
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 1

Collaborative Defense Against Hybrid Network
Attacks by SDN Controllers and P4 Switches

You-Chiun Wang and Pin-Yu Su

Abstract—Software-defined networking (SDN) uses a controller to manage the network. Applying SDN to resist distributed denial-of-service

flood (DDoS-F) attacks receives attention. A controller identifies attack flows and gives rules to switches to discard attack packets. Doing so

may cause the controller to be busy and impact SDN performance. P4 switches, on the other hand, can recognize DDoS-F attacks without

controller involvement. However, some non-DDoS attacks like keylogging and data theft cannot be well identified by P4 switches due to their

local views. Thus, the paper makes the controller and P4 switches cooperate to defend against hybrid network attacks that include both

DDoS-F attacks and non-DDoS attacks. To this end, we propose a collaborative defense by control and data planes (CD2P) framework. P4

switches (i.e., data plane) find DDoS-F packets by using an entropy-aware detection scheme that can adjust thresholds based on the network

status. They also report flow information (excluding DDoS-F flows) to the controller. With the deep learning technique, the controller (i.e.,

control plane) analyzes these reports to discover non-DDoS attacks. Hence, the controller can focus on detecting these attacks without the

disturbance of many DDoS-F packets. Experimental results reveal that CD2P can quickly block DDoS-F attacks and better identify keylogging

and data theft. Our contribution is to propose a novel framework for the controller and P4 switches to collaborate to defend against hybrid

network attacks efficiently.

Index Terms—DDoS flood, deep neural network (DNN), hybrid network attack, P4, software-defined networking (SDN).

✦

1 INTRODUCTION

D ISTRIBUTED denial-of-service (DDoS) has always been a
thorny network attack problem, and the frequency of its

occurrence increases year by year. In a DDoS flood (DDoS-F)
attack, a victim (i.e., host or server) is deluged with numerous
requests in an attempt to exhaust the victim’s resources and
prevent legitimate requests from being served. DDoS-F attacks
are usually performed by a botnet with compromised devices
like computers and IoT devices whose security is breached
[1]. This makes a conventional firewall hard-pressed to resist
DDoS-F attacks, as an attack’s packets originate from many
sources that could be irrelevant. Even worse, the IP addresses
and ports of packets can be forged to deceive the firewall.

The software-defined networking (SDN) technique displaces
the control plane from switches to a central entity, namely the
controller, to facilitate network management. More concretely,
users can write programs on the controller to implement their
policies or algorithms, and the controller then guides switches
to process packets accordingly by installing flow rules [2]. In
addition, the controller can query switches about the number
and types of packets handled by them to monitor the network
status. Due to its flexibility, using the SDN technique to defend
against DDoS-F attacks attracts considerable attention [3].

However, DDoS-F attacks could degrade SDN perfor-
mance. In particular, when an attack is in progress, some
switches receive numerous packets from different flows. Since
switches have no appropriate flow rules to process these
packets, they need to ask the controller for instructions [4].
Besides, some countermeasures (discussed in Section 3) make
the controller check packets to reduce false alarms. Inevitably,
the controller is busy replying to switches or identifying DDoS-

The authors are with the Department of Computer Science and Engineer-
ing, National Sun Yat-sen University, 80424 Kaohsiung, Taiwan (e-mail:
ycwang@cse.nsysu.edu.tw; turningpoint1125@gmail.com).

F packets. Since the controller takes charge of coordinating the
network, the performance of SDN may be degraded.

On the other hand, P4 (standing for programming protocol-
independent packet processors) is a domain-specific language
developed for network devices (e.g., switches) [5]. P4 allows
users to specify how these devices cope with packets, thereby
giving them the ability to independently judge packets. Several
studies indicate that DDoS-F packets can be efficiently identi-
fied by P4 switches without the controller’s help. However,
some cunning attacks (e.g., keylogging and data theft) cannot
be well recognized by each P4 switch due to its local view.
Such attacks need to be identified by the controller, which can
obtain information from all switches.

