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Efficient Path Planning for UAVs to Recognize
Chimneys with Excessive Exhaust Emissions
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Abstract—The severity of air pollution has prompted increased attention to air pollution monitoring. This paper uses unmanned aerial

vehicles (UAVs) to discover chimneys with excessive exhaust emissions (called 3E-chimneys) in an industrial area. An efficient path-planning

framework is proposed to find the flight path of a UAV for checking out chimneys and determine sampling points (SPs) to collect data. The

framework builds the shortest path to visit chimneys. Four schemes are designed to select SPs around each chimney. The dual-location

sampling (DLS) scheme chooses two SPs for each chimney according to its height. The upward spiral sampling (USS) scheme lets the UAV

spiral upward at each chimney to gather data. In the inverted-U sampling (IUS) scheme, the UAV flies up to visit downwind SPs and then

flies down to pass upwind SPs. The asynchronous isometric sampling (AIS) scheme picks an upwind SP and multiple downwind SPs. On

doing the monitoring task, the UAV checks if some chimneys are skippable (i.e., not 3E-chimneys) using the industrial source complex (ISC3)

model. In this way, the UAV can expedite the monitoring task and save energy. Simulation results reveal that the AIS scheme strikes a good

balance between cost and performance for the monitoring task. The cost is defined by the length of the UAV’s flight path. Four metrics are

adopted to evaluate the performance: accuracy, recall, precision, and F1-score. Moreover, we make a prototype system to show the feasibility

of our framework, which measures the concentration of CO2 gases emitted from small chimneys in a micro-field with a single wind direction

to recognize 3E-chimneys.

Index Terms—Air pollution, chimney, industrial source complex (ISC3), path planning, unmanned aerial vehicle (UAV).

✦

1 INTRODUCTION

A IR pollution is a global problem caused by air pollutants
harmful to the ecosystem and people, like CO2, NO2,

SO2, O3, and particulate matter (PM). Factories, automobiles,
and forest fires are pollution sources. The World Health Orga-
nization indicates that 99% of the global population breathes
air that exceeds guideline limits and contains high levels of
pollutants [1]. Hence, people pay more and more attention to
air pollution. How to efficiently collect data on air quality and
monitor air pollution is a critical issue.

In the past, air pollution monitoring was done by installing
expensive, static monitoring stations on dedicated sites, which
provided a large-range assessment of air quality. However, this
method has three drawbacks [2]. First, since only a few stations
are employed, the spatial resolution of air pollution sampling
would be poor. Second, using static stations lacks flexibility, as
some sites to deploy stations may become superfluous (e.g.,
factories abandoned as a city grew) or be affected by weather
(e.g., changes in seasonal winds). Third, it incurs a high cost
to move the stations to support dynamic monitoring tasks, for
example, detecting air pollution in a suspicious area.

Unmanned aerial vehicles (UAVs) are a mature technology
that has been applied in many fields (e.g., search and rescue,
precision agriculture, and surveillance) [3]. UAVs carry multi-
ple sensing devices to collect data and wireless transceivers for
communications. Compared to ground-based sensors, using
UAVs as flying platforms for sensors brings many benefits, in-
cluding offering 3D monitoring, adjusting altitude, bypassing
obstacles, and quickly reaching destinations [4].

This paper locates air pollution sources via UAVs, focusing
on chimneys with excessive exhaust emissions (referred to as
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3E-chimneys) in an industrial area. The ISC3 (industrial source
complex, version 3) model [5] is applied to assess pollutant
dispersion in the air. We develop a path-planning framework
to schedule the UAV’s flight path and select sampling points
(SPs) for it to collect data at each chimney. The framework
creates the shortest path to visit chimneys and then singles out
SPs using four schemes that consider air pollutant dispersion.
The dual-location sampling (DLS) scheme finds two SPs for each
chimney based on its height. The upward spiral sampling (USS)
scheme asks the UAV to fly along an upward spiral to gather
data. The inverted-U sampling (IUS) scheme makes the UAV fly
up to pass downwind (DW) SPs and fly down to visit upwind
(UW) SPs. The asynchronous isometric sampling (AIS) scheme
picks a UW SP and some DW SPs. With ISC3, the UAV checks
if some chimneys can be skipped (i.e., not 3E-chimneys) to
reduce the task execution time and save energy.

Through simulations, we measure the cost and perfor-
mance with which the UAV conducts its monitoring task. The
cost is defined as the length of the UAV’s flight path. Four
metrics are used to measure performance: accuracy, recall,
precision, and F1-score. To show the feasibility of our path-
planning framework, we made a prototype by integrating
sensing devices and a ZigBee module on an Arduino board.
The prototype is used to monitor the concentration of CO2

gases emitted from small chimneys in a micro-field with one
single wind direction for identifying 3E-chimneys.

Our contributions are threefold:

• We study the problem of searching for pollution sources
(i.e., 3E-chimneys). This is important to pollution con-
trol (as we can stop 3E-chimneys from continuing to
pollute) but has not been efficiently addressed yet.

• Our framework takes air pollutant dispersion into ac-
count (based on ISC3), so it can select suitable positions
for a UAV to sample data to identify 3E-chimneys. Do-
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ing so facilitates the UAV’s execution of the monitoring
task.

• Unlike existing solutions, which aim to reduce the
UAV’s flight path, our framework shortens the path
while keeping the recognition accuracy of 3E-chimneys.
Thus, it can strike a good balance between cost and
performance.

The rest of this paper is organized as follows: Section 2
depicts ISC3, Section 3 surveys related work, and Section 4
defines the problem. We propose the path-planning framework
in Section 5. Sections 6 and 7 give the simulation study and
prototyping experience. Section 8 concludes this paper.

2 ISC3 POLLUTANT DISPERSION MODEL

ISC3 is one variation of the Gaussian plume model used to
formulate how pollutants diffuse and settle in the air. It takes
account of various emission sources, such as point, line, area,
and volume sources. ISC3 can analyze many characteristics of
pollutants, including the downwash effect, both sedimentation
and dry deposition of particles, and limited terrain adjustment.

The Pasquill stability category has seven classes that repre-
sent atmospheric turbulence [6]: (A) extremely unstable, (B)
moderately unstable, (C) slightly unstable, (D) neutral, (E)
slightly stable, (F) moderately stable, and (G) extremely stable.
Here, we adopt class E for a general case.

Let an emission source of exhaust gas (EG) be located at the
origin. Then, the pollutant concentration at a position (x, y, z)
in the 3D space can be assessed as follows:

ϑ(x, y, z) = (QiBϕyϕz)/µ, (1)

where Qi denotes the EG emission rate, B is a coefficient for
disintegration (used when the pollutant has a half-life period,
like SO2), and µ is the wind speed. In Eq. (1), ϕy and ϕz are
dilution factors in horizontal and vertical directions:

ϕy =
exp

[

−y2/2σ2
y

]

√
2πσy

, (2)

ϕz =
exp

[

−(z − h)2/2σ2
z

]

+ exp
[

−(z + h)2/2σ2
z

]

√
2πσz

,

where h is the height of a smoke plume. Moreover, σy and σz
are dispersion parameters in horizontal and vertical directions:

σy =
ε1x

(1 + ε2x)ε3
and σz =

ε4x

(1 + ε5x)ε6
. (3)

For class E, we set empirical constants as ε1 = 0.11, ε2 = 0.004,
ε3 = 0.5, ε4 = 0.08, ε5 = 0.0015, and ε6 = 0.5.

The plume’s height h depends on the chimney’s height hi,
the downwash effect ∆W, and the rise ∆R in the plume:

h = hi +∆W +∆R. (4)

Let vi be the gas exit velocity (GEV), the speed at which gases
leave a chimney. If vi < 1.5µ, the downwash effect will occur,
which can be estimated by ∆W = 4ri(vi/µ− 1.5), where ri is
the chimney’s radius.

