DrDoS attacks and gives methods for comparison with our
EC-NTD scheme. In Section 6.3, we measure the number of
response packets that a targeted host receives when different
DrDoS attacks occur. Section 6.4 compares the attack detec-
tion performance of each method. Then, Section 6.5 gives
a comparison between different grouping methods used to
divide entries in the request statistics table (as discussed in
Section 5.2.3).

6.1 Simulation Setups

Table 7 lists tools (i.e., software programs) used to develop the
simulation, which is installed on a virtual machine executing
Ubuntu with four processors and 32 GB of RAM. To construct
the network environment, we employ Mininet, a powerful
network emulation framework, to perform virtualization of
network nodes (e.g., switches and hosts) via a Linux kernel
[32]. To carry out the OpenFlow protocol in Mininet, the
controller and switches are implemented by the Ryu SDN
framework [33] and the Open vSwitch module [34], respec-
tively. Moreover, we adopt Tcprewrite and Tcpreplay tools [35]
to help generate DrDoS attacks.

Fig. 6 gives the network topology. We consider an SDN-
based network with seven OpenFlow-compatible switches,
which is managed by a controller. Switch s1 acts as a gateway.
We pick one host linked to switch s3 as the targeted host. Five
public servers outside the SDN-based network offer DNS, NTP,
CLDAP, SNMP, and SSDP services. Some botnet members will
launch DrDoS attacks on the targeted host. They are located
outside and inside the SDN-based network (i.e., EBMs and
IBMs, respectively), as shown in Fig. 6.

6.2 Attack Settings

To generate DrDoS attacks, we employ the CIC-DDoS2019
dataset, a DDoS evaluation dataset released by the Canadian
Institute for Cybersecurity [36]. This dataset includes PCAP
(packet capture) files that describe multiple DrDoS attacks

TABLE 8: Settings for different DrDoS attacks.

attack stage 1 stage 2 stage 3 EBM:IBM requests
DNS 5s–24s 25s–129s 130s–140s 7:3 11,390
NTP 5s–24s 25s–119s 120s–135s 7:3 17,112

CLDAP 5s–24s 25s–124s 125s–145s 2:8 27,264
SNMP 5s–24s 25s–119s 120s–135s 2:8 26,496
SSDP 5s–24s 25s–124s 125s–143s 5:5 28,416
mixed 5s–24s 25s–124s 125s–143s 4:6 67,652

using different services. To inject attack packets in PCAP files
into our simulated network in Fig. 6, we use the Tcprewrite
tool to modify their source and destination IP addresses (e.g.,
the IP addresses of the targeted host and public servers) and
recalculate checksums in packet headers. Then, we adopt the
Tcpreplay tool to control when to inject attack packets.

As discussed in Section 2.1, five network services with
large bandwidth amplification factors are chosen for launch-
ing DrDoS attacks, including DNS, NTP, CLDAP, SNMP, and
SSDP. In addition to these services, we produce mixed DrDoS
attacks, which contain DrDoS attacks using DNS, SNMP, and
SSDP. To measure the effect of attacks coming from different
sources, we divide the duration of each DrDoS attack into
three stages. In stage 1, only EBMs generate attack packets.
Then, both EBMs and IBMs send malicious service requests
to public servers during stage 2. In stage 3, only IBMs make
fake requests. Table 8 shows the settings for different DrDoS
attacks, including the duration of each stage, the ratio of
requests generated by EBMs and IBMs, and the total number
of requests sent by botnet members. In addition, starting from
the 15th second, the targeted host sends normal requests to
public servers at the speed of five packets per second.

Two SDN-based DrDoS countermeasures mentioned in
Section 3.2 are chosen for comparison. In the DAAD method
[21], when a switch receives service requests from internal
hosts, the controller sets a flow rule for upcoming responses.
DAAD is designed for DNS-based DrDoS attacks, so we mod-
ify flow rules to let it be adapted to DrDoS attacks using
other services. Then, the lightweight NAT-based packet filtering
(LNPF) method [25] applies the NAT protocol to gateways to
drop malicious responses, which replaces the targeted host’s
IP address with an alias IP address in legitimate requests. As
discussed in Section 3.2, these two methods do not need extra
components (e.g., detection agent, honeypot, or symmetric
routing). Hence, we compare our EC-NTD scheme with both
DAAD and LNPF.