With the above motive, this paper lets the controller and P4
switches work together in the defense mechanism. We consider
hybrid network attacks that include DDoS-F attacks and non-
DDoS attacks. P4 switches act as the first-line defense against
DDoS-F attacks and filter out their malicious packets. Without
the disturbance from DDoS-F flows, the controller can enable a
more efficient analysis of non-DDoS attacks. Suggesting using
the controller and P4 switches together in a hybrid setup is not
simply an observation. Instead, there will be three challenges:

1. There is variability in the network, and some P4
switches may see only parts of the attack packets. With-
out coordinating switches (e.g., using the controller),
how can each switch accurately identify attack packets
by itself?

2. The P4 switches store flow information and report it
to the controller for analysis. Due to the bandwidth
and resource constraints of switches, how to save their
communication, computation, and storage overheads is
critical.

3. To detect non-DDoS attacks, the machine learning (ML)
technique is applied to the controller to analyze reports
sent by P4 switches. How can we improve the analysis

2 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

efficiency, for example, using one ML model to recog-
nize multiple non-DDoS attacks?

To address the three challenges, we develop a collaborative
defense by control and data planes (CD2P) framework. For chal-
lenge 1, we propose an entropy-aware detection (EAD) scheme
in CD2P for P4 switches to identify DDoS-F packets, where
the thresholds on IP entropies will be adaptively adjusted de-
pending on the network status. Compared to existing entropy-
based methods that use fixed thresholds, EAD helps switches
adapt themselves to changes in the network. Hence, even
though some switches see just parts of the attack packets,
they can identify attack packets accurately. For challenge 2,
P4 switches weed out DDoS-F packets using the EAD scheme,
which has low computation and memory complexity. Then,
switches select features of non-DDoS-F flows to be recorded
(and reported) to diminish communication, computation, and
storage overheads. Moreover, switches report flow information
only when the controller is not busy. Doing so avoids over-
loading the controller. For challenge 3, the controller performs
data processing on the reports of switches to expedite analysis.
Afterward, we construct a shared deep neural network (DNN)
model for the controller to conduct analysis to recognize two
non-DDoS attacks, including keylogging and data theft. With
the above designs, our CD2P framework can not only facilitate
the cooperation of P4 switches and the controller but also help
them better perform their tasks.

The rest of this paper is organized as follows: Section 2
gives background knowledge, Section 3 surveys related work,
and Section 4 offers the system model. We detail the CD2P
framework in Section 5 and discuss some issues in Section 6.
The performance evaluation is presented in Section 7. Section 8
concludes this paper and discusses future work.

2 PRELIMINARY

2.1 SDN Architecture

SDN logically divides the network into application, control,
and data planes. The application plane contains user appli-
cations, where they can interact with a controller in the con-
trol plane via the northbound application programming interface
(API). This API obeys the representational state transfer style
and offers a programmable interface to help users monitor and
change network states. The controller communicates with the
switches in the data plane through the southbound API, where
OpenFlow is the dominant protocol [6].

In OpenFlow, each switch maintains flow tables to store the
instructions issued by the controller. The controller constructs
a secure connection via TLS1 with the switch and adds flow
entries to its flow tables. Each flow entry has match fields to
let the switch check whether a packet meets specific conditions.
If so, the switch follows the entry’s instructions to process the
packet. OpenFlow also defines group tables and meter tables
to provide more sophisticated management of traffic flows [7].

2.2 P4 Language

P4 is a programming language used to control the behavior
of switches. With P4, users can define their parsers, protocols,

1. [Protocol acronyms] ACK: acknowledgement, DNS: domain name
system, FTP: file transfer protocol, HTTP: hypertext transfer protocol, IP:
Internet protocol, SSH: secure shell, SYN: synchronize, TCP: transmission
control protocol, TLS: transport layer security, UDP: user datagram proto-
col.

and operations to process packet headers (known as protocol
independence) [5]. P4 is also target-independent, meaning that
the compiler takes the switch’s capability into consideration as
it converts a P4 program into a target-dependent binary. Thus,
users need not know the underlying hardware of switches. In
addition, P4 supports reconfigurability, where both the parser
and processing logic can be redefined at runtime.