Two methods are used to measure the rise in the plume. In
the buoyancy-dominated method, the rise is estimated by

∆R = 3

√

(Fbx2)/µ3
G, (5)

where µG denotes the wind speed at ground level. In Eq. (5),
Fb is a parameter for buoyancy flux. More specifically, Fb =
(1 − ρs/ρ)gr

2
i vi, where ρs is the density of target gas, ρ is the

density of ambient air, and g is the gravitational acceleration
(g = 9.8m/s2). In the momentum-dominated method, the rise is
calculated by

∆R = (3Fm × sin(x
√
Ω/µ))/(λµ

√
Ω). (6)

Here, Ω is a stability parameter, λ = 1/3 + µ/vi, and Fm is a
parameter for momentum flux, where Fm = (ρs/ρ)r

2
i v

2
i .

Let Ts and Ta denote the temperatures of the target gas and
ambient air, respectively. We compute their difference ∆T and
the crossover temperature difference Tc:

∆T = Ts − Ta and Tc = 0.015982× Tsvi
√
Ω. (7)

The stability parameter is derived by Ω = ε7 × g/Ta, where ε7
is an empirical constant (usually set to 0.02). Based on ∆T and
Tc, we can decide which method is used to measure rise ∆R

in the plume. If ∆T > Tc, the buoyancy-dominated method is
used; otherwise, we adopt the momentum-dominated method.

3 RELATED WORK

In this section, we divide related work into three categories:
1) deploying static sensor networks to monitor air quality; 2)
performing air quality monitoring with the help of pedestrians
and cars; and 3) using UAVs to detect air pollution.

3.1 Monitoring Using Static Sensor Networks

The study [7] measured PM concentration by sensors. Data
from sensors was stored on a Raspberry Pi and sent to a server
via Wi-Fi. Li et al. [8] developed a PM2.5 monitoring system.
They placed sensors based on local weather, terrain, and land
use. The work [9] investigated the optimal sensor deployment
to capture pollution coverage with different weather condi-
tions and ensure network connectivity. Sun et al. [10] placed
multi-type sensors to monitor air quality in a Gaussian spatial
field. They considered placing all types of sensors or at least
one type of sensor on each chosen site.

Some studies predicted air quality. Four regression meth-
ods were employed in [11] for prediction: decision tree, ran-
dom forest, gradient boosting, and neural network. With a
machine learning method called CatBoost, the work [12] fore-
casted air quality and warned people of the upcoming severe
pollution.

However, using static sensor networks to monitor air pol-
lution has two disadvantages [13]. First, it requires deploying
many sensors to collect data, incurring a high cost. Second, the
sensor network cannot be directly reused when the monitoring
task is moved to another place.

3.2 Monitoring with the Help of Pedestrians and Cars

Mobile crowdsensing relies on population density to monitor en-
vironments. Without deploying sensor networks, pedestrians
carry mobile devices with sensors for monitoring [14]. Dutta
et al. [15] designed a monitoring system to let people share
collected data in the cloud, allowing them to view pollution
footprints and air quality. In [16], pedestrians carried sensors to
measure the temperature, humidity, and air pollutants. Sensing
data was used to draw air quality and temperature maps.
A personal monitoring system was used in [17] to observe
polluted gases (e.g., NO2), ultraviolet intensity, and ambient
noises. In [18], a set of locations were chosen for pedestrians to
sample data. The concentration of air pollution in unselected
locations was inferred by compressive sensing.
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TABLE 1: Comparison between the prior work using UAVs for monitoring
air pollution and our work (GP: Gaussian plume).

work dispersion source SP path monitoring
model finding selection reduction accuracy

[25]
√

[26]
√ √

[27] GP
√ √

[28]
√ √ √

[29]
√

[30]
[31] GP

√ √ √
ours ISC3

√ √ √ √

Equipping cars with sensors to monitor air quality has been
discussed. The study [19] proposed two sensing scenarios: 1)
buses moved on fixed routes to gather data, and 2) drivers put
sensors on cars to monitor air quality. Hu et al. [20] used cars
to carry sensors to monitor CO, NO2, and O3 concentration.
Roadside monitors helped calibrate the readings of sensors
on cars. In [21], static sensors provided a whole view of air
quality, while mobile sensors (by cars) gathered more accurate
data on designated locations. Both [22] and [23] divided a
monitoring area into grids and adjusted the reporting rates
of cars in each grid to save on message costs and maintain
monitoring accuracy. Chen et al. [24] exploited spatiotemporal
correlation in the distribution of air pollutants to derive values
at non-sensed locations in areas with sparse data.

However, the above methods have some limitations. First,
the mobility of pedestrians and cars is uncontrollable. Asking
them to move to specific locations to sample data is difficult.
Second, some places are inaccessible to pedestrians and cars
(e.g., hazardous or prohibited regions). Third, these methods
provide only 2D monitoring of air quality. Some applications,
like finding 3E-chimneys, require 3D monitoring.

3.3 Monitoring Using UAVs

Using UAVs to carry sensors for monitoring conquers the
limitations mentioned in Section 3.2. They can fly to places
not reachable by pedestrians or cars and offer 3D monitoring.
In [25], a UAV carrying sensors flew to measure the concen-
tration of air pollutants. The study [26] took aerial panoramic
images using a UAV and estimated an air quality index (AQI)
using the haze pictures. Yang et al. [27] designed a Gaussian
plume model based on the neural network to describe particle
dispersion and collected data via a UAV to draw AQI maps.
Chhikara et al. [28] proposed a federated learning scheme for
a swarm of UAVs to monitor air quality. Sensing data was fed
to a convolutional neural network to predict AQI. Hu et al.
[29] proposed an air quality monitoring system using ground
and UAV sensors. Hoque et al. [30] put IoT devices on UAVs
to support monitoring services (e.g., detecting air pollution).

Le et al. [31] adopted UAVs to find 3E-chimneys with the
minimum search time. They picked two SPs for each chimney,
whose heights were computed using a Gaussian plume model.
To save the search time, an interference graph was employed
to remove some chimneys from the UAV’s visiting list. This
method, called the interference graph-based algorithm (IGBA), has
to know the GEV of each chimney to get the right height for its
SPs. Nevertheless, GEVs cannot be known in practice, which
may cause inaccurate monitoring results.

Table 1 compares the prior work using UAVs for moni-
toring air pollution with our work. To estimate air pollutant
dispersion, both [27] and [31] employ Gaussian plume models,

while our work adopts the ISC3 model (suitable for industrial
areas). For source finding, the work [28] identifies the region
with the highest AQI. Both [31] and our work search for
3E-chimneys. Except for [30], others select SPs for UAVs to
gather data. As can be seen, the prior work considers either
reducing the UAV’s flight path or raising monitoring accuracy.
Compared to them, our work takes both path reduction and
monitoring accuracy into consideration. This distinguishes our
work from the prior work and presents the novelty of our
work.

4 PROBLEM FORMULATION

We are given a set Ĉ of n chimneys in the industrial area with
no obstacles or buildings higher than the lowest chimney in

Ĉ. Each chimney ci ∈ Ĉ is modeled as one cylinder with a
height of hi and a radius of ri. Moreover, ci’s location is a
given parameter. The weather is sunny, and there is a stable
and unidirectional wind source with a speed of µ. Chimney ci
emits EG at an unknown rate (denoted by Qi). If Qi > Qth, ci
is a 3E-chimney, where Qth is the statutory threshold.

To identify 3E-chimneys in Ĉ, a UAV ψ carrying gaseous
sensors flies to check out chimneys and sends the collected
data to a nearby ground station for analysis1. As EG emitted
from chimneys may be caustic or have a high temperature, ψ
cannot be right above or very close to a chimney. Instead, ψ
shall be away from each chimney at a minimum safe distance
dMS to avoid damage.

Depending on the judgment and the true answer, the mon-

itoring result for each chimney ci ∈ Ĉ has four combinations:
1) True positive: ci is judged as a 3E-chimney, and it indeed
is. 2) True negative: ci is judged as not a 3E-chimney, and it
indeed is not. 3) False positive: ci is judged as a 3E-chimney,
but it actually is not. 4) False negative: ci is judged as not a
3E-chimney, but it actually is. Let fTP, fTN, fFP, fFN be the
number of true positives, true negatives, false positives, and
false negatives for the monitoring results of all chimneys.