6.3 Comparison of Received Responses

We measure the number of service responses received by
the targeted host per second under different DrDoS attacks.
Fig. 7(a) gives the experimental result with a DNS-based
DrDoS attack, where the ratio of attack packets generated by
EBMs and IBMs is set to 7:3. Since LNPF asks the gateway
to drop response packets by default, it performs better than
DAAD. However, both LNPF and DAAD cannot efficiently
defend against attacks coming from IBMs, so the targeted host
receives many DNS responses in stages 2 and 3 (i.e., the 25th–
140th seconds). Thanks to the two-phase detection mechanism,
our EC-NTD scheme can quickly recognize malicious requests
sent by IBMs. Hence, after the 30th second, the targeted host
receives merely legitimate responses (i.e., corresponding to
the requests issued by the targeted host). In other words, all
malicious requests originated inside the SDN-based network
can be correctly discarded by EC-NTD.
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(b) NTP-based DrDoS attack
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(c) CLDAP-based DrDoS attack
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(d) SNMP-based DrDoS attack
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(e) SSDP-based DrDoS attack
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Fig. 7: Comparison of the number of service responses received by the targeted host per second.

Fig. 7(b) shows the experimental result with an NTP-based
DrDoS attack. The ratio of attack packets from EBMs and
IBMs is the same as that in the DNS-based DrDoS attack (i.e.,
7:3), but more NTP requests are generated. Thus, the targeted
host receives more NTP responses per second in Fig. 7(b) as
compared to DNS responses in Fig. 7(a). Moreover, there are
six particularly high peaks (more than 500 NTP responses)
at the 33rd, 51st, 61st, 66th, 76th, and 135th seconds. That is
because botnet members tend to send numerous NTP requests
suddenly in this attack. As can be seen, these six peaks all
occur in DAAD, which reveals that DAAD cannot well resist
such bursty transmissions of NTP requests. On the contrary,
after the 43rd second, there is no peak in our EC-NTD scheme.
This means that all attack packets have been blocked by EC-
NTD.

With a CLDAP-based DrDoS attack, Fig. 7(c) presents the
number of CLDAP responses received by the targeted host. In
this attack, we change the ratio of malicious requests generated
by EBMs and IBMs to 2:8. As many attack packets originate
from the SDN-based network (i.e., IBMs), the targeted host is
flooded with CLDAP responses in DAAD and LNPF, espe-
cially after the 25th second (i.e., the starting time of stage 2).
By applying NAPT to the gateway to drop malicious responses
caused by EBMs and using two-phase detection to identify
forged requests from IBMs, EC-NTD can efficiently block the
CLDAP-based DrDoS attack after the 42nd second.

For the SNMP-based DrDoS attack, the ratio of SNMP
requests from EBMs and IBMs is kept to 2:8. However, IBMs
are divided into two batches for attack in stage 2, where each
batch contains 50% of IBMs. The first batch of IBMs launches
the attack on the 25th second. Then, the second batch of IBMs
participate in the attack after the 55th second. As can be seen
in Fig. 7(d), the performance of DAAD and LNPF does not
change significantly compared to the result in Fig. 7(c). They

cannot effectively block malicious SNMP responses caused
by botnet members. On the other hand, the targeted host
receives some malicious SNMP responses during the 26th–
36th and 57th–67th seconds when using our EC-NTD scheme.
The reason is that the controller checks IBM attacks period by
period in EC-NTD. When a new batch of IBMs partake in the
attack, the controller requires some time to conduct detection.
Despite this, EC-NTD can efficiently block most malicious
SNMP responses compared to DAAD and LNPF.

Then, Fig. 7(e) gives the result when an SSDP-based DrDoS
attack takes place. EBMs and IBMs generate a similar number
of malicious SSDP requests. Moreover, we divide IBMs into
three groups of equal size. These groups of IBMs participate
in the attack in sequence at the 25th, 55th, and 85th seconds
(in stage 2). As mentioned earlier, EC-NTD needs some time
to detect attacks from IBMs. Hence, the targeted host receives
some malicious SSDP responses during the 26th–35th, 56th–
64th, and 86th–95th seconds. As for DAAD and LNPF, they
cannot prevent IBMs from sending malicious SSDP requests to
the public server, so the targeted host continues to be attacked.
The above result demonstrates that our EC-NTD scheme out-
performs both DAAD and LNPF in terms of resisting the
SSDP-based DrDoS attack.