A P4 program usually contains three components: 1) Header
definitions delineate packet formats and name the fields within
a packet. Customized header names and arbitrary-length fields
are allowed in P4. 2) Parsers are finite-state machines that
extract headers from the incoming byte streams. For example,
a parser extracts the source, destination, and type fields. Then,
it does further extraction based on the value of the type field
(e.g., ipv4 or ipv6). 3) Match-action tables are similar to flow
tables in OpenFlow. P4 treats the tables as generic, which lets
users add their match-action rules through the control plane.

2.3 DDoS-F Attacks

DDoS attacks target the network, transport, and application
layers, where they drain a victim’s bandwidth or resources.
There are various types of DDoS attacks, and DDoS-F attacks
are the predominant type [8].

Three kinds of DDoS-F attacks are widely used. In a TCP
SYN flood, the attacker sends myriads of SYN packets to the
victim. This forces the victim to be busy replying (i.e., sending
SYN-ACK packets), thereby consuming bandwidth and TCP
ports. In a UDP flood, a mass of UDP packets are sent to the
victim. The victim will spend most of its computing resource
on looking over small packets (with 64 bytes) or reassembling
large packets (with 1500 bytes). In an HTTP flood, the victim is
overwhelmed with HTTP GET or POST requests. Eventually,
the victim will be saturated with requests and cannot respond
to normal traffic from legitimate users.

In addition to generating numerous packets, DDoS-F at-
tacks have some characteristics in terms of IP addresses [3].
Specifically, a few hosts are selected as victims to enhance
the attack’s strength. Hence, the destination IP addresses of
attack packets are typically convergent. Regarding source IP
addresses, there are two cases. First, since an attack could
be carried out by a botnet of many compromised devices
or the attacker may forge many IP addresses, attack packets
will reveal source IP address diversity. Second, an attack may
originate from merely a few sources, or the attacker could
spoof a few IP addresses. This makes the source IP addresses of
attack packets convergent. So, a few destination IP addresses
along with too many or too few source IP addresses is a
symptom of a DDoS-F attack.

2.4 Non-DDoS Attacks

Unlike DDoS-F attacks that breach a victim’s availability by
flooding it with packets, non-DDoS attacks may invade the
victim for some purposes, like making it a botnet member [1]
or stealing user data [9]. Non-DDoS attack flows are usually
disguised as legitimate ones, and they send a similar number
of packets as normal flows. As discussed in Section 3, most
DDoS-F countermeasures are based on checking flow anoma-
lies (e.g., sending many packets or diverse IP addresses), so
they cannot be applied to identify non-DDoS attacks.

In this work, we consider two common non-DDoS attacks:
keylogging and data theft. Keylogging (also called keystroke
logging) secretly records input signals from a keyboard into

COLLABORATIVE DEFENSE AGAINST HYBRID NETWORK ATTACKS BY SDN CONTROLLERS AND P4 SWITCHES 3

a computer so that the user does not know [10]. Keylogging
capabilities are usually added to different pieces of malware,
such as the Zeus Trojan, to hijack personal or financial data.
On the other hand, data theft (or information theft) involves
unauthorized transfers of personal or financial data. In prac-
tice, an attacker can tunnel other protocols (e.g., FTP and SSH)
via DNS queries and responses to pilfer data from the victim
[9].

3 RELATED WORK

Various SDN-based methods are proposed to counter DDoS-F
attacks. In [11], when a host sends over a predefined number
of SYN packets but does not yet complete their handshaking
procedures, the host is considered an attacker of the TCP SYN
flood. Tung et al. [12] let the controller monitor UDP packets
passing through the ports of each switch. Once a port has much
more received packets than sent packets, they judge that a UDP
flood is underway. The work [13] installs an intrusion pre-
vention system in the controller to analyze packets and detect
TCP SYN floods. On identifying attacks, the controller updates
the firewall rules in switches to drop malicious packets. In
[14], the controller conducts the statistical analysis of packets,
scores each packet by the relationship between its attributes,
and discards low-score packets. The study [15] checks whether
DDoS-F attacks occur according to flow size, IP variability,
and duration. It distinguishes legitimate elephant and impulse
flows, which also carry many packets, from DDoS-F flows
to decrease false alarms. Both [16] and [17] apply principal
component analysis to examine network traffic for detecting
attacks, where a large traffic dataset is converted into a smaller
dataset that can keep the most information. Gao et al. [18]
detect attacks using the flow entry frequency, which depicts
the number of packets in each flow received by a switch. They
also adopt table-miss engineering to save link bandwidth and
reduce useless flow entries for switches. The above studies ask
the controller to identify DDoS-F packets, which may burden
it with a heavy load and raise the detection time.