Then, our problem asks how to find a set P̂i of SPs for each
chimney ci and decide a flight path Γ for UAV ψ such that the
cost of the monitoring task is minimized and the performance
is maximized. It can be expressed mathematically as follows:

minimize L̃(Γ), (8)

maximize (fTP + fTN)/(fTP + fTN + fFP + fFN), (9)

maximize ΛR = fTP/(fTP + fFN), (10)

maximize ΛP = fTP/(fTP + fFP), (11)

maximize 2(ΛR × ΛP)/(ΛR + ΛP) (12)

subject to

hmin ≤ hi ≤ hmax, ∀ci ∈ Ĉ, (13)

rmin ≤ ri ≤ rmax ∀ci ∈ Ĉ, (14)

vmin ≤ vi ≤ vmax, ∀ci ∈ Ĉ, (15)

Qmin ≤ Qi ≤ Qmax ∀ci ∈ Ĉ, (16)

distance(ψ, ci) ≥ ri + dMS, ∀ci ∈ Ĉ, (17)

zi ∈ {0, 1}, ∀ci ∈ Ĉ, (18)

|P̂i| ≥ 1 if zi = 1, ∀ci ∈ Ĉ, (19)

distance(pj , ci) ≥ ri + dMS, ∀pj ∈ P̂i, ∀ci ∈ Ĉ. (20)

1. Refer to [32] for how to offer reliable communications between the
UAV and ground stations.
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TABLE 2: Summary of acronyms and notations.
(a) Summary of acronyms

acronym full name
3E-chimney chimney with excessive exhaust emissions

AIS asynchronous isometric sampling
DLS dual-location sampling

DW/UW downwind/upwind
EG exhaust gas

GEV gas exit velocity
IGBA interference graph-based algorithm
ISC3 industrial source complex (version 3)
IUS inverted-U sampling
SP sampling point

TSP traveling salesman problem
UAV unmanned aerial vehicle
USS upward spiral sampling

(b) Summary of notations
notation definition

Ĉ set of chimneys in the industrial area (|Ĉ| = n)

P̂D
i , P̂U

i sets of DW and UW SPs for chimney ci (P̂D
i ∪ P̂U

i = P̂i)
hi, ri height and radius of ci
Qi, Qth ci’s EG emission rate and the statutory threshold
dMS minimum safe distance

hs distance between two adjacent SPs in P̂D
i or P̂U

i
µ wind speed
m number of pairs of DW/UW SPs in USS and IUS
p0 point of departure of UAV ψ

px → py straight line between two points px and py
px y py circular arc between px and py (radius: ri + dMS)
px # py an upward spiral from px to py
L̃(·) length of a path

ΓIC, Γi inter-chimney path and the path to visit SPs in P̂i

h̃ maximum height difference between two chimneys

d̃ maximum distance between two adjacent chimneys

In Eq. (8), the objective is to minimize ψ’s flight path (i.e.,
cost), where L̃(·) signifies the length of a path. The objectives
in Eqs. (9), (10), (11), and (12) are to maximize the accuracy,
recall, precision, and F1-score (i.e., performance metrics). For
constraints, Eqs. (13) and (14) put upper and lower bounds on
the height and radius of each chimney ci, where hi and ri are
given parameters. Eqs. (15) and (16) impose upper and lower
bounds on ci’s GEV and EG emission rate, where vi and Qi

are unknown. Eq. (17) gives the constraint of a minimum safe
distance. In Eq. (18), variable zi is used to indicate whether ci
is scheduled to be visited by ψ. If so, zi = 1; otherwise, zi = 0.
Eq. (19) means that if ci is visited by ψ, at least one SP shall
be chosen. In Eq. (20), the choice of each SP must consider the
constraint of a minimum safe distance.

Table 2 summarizes the acronyms and notations.

Remark 1 (Multiple UAVs). Though our discussion aims at
one UAV, it can be extended to the case of multiple UAVs.

To do so, we divide all chimneys in Ĉ into groups using
K-means, such that the number of groups is equal to the
number of UAVs. Then, each UAV takes charge of checking
out the chimneys in a group. Since the chimneys in each
group would be close to each other (due to the property of
K-means [33]), the flight path of each UAV can be reduced.

Remark 2 (Wardens). Some studies [34], [35] consider hinder-
ing wardens (i.e., adversaries) from detecting data trans-
missions of UAVs via the technique of covert communica-
tion. Our work aims to utilize UAVs to collect data for find-
ing 3E-chimneys, not to provide secure communications for
UAVs. Hence, how to resist the attacks of wardens is out of
the paper’s scope. We will leave this issue for future work.

5 THE PROPOSED PATH-PLANNING FRAMEWORK

Given the point of departure p0 of UAV ψ, the path-planning
framework contains five steps:

1. Create the shortest path ΓS for ψ to start from p0, visit all

chimneys in Ĉ, and return to p0.

2. For each chimney ci ∈ Ĉ, we find a set P̂i of SPs for ψ to

collect data and decide a path Γi to visit SPs in P̂i.
3. UAV ψ checks out chimneys based on the sequence on

ΓS. On visiting a chimney ci, ψ flies on path Γi and gathers

data at each SP in P̂i.
4. Let cj be the next chimney to be visited. UAV ψ checks if

cj is not a 3E-chimney using the ISC3 model. If so, ψ skips cj
and visits its next chimney. Otherwise, ψ flies to visit cj .

5. Repeat steps 3 and 4 until each chimney in Ĉ has been
visited or skipped.

In step 1, we can employ an approximation solution to the
traveling salesman problem (TSP) [36] to compute path ΓS. For
steps 2 and 3, we propose four sampling schemes to find set

P̂i of SPs and decide path Γi, namely the DLS, USS, IUS,
and AIS schemes, as detailed in Sections 5.1, 5.2, 5.3, and
5.4, respectively. Regarding step 4, we discuss how to judge
whether a chimney can be skipped in Section 5.5.

Suppose that Ĉ′ is the set of chimneys skipped by step 4.

The solution set of SPs is
⋃

ci∈Ĉ\Ĉ′ P̂i. Let Γ′
S be the updated

shortest path by removing the chimneys in Ĉ′ from ΓS. The
final flight path for UAV ψ will be

Γ = ΓIC ∪ {Γi | ∀ci ∈ Ĉ \ Ĉ′}, (21)

where ΓIC is the inter-chimney path. It is the union of 1) the
path from p0 to the first SP of the first chimney on Γ′

S, 2) each
path from the last SP of a chimney to the first SP of its next
chimney on Γ′

S, and 3) the path from the last SP of the last
chimney on Γ′

S to p0. Then, Section 5.6 discusses the design
rationale and the computational complexity. In Section 5.7, we
analyze the distance between each sampling scheme (i.e., a
suboptimal solution) and the optimal solution.

5.1 Dual-Location Sampling (DLS) Scheme

Air pollutants spread from the UW side to the DW side, so
UAV ψ shall fly from the DW side to the UW side. Fig. 1(a)
shows candidate SPs for ψ to collect data around a chimney

ci. We select a set P̂D
i of DW SPs, where each SP pDi,a ∈ P̂D

i

is on ci’s DW side and has a distance dMS from the boundary
extension line of ci, as shown by the yellow dots in Fig. 1(a).

The distance between two adjacent SPs in P̂D
i is hs. Moreover,

we choose a set P̂U
i of UW SPs, where each SP pUi,b ∈ P̂U

i is
on ci’s UW side and has a distance dMS from the boundary
extension line of ci, as shown by the blue dots in Fig. 1(a). The

distance between two adjacent SPs in P̂U
i is hs.