When evaluating countermeasures against DrDoS attacks,
the capacity to cope with malicious requests is also an impor-
tant metric. To measure the capacity and defense effectiveness
of DAAD, LNPF, and EC-NTD, we generate one mixed Dr-
DoS attack, which is essentially a combination of DNS-based,
SNMP-based, and SSDP-based DrDoS attacks. According to
Table 8, the ratio of malicious requests sent by EBMs and
IBMs is set to 4:6, and the number of malicious requests in the
mixed DrDoS attack is much more than other DrDoS attacks.
Fig. 7(f) shows the number of service responses received by
the targeted host per second. In each method, the quantity
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Fig. 8: Comparison of the detection performance of each method.

of received responses substantially increases, as compared to
Fig. 7(a)–(e). Such a phenomenon is particularly obvious in the
DAAD and LNPF methods, which implies that the number of
malicious requests is far beyond their capacity. This reflects the
small capacity of DAAD and LNPF and their low effectiveness
of defenses when faced with numerous malicious requests. In
contrast, for the EC-NTD scheme, the targeted host receives
relatively more malicious responses during three short periods
(i.e., the 26th–36th, 56th–67th, and 86th–95th seconds), but the
number of received responses is significantly lower than that
in DAAD and LNPF. Furthermore, except for the three periods,
EC-NTD is capable of dropping almost all attack packets. The
above result demonstrates that compared to DAAD and LNPF,
the large capacity of our EC-NTD scheme can help safeguard
against the mixed DrDoS attack that generates many malicious
requests more efficiently.

Additionally, time-to-mitigation, as defined by the amount
of time taken by a countermeasure to start defense since
a DrDoS attack begins, is a metric used to evaluate how
fast the countermeasure react to attacks. The significance of
minimizing time-to-mitigation in countering DrDoS attacks are
twofold. First, we can decrease the number of malicious service
responses received and handled by the targeted host to save its
resources. Second, the reduction of attack packets helps reduce
the bandwidth consumption in the SDN-based network and
the burden of packet delivery on switches. Observing from
Fig. 7, LNPF and EC-NTD have significantly shorter time-to-
mitigation than DAAD in stage 1, where only EBMs launch
attacks. This is because both methods drop responses from
public servers by default and enable only legitimate responses
to pass the gateway. When IBMs join attacks (i.e., stages 2 and
3), DAAD and LNPF cannot prevent their malicious requests
from reaching public servers. In other words, their time-to-
mitigation in terms of IBM attacks can be viewed as very long.
On the contrary, EC-NTD can fast identify IBM attacks and
block their malicious requests. In particular, EC-NTD’s time-
to-mitigation is no more than 15s. This result reveals that the
reaction of our EC-NTD scheme to attacks is rapid, which can
significantly reduce damages during attacks.

6.4 Comparison of Detection Performance

We then evaluate the detection performance of DAAD, LNPF,
and EC-NTD. As mentioned in Section 4.3, four metrics,
including accuracy, recall, precision, and F1-score, are used
for performance evaluation. Fig. 8(a) gives the accuracy of
each method, which is calculated by Eq. (2). As can be seen,

all methods have the lowest accuracy in the SNMP-based
DrDoS attack because most malicious requests are generated
by IBMs, and they participate in the attack at different times.
The accuracy of DAAD is between 0.525 and 0.665, while the
accuracy of LNPF is between 0.595 and 0.855. On the other
hand, the accuracy of our EC-NTD scheme is kept above 0.890.
This result reveals that EC-NTD can identify attack packets the
most accurately among all methods. Compared to DAAD and
LNPF, EC-NTD improves 58.53% and 29.49% of accuracy on
blocking attack packets, respectively.

Fig. 8(b) compares the recall of each method, as defined
in Eq. (3). Since the ratio of malicious requests from EBMs
and IBMs is set to 2:8 in both CLDAP-based and SNMP-based
DrDoS attacks (in other words, most malicious requests are
sent by IBMs), DAAD and LNPF have the lowest recall in these
two attacks. This phenomenon implies that DAAD and LNPF
cannot efficiently identify malicious requests generated by
IBMs in the SDN-based network. By using different strategies
to resist attacks launched by EBMs and IBMs, our EC-NTD
scheme can substantially increase the recall. Specifically, EC-
NTD improves recall by 380.73% and 95.52% compared to
DAAD and LNPF, respectively.