Some studies measure the entropy of IP addresses in pack-
ets, and an anomaly in the entropy (e.g., too high) is viewed as
a symptom of attacks. Specifically, both [19] and [20] adopt the
Shannon entropy:

H(X) = −
∑n

i=1
pi log2 pi, (1)

where X = {x1, x2, · · · , xn} is an event set, and pi (i = 1...n)
gives the probability of each event xi ∈ X . Here, xi can be
treated as the event that packets with a certain IP address are
sent to the victim. Li et al. [21] employ the ϕ-entropy:

Hϕ(X) = −
1

sinh(ϕ)

∑n

i=1
pi sinh(ϕ log2 pi), (2)

where sinh(·) is the hyperbolic sine function. The work [22]
monitors a subsection of flows in a time window (called partial
flows). The entropy of partial flows is then compared against
a threshold to detect anomalies. However, these studies use a
fixed threshold on the entropy, which cannot reflect changes in
the network. Moreover, they require the controller to calculate
the entropy, thereby increasing its workload and the reaction
time to block attacks.

How to combat DDoS-F attacks by using P4 switches is also
discussed. Shen et al. [23] implement source authentication
and anomaly detection on P4 switches to discover TCP SYN
flood attacks. In [24], each P4 switch calculates source and

destination IP entropies (using constant thresholds) for attack
detection. The study [25] performs traffic characterization and
anomaly detection via P4 switches, where their computation
and memory constraints are considered. Ding et al. [26] use
P4 switches to estimate the number of distinct flows that
contact the same destination to identify DDoS-F flows. The
study [27] allows users to customize defense methods using
defense primitives and then maps these primitives to run
on P4 switches. In [28], defense primitives are developed
for programmable switches (e.g., P4). Besides, a compiler is
designed to generate switch programs to extract a panoramic
view of attack signals. To decrease the storage and communica-
tion overheads, Zhou et al. [29] propose a distributed storage
protocol, cooperative APIs, and a memory access proxy for
P4 switches to identify attacks. Compared to controller-based
methods, P4 switches can find DDoS-F attacks in a distributed
manner and reduce detection time. Nevertheless, the above
studies do not consider letting the controller also partake in
defense mechanisms.

As compared with existing solutions, our paper develops
a framework to help the controller efficiently team up with P4
switches against hybrid network attacks. P4 switches identify
DDoS-F attacks using the EAD scheme, whose thresholds can
be adjusted based on the network status. They also submit flow
information to the controller, which performs in-depth analysis
via DNN. Thus, the controller can focus on recognizing non-
DDoS attacks (e.g., keylogging and data theft) without having
to worry about the disturbance from DDoS-F flows.

In the literature, a few methods are proposed to deal with
keylogging. The work [30] detects keyloggers on an infected
host according to the correlation between user behavior (e.g.,
keystrokes), file access, and network communication. Nyang
et al. [10] propose two visual authentication protocols to
avoid keylogging: the one-time-password protocol and the
password-based authentication protocol, and implement them
using QR codes. Based on human vision properties like motion
perception and visual interpolation, the study [31] develops
a virtual keyboard to address keylogging. For data theft, the
work [32] depicts the implementation of access and iden-
tity management for endpoint protection from USB devices
to avoid data theft in a corporate environment. In [33], a
stochastic forensic method using fuzzy inference is applied
in the context of detecting data theft. The work [34] designs
a database security framework to protect data privacy and
prevent data theft. As can be seen, none of them adopt ML
models to detect keylogging or data theft. This motivates us
to build a shared DNN model for the controller to recognize
these two non-DDoS attacks.