To avoid being damaged by EG, as UAV ψ flies from a DW

SP pDi,a ∈ P̂D
i to a UW SP pUi,b ∈ P̂U

i , it follows a circular arc
(denoted by pDi,a y pUi,b) whose radius is ri + dMS. Otherwise,
ψ directly flies from a point px to another point py (as denoted
by px → py), where a point is an SP or p0. If there are obstacles
between px and py , we can adopt the Dijkstra-based method
in [37] to find the shortest path for ψ to fly from px to py that
bypasses obstacles.

For chimney ci, DLS picks a DW SP pDi,1 and a UW SP pUi,1
with the same height of hi+∆DLS. Depending on EG, there are
three cases to decide ∆DLS. In case 1, the smoke plume trends
up when EG is lighter than the air. Thus, we set ∆DLS = hs to
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Fig. 1: Examples of our proposed sampling schemes.

make UAV ψ fly higher than ci’s height. In this way, ψ can be
more likely to sample data in a region of the plume where EG
concentration is high. In case 2, the plume trends down as EG
is heavier than the air. Hence, we set ∆DLS = −hs to let ψ fly
lower than ci’s height to help it more likely sample data at a
high-concentration region of EG in the plume. In case 3, we set
∆DLS = 0, so ψ’s flying altitude is equal to ci’s height.

Fig. 1(b) presents an example for DLS (case 2), where the
visiting sequence of chimneys is c1 ⇒ c2 ⇒ c3. The inter-
chimney path is ΓIC = {p0 → pD1,1} ∪ {pU1,1 → pD2,1} ∪ {pU2,1 →
pD3,1} ∪ {pU3,1 → p0}. Based on Eq. (21), ψ’s flight path is p0 →
pD1,1 y pU1,1 → pD2,1 y pU2,1 → pD3,1 y pU3,1 → p0.

After collecting the EG concentration at SPs pDi,1 and pUi,1
for chimney ci, we estimate ci’s EG emission rate Qi. If Qi

overtakes the statutory threshold Qth, ci is judged as a 3E-
chimney. The details will be discussed later in Section 5.5.

Suppose that UAV ψ visits chimneys in Ĉ by a sequence of
cx1

⇒ cx2
⇒ · · · ⇒ cxn

. Lemma 1 gives the maximum length
of inter-chimney path ΓIC in DLS, and Theorem 1 shows the
maximum length of ψ’s flight path when using DLS.

Lemma 1. Let d̃ be the maximum distance between two ad-
jacent chimneys on path ΓS , and let h̃ be the maximum
difference in height between two chimneys. The maximum

length of ΓIC in DLS is lIC
DLS

= (n− 1)
√

(d̃− 2dMS)2 + h̃2 +
β1, where β1 is the length sum of paths p0 → pDx1,1

and
pUxn,1

→ p0.

Proof: Observing Fig. 1(b), the flight length between two
adjacent chimneys ci and cj is L̃(pUi,1 → pDj,1) =

√

α2
1 + α2

2.

We have α1 = d̃i,j − 2dMS, where d̃i,j is the distance between
ci and cj . Since all chimneys have the same ∆DLS value, α2

is the height difference between ci and cj . The worst case is

that no chimneys are skipped. Thus, we obtain that L̃(ΓIC) =
∑n−1

k=1 L̃(p
U
xk,1

→ pDxk+1,1
) + L̃(p0 → pDx1,1

) + L̃(pUxn,1
→ p0) ≤

(n− 1)
√

(d̃− 2dMS)2 + h̃2 + β1.

Theorem 1. With DLS, UAV ψ’s flight path has a length no
longer than lIC

DLS
+ nπ(rmax + dMS).

Proof: The worst case is that Ĉ′ = ∅ in Eq. (21) (i.e., UAV
ψ has to check out every chimney). Thus, the flight length for
ψ in DLS is L̃(ΓIC) +

∑n
k=1 L̃(p

D
xk,1

y pUxk,1
) = L̃(ΓIC) +

∑n
k=1 π(rxk

+ dMS) ≤ lICDLS + nπ(rmax + dMS).

5.2 Upward Spiral Sampling (USS) Scheme

To improve monitoring performance, USS selects m pairs of
DW/UW SPs for each chimney ci, where m ≥ 3. The distance
between two adjacent DW or UW SPs is equal. To do so, we
use a vector V = [ξ, ξ− 1, ξ− 2, · · · , ξ− (m− 1)] to determine
the height of each SP, where ξ ∈ Z

+ and ξ < m−1. The heights
of the k-th pair of DW/UW SPs (i.e., pDi,k and pUi,k) are set to
hi−hs×V [k]. Since ξ ≥ 1, we ensure that some SPs are lower
than ci. Besides, as ξ < m − 1, some SPs must be higher than
ci. In this way, UAV ψ can collect data in the smoke plume
more comprehensively.

To gather ci’s data, beginning with SP pDi,1, UAV ψ visits
DW and UW SPs alternately. Hence, path Γi is pDi,1 y pUi,1 y

pDi,2 y pUi,2 y · · · y pUi,m, which forms an upward spiral
(as denoted by pDi,1 # pUi,m). On flying along Γi, ψ compares
the EG concentration sampled at each pair of DW/UW SPs
and employs the method in Section 5.5 to check if ci is a 3E-
chimney. If so, there is no need to further collect ci’s data, and
ψ can directly fly to the next chimney to reduce the flight path.
Otherwise, ψ flies to visit the next pair of ci’s DW/UW SPs to
collect data for judging ci.

Fig. 1(c) gives an example, where m = 4 and ξ = 1. Each
chimney ci has four pairs of DW/UW SPs by default, whose
heights are hi − hs, hi, hi + hs, and hi + 2hs. Since UAV ψ
infers that c2 is a 3E-chimney after sampling data at pD2,3 and
pU2,3, ψ stops collecting c2’s data and flies to c3. That is why c2
has only three pairs of DW/UW SPs. Then, ψ’s flight path is
p0 → pD1,1 # pU1,4 → pD2,1 # pU2,3 → pD3,1 # pU3,4 → p0.
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For USS, Lemma 2 analyzes the maximum length of inter-
chimney path ΓIC, and Theorem 2 shows the upper bound on
the length of ψ’s flight path.

Lemma 2. The maximum length of ΓIC in USS is lIC
USS

= (n −
1)
√

(d̃− 2dMS)2 + ̺2 + β2, where ̺ = h̃ + (m − 1)hs and

β2 is the length sum of paths p0 → pDx1,1
and pUxn,m

→ p0.

Proof: In Fig. 1(c), the flight length of UAV ψ between
adjacent chimneys ci and cj is L̃(pUi,m → pDj,1) =

√

α2
1 + α2

3,

where α1 = d̃i,j − 2dMS. Since each chimney has m pairs of
SPs and ψ flies from ci’s last UW SP to cj ’s first DW SP,

we have α3 = h̃i,j + (m − 1)hs, where h̃i,j is the height

difference between ci and cj . Thus, ΓIC’s length is L̃(ΓIC) =
∑n−1

k=1 L̃(p
U
xk,m

→ pDxk+1,1
)+L̃(p0 → pDx1,1

)+L̃(pUxn,m
→ p0) ≤

(n− 1)
√

(d̃− 2dMS)2 + ̺2 + β2.

Theorem 2. In USS, the length of UAV ψ’s flight path is below
lIC
USS

+mn
√

h2s + [2π(rmax + dMS)]2.

Proof: In USS, the worst case takes place when ψ has to

sample data at each pair of DW/UW SP for all chimneys in Ĉ.
Thus, the flight path has a length of L̃(ΓIC)+

∑n
k=1 L̃(p

D
xk,1

#

pUxk,m
) = L̃(ΓIC) +

∑n
k=1m

√

h2s + [2π(rxk
+ dMS)]2 ≤ lICUSS +

mn
√

h2s + [2π(rmax + dMS)]2.

5.3 Inverted-U Sampling (IUS) Scheme

Like USS, IUS selectsm pairs of DW/UW SPs for each chimney
ci. However, instead of flying in an upward spiral, UAV ψ flies
up to visit each DW SP and then flies down to visit each UW SP.
In other words, path Γi is pDi,1 → pDi,2 → · · · → pDi,m y pUi,m →
pUi,m−1 → · · · → pUi,1, which forms an inverted-U shape. In this
way, we can save the time that ψ spends hovering over each
chimney and reduce its flight path.