Regarding precision, since some attack packets can be
correctly blocked by all methods (i.e., true positives), the
condition of fTP > 0 holds for each method. In addition, none
of these three methods discard legitimate responses, so there
will be no false positives (i.e., fFP = 0). According to Eq. (4),
we derive that Precision = fTP/(fTP+fFP) = fTP/(fTP+0) = 1.
Consequently, the precision of each method is always equal to
one under different DrDoS attacks. To save space, we omit the
result of precision in Fig. 8.

Then, Fig. 8(c) presents the F1-score of each method. Based
on Eq. (5), the F1-score is decided by both recall and precision.
As the precision of each method is the same (i.e., equal to
one), the F1-score will be affected solely by the recall. Hence,
the trend of F1-score in Fig. 8(c) is similar to that of recall in
Fig. 8(b). Apparently, our EC-NTD scheme results in higher
F1-scores than the DAAD and LNPF methods under different
DrDoS attacks. In particular, EC-NTD can improve 215.40%
and 57.52% of the F1-score compared to DAAD and LNPF,
respectively.

6.5 Comparison of Grouping Methods

In the IBM attack resisting module of EC-NTD, we use K-
means to divide entries in the request statistics table into
normal and abnormal groups (referring to Algorithm 1) for
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Fig. 9: Comparison of computing time for different clustering methods.

finding malicious requests. In unsupervised machine learning,
there are some widely used clustering methods, including K-
means [37]. Hence, we choose three methods from them to
compare with K-means:

• Mean-shift assigns data points to groups iteratively by
shifting them towards the highest density of data points
in a region.

• BIRCH (balanced iterative reducing and clustering using
hierarchies) generates a small summary of a large dataset
that retains as much information as possible. Then, it
clusters this small summary instead of the large dataset.

• OPTICS (ordering points to identify the clustering struc-
ture) extracts the clustering structure of a dataset by
identifying the density-connected points.

We replace Algorithm 1 with mean-shift, BIRCH, and OP-
TICS in our EC-NTD scheme and conduct the experiments
in Section 6.4 again. The detection performance of EC-NTD
does not change, which means that using the above clustering
methods has the same effect as K-means. Then, we compare the
computing time for different clustering methods, as shown in
Fig. 9, where the number of entries in the request statistics table
is increased from 1000 to 10000. We can observe that K-means
has the lowest computing time among all methods. Due to its
low computational cost, we select K-means to divide entries in
the request statistics table.

7 CONCLUSION AND FUTURE WORK

In DrDoS attacks, botnet members send many service requests
with forged source IP addresses to public servers, resulting
in a flood of service responses to targeted hosts. With SDN,
we propose the EC-NTD scheme to resist DrDoS attacks. It
applies filtering rules and NAPT to gateways to drop malicious
responses caused by EBMs located in external networks. To
find malicious requests sent by IBMs inside the SDN-based
network, the controller checks for anomalies in requests via a
two-phase detection mechanism. The period length for attack
detection is also adjusted to balance the controller’s load and
detection performance. Based on simulation outcomes, we
identify three significant findings. First, compared to DAAD
and LNPF, EC-NTD can block DrDoS attacks with different
services from EBMs and IBMs more effectively. Second, re-
garding detection performance, EC-NTD performs far better
on accuracy, recall, and F1-score than DAAD and LNPF. Third,
when IBMs launch a batched attack, EC-NTD takes some time
to recognize malicious requests. However, DAAD and LNPF
cannot prevent IBMs from sending malicious requests to public

servers. The above findings confirm that EC-NTD is capable of
better and more comprehensively blocking DrDoS attacks than
existing DAAD and LNPF methods.

In the IBM attack resisting module of EC-NTD, the con-
troller finds malicious requests inside the SDN-based network
using the relationship between IP and MAC addresses. Some
techniques, such as multi-protocol label switching (MPLS), pro-
vide additional details about the origin of a flow. As future
work, we will consider using MPLS to help identify malicious
requests. Furthermore, it deserves further investigation to ap-
ply asset-centric threat modeling approaches [38], like DREAD,
Trike, OCTAVE, or PASTA, to deal with DrDoS attacks.
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