4 SYSTEM MODEL

We consider an SDN-based network with a controller and
P4 switches, as Fig. 1 shows. The controller coordinates the
network, and switches obey their P4 programs and flow rules
(issued by the controller) to process packets. More specifically,
switches make preliminary judgments about attacks and drop
attack packets based on P4 programs. They also record nec-
essary flow information, which will be sent to the controller
for in-depth analysis. On detecting other attacks, the controller
gives flow rules to switches to drop malicious packets.

DDoS-F attacks and non-DDoS attacks (i.e., hybrid network
attacks) would occur at any time and select some hosts in
the SDN-based network to be targets (called victims). These

4 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

... ...

...

...

SDN-based

network

Legend

SDN

controller

P4 switch

Victim

Botnet

Non-DDoS

attack

DDoS-F

attack Attack

s5

...

...

s2

Report

Flow rule

s6

s1

s4

s3

Fig. 1: Network model and attack schematic.

Estimate IP

entropies

Adjust

thresholds

Block attacks

Start

Process data

Build a DNN

model

Recognize

attacks

No

Yes

No

Yes No

Yes

Record information

No

Yes

Section V-A

Section V-C

Section V-D

Recover traffic

P4 switches

ControllerTeam-work

Section V-B

Do attacks

occur?

Do attacks

end?

Are attacks

found?

Send reports

Is

controller

busy?

Fig. 2: Flowchart of the CD2P framework.

attacks may not necessarily be launched by the same attacker.
A DDoS-F attacker could manipulate a botnet to send many
packets to the victim. The botnet contains compromised hosts
that may reside in different network domains. Regarding non-
DDoS attacks, we consider both keylogging and data theft, as
discussed in Section 2.4.

Our goal is to let the controller and P4 switches collaborate
to quickly and accurately identify hybrid network attacks and
block malicious packets in time. To do so, P4 switches shall
take charge of detecting and stopping DDoS-F attacks to avoid
the controller busily checking these packets. In this way, the
controller can focus on identifying non-DDoS attacks.

5 THE PROPOSED CD2P FRAMEWORK

Fig. 2 shows CD2P’s flowchart. When a P4 switch finds that
the amount of traffic rises abnormally, it checks if a DDoS-F
attack occurs via the EAD scheme in Section 5.1. The switch
calculates IP entropies and adjusts thresholds (if necessary).
Based on the relationship between IP entropies and thresholds,
the switch judges whether there is a DDoS-F attack.

Even if P4 switches deduce that no DDoS-F attack occurs,
since there could be non-DDoS attacks, the network may not
necessarily be safe. Hence, switches record information about
non-DDoS-F flows and send their reports to the controller for
in-depth analysis. Besides the analysis task, the controller may

have other tasks. To avoid overloading the controller, switches
submit reports when the controller is not busy. The details will
be given in Section 5.2.

The controller analyzes these reports to discover non-DDoS
attacks. To facilitate the analysis, the controller performs data
processing on the reports. Afterward, it builds a DNN model
for analysis to find potential attacks. In Section 5.3, we will
elaborate on the DNN-based analysis handled by the con-
troller.

On detecting DDoS-F attacks, P4 switches stop attack flows
on their own. On the other hand, when the controller figures
out non-DDoS attacks, it gives switches flow rules to discard
attack packets. Then, the controller or switches judge whether
the attack ends (based on its type) and perform traffic recovery,
as discussed later in Section 5.4.

5.1 EAD Scheme

P4 switches use the EAD scheme to detect DDoS-F attacks.
Each switch calculates the IP entropies of packets that pass
its ports and assesses whether a DDoS-F attack comes about
based on the relationship between IP entropies and thresholds.
Unlike the entropy-based methods discussed in Section 3 that
adopt fixed thresholds, our EAD scheme can adaptively adjust
thresholds according to the network status.

5.1.1 Entropy Estimation

As mentioned in Section 2.3, when a DDoS-F attack occurs,
numerous packets are sent to a few victims (i.e., convergent
destination IP addresses). These attack packets may have many
or just a few source IP addresses. So, a low destination IP
entropy along with a high (or low) source IP entropy will be
an evident sign of DDoS-F attacks.