Fig. 1(d) gives an example, where m = 4. The flight path is
p0 → pD1,1 → · · · → pD1,4 y pU1,4 → · · · → pU1,1 → pD2,1 → · · · →
pD2,4 y pU2,4 → · · · → pU2,1 → pD3,1 → · · · → pD3,4 y pU3,4 →
· · · → pU3,1 → p0. Theorem 3 analyzes the maximum length of
the flight path in IUS.

Theorem 3. In IUS, the length of the flight path is at most lIC
DLS

+
n(π(rmax + dMS) + 2(m− 1)hs).

Proof: Let us compare the flight paths in DLS and IUS,
as shown in Fig. 1(b) and (d). They are almost the same, except
that IUS makes UAV ψ additionally fly on two paths pDi,1 →
· · · → pDi,m and pUi,m → · · · → pUi,1 for each chimney ci. The
length of each path is (m − 1)hs. Based on Theorem 1, the
maximum length of the flight path in DLS is lICDLS + nπ(rmax +
dMS). Since Ĉ has n chimneys, the length of the flight path in
IUS is at most lICDLS + n(π(rmax + dMS) + 2(m− 1)hs).

Note that UAV ψ shall collect data at all DW SPs of each
chimney ci. If ψ collects data at a UW SP pUi,k (k > 1) and
judges that ci is a 3E-chimney (by comparing the data collected
at DW SP pDi,k), residual UW SPs (i.e., pUi,k−1

, · · · , pUi,1) can be
skipped to reduce ψ’s flight path.

5.4 Asynchronous Isometric Sampling (AIS) Scheme

Based on IUS, AIS makes two improvements: 1) decreasing SPs
for each chimney without significantly degrading monitoring
performance and 2) reducing the path for UAV ψ to fly from
one chimney to the next.

Improvement 1. After EG is discharged from a chimney,
its spreading range expands as the distance from the chimney

increases. Thus, we shall choose more DW SPs to help UAV
ψ collect more data within the EG’s spreading range. On the
other hand, the number of UW SPs can be reduced to shorten
the flight path. Hence, for each chimney ci, AIS selects m
DW SPs pDi,1, · · · , pDi,m and one UW SP pUi,y , where y = 1 or
y = m (depending on ψ’s flight direction on the DW side, as
discussed in Improvement 2). To check if ci is a 3E-chimney,
ψ compares the EG concentration sampled at pDi,k and pUi,y , for
k = 1...m. In other words, the UW SP pUi,y is taken as the
reference for comparison with each DW SP.

Improvement 2. In IUS, UAV ψ always flies up on the DW
side of each chimney. When there is only one UW SP, doing
so may increase ψ’s flight path. Take Fig. 1(e) as an example.
When ψ flies from c1 to c2, if IUS’s policy is used, ψ flies
on path pU1,4 → pD2,1. In fact, there is a shorter path, namely
pU1,4 → pD2,4. Hence, AIS makes two modifications:

(1) If pDi,1 is the first DW SP to be visited, ψ flies up on ci’s
DW side (i.e., pDi,1 ⇒ pDi,m), and we set y = m. Otherwise, ψ
flies down (i.e., pDi,m ⇒ pDi,1), and we set y = 1. For the first
chimney on ΓS, ψ flies up on its DW side.

(2) Suppose that the last SP of ci to be visited is pa. When
ψ flies from ci to the next chimney, say, cj , we pick an SP pb
from four candidate SPs of cj by

pb = argminpb∈{pDj,1,p
D
j,m,pUj,1,p

U
j,m} L̃(pa, pb), (22)

to minimize the path for ψ to fly from ci to cj .
Fig. 1(e) shows an example, where m = 4. The flight path

is p0 → pD1,1 → · · · → pD1,4 y pU1,4 → pD2,4 → · · · → pD2,1 y

pU2,1 → pU3,1 y pD3,1 → · · · → pD3,4 → p0. Evidently, ψ’s flight
direction and the locations of UW SPs may adaptively change.
We give the maximum inter-chimney path length and flight
length in AIS in Lemma 3 and Theorem 4, respectively.

Lemma 3. The maximum inter-chimney path length in AIS is

lIC
AIS

= (n − 1)
√

(d̃− 2dMS)2 + h̃2 + β3, where β3 is the

length sum of paths p0 → pDx1,1
and pz → p0. Here, pz is the

last SP to be visited at chimney cxn
(i.e., the last chimney

on ΓSP).

Proof: In Fig. 1(e), the flight length between chimneys ci
and cj is

√

α2
1 + α2

2, where α1 = d̃i,j−2dMS. By Eq. (22), pa and
pb have the same height index2, so their height difference (i.e.,
α2) is h̃i,j . Like the proof in Lemma 1, the maximum length of

ΓIC is (n− 1)
√

(d̃− 2dMS)2 + h̃2 + β3.

Theorem 4. In AIS, the maximum length of the flight path is
lIC
AIS

+ n(π(rmax + dMS) + (m− 1)hs).

Proof: Let us compare the flight paths in IUS and AIS,

as shown in Fig. 1(d) and (e). For each chimney ci ∈ Ĉ, UAV
ψ does not need to fly on path pUi,m → · · · → pUi,1, as there
is only one UW SP in AIS. Thus, compared to IUS, the length
of Γi is reduced by (m − 1)hs in AIS. Based on Theorem 3
and Lemma 3, the maximum length of flight path in AIS is
lICAIS + n(π(rmax + dMS) + (m− 1)hs).

5.5 Judgment on 3E-Chimneys

To check if a chimney ci is a 3E-chimney, UAV ψ compares
the EG concentration sampled at a DW SP pd (denoted by ϑd)
and that at a UW SP pu (denoted by ϑu) for ci. Specifically,
ϑu can be viewed as ci’s ambient EG concentration (without
ci’s effect), and ϑd is the sum of ci’s ambient EG concentration

2. If pa = pUi,1, pb = pDj,1 or pUj,1. If pa = pUi,m, pb = pDj,m or pUj,m.
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and the concentration of EG emitted from ci. Hence, the EG
concentration caused by ci is ϑd−ϑu. Based on Eq. (1), we can
deduce ci’s EG emission rate by

Qi = µ(ϑd − ϑu)/(ϕyϕzB). (23)

To calculate dilution factors ϕy and ϕz in Eq. (2), we employ
pd’s coordinates as the reference and set the plume’s height to
h = hi + hs. Then, ci is judged as a 3E-chimney if Qi > Qth,
where Qth is the statutory threshold.

Generally speaking, a nearby chimney cj on ci’s UW side
can affect the EG concentration at ci’s UW SPs. If cj emits
much EG (i.e., 3E-chimney), the EG concentration sampled at
ci’s UW SPs would be unusually high. On the contrary, if the
difference between the EG concentration at ci’s UW SPs and
the environmental EG concentration is small, cj is very likely
not a 3E-chimney. In this case, UAV ψ can skip cj (for collecting
its data) to reduce the flight path.

Suppose that cj is the next chimney to ci on path ΓS. If cj
is on ci’s UW side and d̃i,j ≤ Dth, UAV ψ estimates cj ’s EG
emission rate after collecting data at all of ci’s UW SPs. Here,
the condition d̃i,j ≤ Dth indicates that cj is close enough to
ci, so the emission of EG by cj has a great impact on the EG

concentration at ci’s UW SPs. Given set P̂U
i of ci’s UW SPs,

let ϑk be the EG concentration sampled at each SP pUi,k ∈ P̂U
i .

Then, we can estimate cj ’s EG emission rate as follows:

QE
j = min

∀pU
i,k

∈P̂U
i

{

µ(ϑk − ϑ̄)/(ϕyϕzB) | ϕyϕzB > 0
}

, (24)

where ϑ̄ is the environmental EG concentration3. When using
ϑk to do calculations, we take pUi,k’s coordinates as the refer-
ence for computing dilution factors ϕy and ϕz . In Eq. (24), the
condition ϕyϕzB > 0 ensures that the emission of EG by cj is
correlated with the EG concentration at SP pUi,k. However, if no

SP in P̂U
i fulfills this condition, we set QE

j = ∞, which means
that cj ’s EG emission rate cannot be estimated by using the
EG concentration sampled at ci’s UW SPs. Then, UAV ψ infers
that cj is not a 3E-chimney if

QE
j ≤ Qth −Qadj, (25)

where Qadj is used to reflect the error of estimation in Eq. (24)
and Qadj < Qth/2.

5.6 Design Rationale and Computational Complexity

Let us discuss the rationale of our path-planning framework.
It creates path ΓS via a TSP approximation solution to decide

the sequence for UAV ψ to visit all chimneys in Ĉ. Then, we
design four schemes to select SPs for each chimney, which is
the framework’s core. DLS aims to minimize ψ’s flight path
by picking two SPs for each chimney. Due to only a few SPs,
the monitoring performance in DLS may be low. Thus, USS
selects m pairs of DW/UW SPs for each chimney and lets
ψ alternately collect data at DW and UW SPs, so the flight
path around each chimney forms an upward spiral. However,
these spirals lead to a long flight path. Hence, IUS asks ψ to
visit DW SPs and then UW SPs to reduce the path length. AIS
improves IUS by reducing UW SPs and shortening the path as
ψ flies between chimneys. Hence, AIS can shorten the flight
path without significantly degrading performance.

3. To obtain ϑ̄, UAV ψ can sample data at a location where there is no
chimney nearby on the UW side of the industrial area.

When executing the monitoring task on a chimney, UAV
ψ checks if the next chimney is obviously not a 3E-chimney
(using the ISC3 model) at the same time. In this way, some
chimneys can be removed from ψ’s visiting list, which further
reduces the flight path. Theorem 5 analyzes the time complex-
ity of our path-planning framework.

Theorem 5. Let TTSP(n) be the amount of time taken by a
TSP approximation solution to find the shortest path to
visit n nodes. The worst-case time complexity of our path-
planning framework is TTSP(n) + TSM, where TSM = O(n)
if the DLS scheme is used to find SPs and TSM = O(nm)
otherwise.

Proof: In the path-planning framework, step 1 uses a TSP
approximation solution to find path ΓS to visit n chimneys

in Ĉ, which takes TTSP(n) time. In steps 2 and 3, UAV ψ
flies to sample data at the SPs for each chimney ci and uses
Eq. (23) to compute its EG emission rate. Since DLS picks a
pair of DW/UW SPs for ci, it spends O(1) time. On the other
hand, USS, IUS, and AIS select m DW SPs for ci, so they take
O(m) time to run steps 2 and 3. For step 4, ψ checks if the
next chimney, say, cj is not a 3E-chimney based on the data

collected at ci’s UW SPs (i.e., P̂U
i ). This is done by estimating

cj ’s EG emission rate QE
j using Eq. (24). Because DLS, USS,

IUS, and AIS pick 1, m, m, and 1 UW SPs for ci, they take

O(1), O(m), O(m), and O(1) time to execute step 4. As Ĉ
contains n chimneys, TSM is equal to n(O(1) + O(1)) = O(n),
n(O(m) + O(m)) = O(nm), n(O(m) + O(m)) = O(nm),
n(O(m) + O(1)) = O(nm) when DLS, USS, IUS, and AIS are
respectively used. Hence, the theorem is proven.

5.7 Distance to the Optimal Solution

We investigate the distance between each sampling scheme
(i.e., a suboptimal solution) and the optimal solution. Let LX

and Lopt denote the flight lengths of a sampling scheme X and
the optimal solution. The distance is defined as the maximum
difference between LX and Lopt.

Like DLS, the optimal solution selects a pair of DW/UW

SPs (with the same height) for each chimney ci ∈ Ĉ. Suppose
that no chimneys are excluded by step 4 in the path-planning
framework. Then, the optimal solution has the same inter-
chimney path (i.e, ΓIC) as DLS. Based on Eq. (4), the height of
an SP for ci in the optimal solution is hi +∆W +∆R (i.e., the
plume’s height). On the other hand, the height of an SP for ci in
DLS is hi+∆DLS, where ∆DLS = hs, −hs, or 0. Hence, to sample
data at two SPs pDi,1 and pUi,1 for a chimney ci, the maximum
difference between the flight lengths in the optimal solution

and DLS is 2(∆W + ∆R + hs). Since Ĉ has n chimneys, the
distance between DLS and the optimal solution is 2n(γ + hs),
where γ = max{∆W +∆R | ∀ci ∈ Ĉ}.

To obtain the distance for USS, IUS, and AIS, we compute
the maximum gap between the flight lengths in each sampling
scheme and DLS. For convenience, we denote this as LX−LDLS.
Besides, we set π(rmax + dMS) = Φ.

For USS, based on Theorems 2 and 1, we obtain that LUSS−
LDLS = (lICUSS +mn

√

h2s + 4Φ2) − (lICDLS + nΦ) = lICUSS − lICDLS +
n(m

√

h2s + 4Φ2 −Φ). Thus, the distance between USS and the
optimal solution is lICUSS− lICDLS+n(m

√

h2s + 4Φ2−Φ)+2n(γ+
hs).

For IUS, according to Theorems 3 and 1, we can derive that
LIUS − LDLS = (lICDLS + n(Φ + 2(m − 1)hs)) − (lICDLS + nΦ) =
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TABLE 3: Simulation parameters.
Environmental parameters:
area size 2 km× 2 km
ambient temperature (Ta) 25◦C
wind speed (µ) 1 m/s
EG type CO2 (concentration: ϑ̄ = 400 ppm)
molecular weight air: 29 g/m3, EG: 44 g/m3

Chimney-related parameters:
number 20, 40, 60, 80, 100
height (hi) 25 m or 30 m
radius (ri) 0.5 m or 1 m
EG temperature (Ts) 30◦C
GEV (vi) 2 m/s or 3 m/s
EG emission rate (Qi) 50,000∼500,000 mg/s
Parameters of sampling schemes:
minimum safe distance (dMS) 5 m
interval between SPs (hs) 1 m
number of SP pairs (m) 20
statutory threshold (Qth) 400,000 mg/s
Qadj in Eq. (25) 130,000 mg/s

2n(m− 1)hs. Thus, the distance between IUS and the optimal
solution is 2n(m− 1)hs + 2n(γ + hs) = 2n(mhs + γ).

For AIS, with both Theorems 4 and 1, we derive that LAIS−
LDLS = (lICAIS + n(Φ + (m − 1)hs)) − (lICDLS + nΦ) = lICAIS −
lICDLS + n(m − 1)hs. Hence, the distance between AIS and the
optimal solution is lICAIS − lICDLS + n(m − 1)hs + 2n(γ + hs) =
lICAIS − lICDLS + n(2γ + (m+ 1)hs).

6 SIMULATION STUDY

Our simulation is written in C++. Table 3 lists parameters. We
consider a 2 km× 2 km industrial area with some chimneys
randomly distributed. For the Pasquill stability category, class
E (i.e., slightly stable) is used, where the ambient temperature
is 25◦C. Wind blows along the X-axis with a speed of 1 m/s.
We choose CO2 as EG, whose environmental concentration is
400 ppm. The molecular weights of air and EG are 29 g/m3

and 44 g/m3, respectively.
To study the effect of chimney density, we raise the number

of chimneys from 20 to 100. For each chimney, its height is
25 m or 30 m, and its radius is 0.5 m or 1 m. Hence, there are
four types of chimneys with different heights and radii. The
temperature of EG emitted from chimneys is 30◦C. Though
both GEV (affecting the plume’s height) and EG emission rate
(used for 3E-chimney judgment) are given in Table 3, these two
parameters are unknown when scheduling the flight path and
finding SPs for a UAV.

To avoid being damaged, the UAV has to keep a chimney
away from at least 5 m (i.e., the minimum safe distance dMS).
For the USS, IUS, and AIS schemes, we set m = 20 for each
chimney (i.e., 20 pairs of DW/UW SPs), where the interval hs
between SPs is 1 m. The statutory threshold (i.e., Qth) is set
at 400,000 mg/s. If a chimney’s EG emission rate exceeds Qth,
it is a 3E-chimney. Moreover, Qadj is set to 130,000 mg/s to
reflect the error of estimation in Eq. (24).

The TSP approximation solution in [38] is used to find the
shortest path ΓS to visit all chimneys. We evaluate the cost and
performance of different sampling schemes. As mentioned in
Section 4, the cost is defined as the length of the flight path,
and the performance is assessed via the metrics of accuracy,
recall, precision, and F1-score. We also choose IGBA [31], a
cutting-edge solution to find 3E-chimneys, for comparison. As
discussed in Section 3.3, IGBA relies on the knowledge of the
GEV (i.e., vi) of each chimney to get the correct heights of SPs.
In practice, GEV is an unknown parameter, so we set vi to

2.5 m/s (i.e., the average GEV of chimneys). Besides, we give
the optimal solution as a reference for comparison. It picks two
SPs for each chimney based on the plume’s height. Evidently,
the optimal solution is theoretical, as the plume’s height cannot
be known. In addition to cost and performance, we also study
the effects of the mechanism to skip chimneys (discussed in
Section 5.5) and some parameters. In each experiment, we
repeat the simulation 100 times and take the average.

6.1 Comparison of Cost

Fig. 2(a) gives the path length using different schemes. The
path length increases with more chimneys since the UAV has
to collect data at more SPs. IGBA and DLS have a path length
similar to the optimal solution, as they pick two SPs for each
chimney. USS results in a much longer path length than others,
and its length increases rapidly when the number of chimneys
grows. That is because USS asks the UAV to spiral upward at
each chimney to sample data. As analyzed in Theorem 2, doing
so significantly lengthens the flight path. IUS lets the UAV
fly in an inverted-U shape to avoid spirals, thereby greatly
reducing path length. As can be seen, the difference between
IUS’s length and the lengths of IGBA, DLS, and the optimal
solution is small. By decreasing UW SPs, AIS can reduce the
path length as compared to IUS.

Using the optimal solution as a benchmark, the percentage

increase in path length by a scheme X is LX−Lopt

Lopt
× 100%,

where LX and Lopt denote the path lengths of scheme X

and the optimal solution. A lower percentage increase means
that scheme X requires a lower cost. On average, IGBA, DLS,
USS, IUS, and AIS have percentage increases of 0.07%, 0.09%,
279.37%, 18.43%, and 3.68%. This result reveals that IGBA,
DLS, and AIS can efficiently save on monitoring costs.

Fig. 2(b) shows the number of SPs chosen to collect data.
The more chimneys there are, the more SPs are selected. In
general, IGBA, DLS, and the optimal solution choose two SPs
for each chimney (excluding those chimneys skipped), so they
have a similar number of SPs. USS and IUS select m pairs of
DW/UW SPs for each chimney. However, USS lets the UAV
check if the current chimney ci is a 3E-chimney whenever it
has sampled data at each pair of DW/UW SPs. If so, the UAV
leaves ci and flies to the next chimney. In IUS, the UAV has
to visit all DW SPs of each chimney (that is, only some UW
SPs can be skipped). Hence, IUS picks more SPs than USS.
Despite this, IUS has a much shorter path than USS (referring
to Fig. 2(a)), as the spiral flight in USS makes the flight path
pretty long. AIS selects m DW SPs and one UW SP for each
chimney, so it has fewer SPs than USS and IUS.

6.2 Comparison of Performance

Fig. 2(c) gives the accuracy of each scheme, which indicates
the proportion of true positives and true negatives (i.e., right
answers) as defined in Eq. (9). Both IGBA and DLS select
only two SPs for each chimney. Without knowing the correct
plume’s height at each chimney, their accuracy is below 0.83.
On the other hand, USS, IUS, and AIS perform almost as well
in accuracy. Since they pick enough DW SPs for sampling data,
even if the plume’s height cannot be known, the accuracy of
these three schemes can stay above 0.90.

In Fig. 2(d), we measure the recall of each scheme. Based on
Eq. (10), the recall cares about whether there is a miss without
considering false alarms. The recall of IGBA and DLS is lower
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Fig. 2: Comparison of the monitoring cost and performance.

TABLE 4: Performance reduction percentage for each scheme.
metric IGBA DLS USS IUS AIS

accuracy 17.50% 18.06% 9.20% 8.97% 8.92%
recall 75.59% 76.26% 30.50% 29.18% 29.42%

precision 23.84% 24.02% 14.05% 13.73% 13.65%
F1-score 63.24% 64.03% 23.21% 22.28% 22.40%

than 0.25, meaning that many 3E-chimneys are missed. On the
contrary, the recall of IUS, USS, and AIS is close to 0.70. The
result reveals that they can identify much more 3E-chimneys
than IGBA and DLS.

Then, Fig. 2(e) compares the precision of different schemes.
Unlike the recall, the precision pays attention to false positives
(referring to Eq. (11)). In IGBA and DLS, the precision rises as
the number of chimneys grows, where the maximum precision
is 0.836. On the other hand, the precision of USS, IUS, and AIS
is stable and stays above 0.85. This implies that USS, IUS, and
AIS can efficiently reduce false positives, as compared to IGBA
and DLS, especially with fewer chimneys.

Fig. 2(f) gives the F1-score of each scheme. According to
Eq. (12), the F1-score considers both recall and precision. The
maximum F1-score in IGBA and DLS is 0.3826 (due to their
low recall). For USS, IUS, and AIS, their average F1-scores are
0.7593, 0.7686, and 0.7674, respectively. Evidently, they perform
much better than IGBA and DLS.

In Fig. 2(c)–(f), the accuracy, recall, precision, and F1-score
of the optimal solution are close to one but lower than one.
These slight differences are caused by skipping chimneys. The
details will be discussed later in Section 6.3.

Let MX and Mopt denote the values of a performance met-
ric (i.e., accuracy, recall, precision, and F1-score) in a scheme
X and the optimal solution. Taking the optimal solution as a
benchmark, the performance reduction percentage of scheme X

is
Mopt−MX

Mopt
×100%. A lower performance reduction percentage

implies that scheme X performs better in that metric. Table 4
presents the performance reduction percentages of different
schemes. Since IGBA and DLS let the UAV sample data at
only two SPs for each chimney, they perform the worst in all
metrics. The performance of AIS is not much different from
that of USS and IUS, which means that it is safe for AIS to
reduce UW SPs. According to the discussion in Section 6.1
and the result in Table 4, we conclude that AIS can strike a
good balance between monitoring cost and performance as
compared to other schemes.

6.3 Effect of Skipping Chimneys

As mentioned in Section 5.5, after the UAV samples data at
UW SPs of a chimney ci, it also estimates the EG emission rate
QE

j of another chimney cj using Eq. (24), where cj meets three
conditions: 1) cj is the next chimney on path ΓS; 2) cj is located
on ci’s UW side; and 3) the distance between ci and cj is below

Dth (i.e., d̃i,j ≤ Dth). If QE
j satisfies the condition in Eq. (25),

the UAV infers that cj is not a 3E-chimney and thereby skips
cj . In the simulation, we set Dth to 300 m.

Fig. 3(a) shows the percentage of chimneys skipped. When
the density of chimneys is low (i.e., 20 chimneys), the distance
between two chimneys is large. So, the condition d̃i,j ≤ Dth

is relatively difficult to achieve. On the other hand, when the
density of chimneys is high (e.g., 80 chimneys or more), the
EG concentration sampled at ci’s UW SPs is more susceptible
to other 3E-chimneys. In other words, cj becomes less likely to
be judged as not a 3E-chimney. Hence, this percentage first in-
creases and then decreases as the number of chimneys grows.
The peak of each scheme occurs with 40 and 60 chimneys.

In Fig. 3(a), since the optimal solution, DLS, and AIS let the
UAV sample data at only one UW SP for each chimney, their
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Fig. 3: Effects of skipping chimneys and parameters.

percentages are high (i.e., 12.6%–16.8%). Both USS and IUS
choose m UW SPs for each chimney. Due to the calculation of
QE

j by Eq. (24), it becomes relatively difficult for QE
j to meet

the condition in Eq. (25). That explains why both USS and IUS
have lower percentages. Moreover, USS lets the UAV sample
data at fewer UW SPs than IUS (referring to Fig. 2(b)). Hence,
more chimneys are skipped in USS than in IUS. Specifically,
USS skips 10.5%–14.9% of chimneys, while IUS skips only
9.4%–13.8% of chimneys.

In the path-planning framework, only when cj is obviously
not a 3E-chimney can cj be skipped. Hence, we are concerned
about false negatives, where a false negative occurs when cj
is judged as not a 3E-chimney, but cj actually is. Fig. 3(b)
shows the false negative rate (FNR) of skipped chimneys, whose
trend is similar to that in Fig. 3(a). When more chimneys are
skipped, the FNR increases accordingly. Observing Fig. 3(b),
the FNR stays below 0.05 for all schemes. This result reveals
that our proposed ISC3-based mechanism to skip chimneys in
Section 5.5 is accurate.

6.4 Effect of Parameters

For each chimney, USS and IUS select m pairs of DW/UW
SPs and AIS picks m UW SPs. Besides, the distance between
two adjacent SPs is hs. Hence, we study the effect of m and
hs on the cost and performance of USS, IUS, and AIS. Three
combinations are considered: (m,hs) = (20, 1), (10, 2), and
(5, 4). Therefore, the sampling altitude range for each chimney
can be kept at m× hs = 20.

Fig. 3(c) shows the effect of m and hs on path length. In
IUS and AIS, the UAV flies along a beeline to visit all DW
(or UW) SPs of each chimney, as shown in Fig. 1(d) and (e).

Since the sampling altitude range stays the same, changing m
and hs has no effect on path length in IUS and AIS. Thus, in
Fig. 3(c), we only show the result of IUS and AIS by setting
(m,hs) = (20, 1). On the contrary, changing m and hs has
a great impact on path length in USS, because USS makes
the UAV fly on an upward spiral to collect data. Based on
Theorem 2, the length of a spiral can be significantly decreased
by reducing m, thereby shortening the UAV’s flight path.
Despite this, USS’s path length is still longer than that of IUS
and AIS.

In Fig. 3(d), (e), and (f), we present the effect of m and hs
on the F1-scores of USS, IUS, and AIS, respectively. As can be
seen, reducing m (and raising hs) decreases F1-scores, as the
UAV samples data at fewer SPs for each chimney. This result
shows that using a large m value (i.e., increasing the number
SPs) can help improve monitoring performance.

7 PROTOTYPING EXPERIENCE

To show the feasibility of our path-planning framework, we
made a prototype system to measure the concentration of CO2

gases emitted from small chimneys in a micro-field, as shown
in Fig. 4(a). Nine 12-inch computer fans are used to generate a
steady airflow, where the wind blows along the X-axis and has
a speed of 1 m/s. Acrylic tubes are used to simulate chimneys.
The radius of a chimney is 0.5 cm, and its height can be 20 cm
or 30 cm. Each chimney is connected to the CO2 gas cylinder
(i.e., the EG source) through an air pipe, where its EG emission
can be adjusted using a control valve.

To implement the UAV, one Arduino board [39] is used to
integrate a CO2 sensor and an XBee module [40], as shown
in Fig. 4(b). The CO2 sensor uses non-dispersive infrared and
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Fig. 4: A prototype system for identifying 3E-chimneys.

has an effective range of 0–50000 ppm. The XBee module offers
low-powered ZigBee communications, and its communication
range is at most 120 m. The UAV glides along tracks to check
out each chimney. Besides, the CO2 sensor can be hung down
to collect data at different heights.

Fig. 4(c) gives the micro-field and the coordinates of chim-
neys. The micro-field is a 40 cm×40 cm square where nine
locations are placed with outlets for air pipes. We select three

TABLE 5: Performance of different schemes using the prototype.
metric IGBA DLS USS IUS AIS

accuracy 0.9444 0.93333 0.9704 0.9733 0.9726
recall 0.9000 0.86667 1.0000 1.0000 1.0000

precision 0.9310 0.92857 0.9184 0.9259 0.9240
F1-score 0.9153 0.89655 0.9574 0.9615 0.9605

locations from them to place chimneys. There are five types
of chimney placement, as Fig. 4(d) shows. Chimney C1 is a
3E-chimney whose GEV is 2 m/s. The GEV of chimney C2 is
0.1 m/s. Chimney C3 does not discharge CO2. In other words,
C2 and C3 are not 3E-chimneys. Moreover, we consider three
cases for chimney height: 1) the height of every chimney is
30 cm; 2) C1’s height is 30 cm and other chimneys have a
height of 20 cm; and 3) C1’s height is 20 cm and other chimneys
have a height of 30 cm. Hence, there are 5 (placement) ×
3 (height) combinations. We conduct 15 experiments, where
each experiment uses a different combination of placement and
height. Each experiment is repeated 30 times.

Since the ISC3 model considers large-scale fields, we cannot
use Eq. (23) to deduce a chimney’s EG emission rate based on
the EG concentration sampled at its DW and UW SPs (i.e., ϑd
and ϑu). Instead, we check if ϑd − ϑu > 5000ppm. If so, the
chimney is inferred to be a 3E-chimney. Besides, we do not
use the mechanism in Section 5.5 to skip chimneys. Hence, the
UAV collects data at every chimney for judgment. For the USS,
IUS, and AIS schemes, we set m = 3 and hs = 2 cm. In other
words, each chimney has three pairs of DW/UW SPs and the
distance between two adjacent SPs is 2 cm.

Table 5 compares the performance of IGBA and our four
proposed sampling schemes (i.e., DLS, USS, IUS, and AIS)
by conducting experiments using the prototype. In IGBA, we
set vi = 2m/s (i.e., the GEV of a 3E-chimney). Since IGBA
guesses chimney C1’s GEV correctly, it performs better than
DLS. However, IGBA and DLS pick only a pair of DW/UW
SPs to collect data for each chimney, so their performance is
not good compared to other schemes. On the other hand, USS,
IUS, and AIS perform similarly, where they can recognize 3E-
chimneys more efficiently, especially in recall and F1-score.
This phenomenon illustrates the need to select multiple pairs
of SPs for each chimney, which helps reduce false positives and
false negatives.

8 CONCLUSION

Air pollution is one serious problem, and finding pollution
sources is a challenge. This paper searched 3E-chimneys in an
industrial area using UAVs. We proposed the path-planning
framework to schedule a UAV’s flight path and choose SPs
around each chimney for the UAV to collect data. Specifically,
the shortest path was created to visit chimneys. We designed
the DLS, USS, IUS, and AIS schemes to select suitable SPs. On
executing the monitoring task, the UAV checked if the next
chimney was not a 3E-chimney by the ISC3 model. If so, the
UAV skipped that chimney to reduce the flight path. Through
simulations, we showed that USS, IUS, and AIS performed
better than IGBA, a cutting-edge method to find 3E-chimneys,
especially in recall and F1-score. AIS had a shorter flight path
than USS and IUS, so it better balanced cost and performance.
In addition, we developed a prototype system to measure the
concentration of CO2 gases emitted from small chimneys in a
micro-field to demonstrate the viability of our framework.
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For future work, the warden issue mentioned in Remark 2
deserves further investigation. UAVs conduct covert commu-
nications based on the partial location information of a war-
den. In this case, the flight path of a UAV needs to be adjusted
to not only collect data from the selected SPs but also prevent
the warden from detecting its data transmissions.
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