Let Âdst and Âsrc signify the sets of destination and source
IP addresses of the packets processed by a switch in a period

(denoted by P̂), respectively. Based on Eq. (1), we calculate the
destination IP entropy by

H(Âdst) = −
∑

ai∈Âdst

Pdst(ai)× log2 Pdst(ai), (3)

and the source IP entropy by

H(Âsrc) = −
∑

ai∈Âsrc

Psrc(ai)× log2 Psrc(ai), (4)

where Pdst(ai) and Psrc(ai) are the chances of occurrence for
IP address ai, which are defined by the number of packets in P̂
whose destination and source IP addresses are ai, respectively,

divided by the number of packets in P̂ . The values of H(Âdst)
and H(Âsrc) must be within [0, log2 |P̂|].

Three adjustable thresholds δdst, δH
src

, and δL
src

are defined,

where δdst, δ
H

src
, δL

src
∈ (0, log2 |P̂|) and δH

src
> δL

src
. How to

adjust these thresholds will be discussed in Section 5.1.2. Then,
the switch infers that a DDoS-F attack occurs when either of
the two conditions is met:

• H(Âdst) ≤ δdst and H(Âsrc) ≥ δH
src

.
• H(Âdst) ≤ δdst and H(Âsrc) ≤ δL

src
.

If so, the switch blocks DDoS-F packets, as discussed later in
Section 5.4.

To find H(Âdst) and H(Âsrc), the switch gathers statistics
on the number of packets in terms of their IP addresses.
One intuitive method is to use a counter for each address ai.
However, this method may be memory-consuming. Hence, we
borrow the notion of the count-min sketch (CMS) approach [35].

COLLABORATIVE DEFENSE AGAINST HYBRID NETWORK ATTACKS BY SDN CONTROLLERS AND P4 SWITCHES 5

0h0

h1

h2

h3

0 1 2 3 4 5 6 7

0

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

(a) adding IP 140.117.172.88

0

0 1 2 3 4 5 6 7

0

0

0

2

0

0

1

0

1

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

h0

h1

h2

h3

(b) adding IP 10.80.70.130

0

0 1 2 3 4 5 6 7

0

0

0

3

0

0

2

0

1

0

0

0

0

2

0

0

0

1

0

0

0

0

0

0

2

0

1

0

0

0

0

h0

h1

h2

h3

(c) adding IP 140.117.172.88

0

0 1 2 3 4 5 6 7

0

0

0

3

0

1

2

0

1

0

0

1

0

2

0

0

1

1

0

0

0

0

0

0

2

0

2

0

0

0

0

h0

h1

h2

h3

(d) adding IP 10.80.72.221

Fig. 3: An example of the CMS approach.

CMS uses d different hash functions h0(·), h1(·), · · · , hd−1(·),
where the output size for every hash function is w. Let us

use Âdst as an illustration. Specifically, we construct a d × w
array C̃ whose entries are initially set to zero. For each address

ai ∈ Âdst, the corresponding d entries in C̃ are updated by

C̃[k][hk(ai)]← C̃[k][hk(ai)] + 1, k = 0, 1, · · · , d− 1 (5)

On the other hand, the occurring frequency of an address aj ∈
Âdst can be estimated by

min
k=0,1,··· ,d−1

C̃[k][hk(aj)]. (6)

Fig. 3 gives an example with 4×8 array. Suppose that hash
functions h0, h1, h2, and h3 output 1, 6, 3, and 1 for address
140.117.172.88. Thus, we add entries C̃[0][1], C̃[1][6], C̃[2][3],
and C̃[3][1] by one, as shown in Fig. 3(a). Fig. 3(b), (c), and (d)
give the results by sequentially adding addresses 10.80.70.130,
140.117.172.88, and 10.80.72.221. Afterward, let us query the
frequency of address 140.117.172.88. By Eq. (6), the answer
is min{C̃[0][1], C̃[1][6], C̃[2][3], C̃[3][1]} = min{3, 2, 2, 2} = 2.
Similarly, we can employ a d×w array to record the occurring

frequencies of source IP addresses (i.e., Âsrc).
We analyze the amount of memory used in the two

methods. Suppose that a counter requires b bits. Therefore,
the intuitive method and the CMS approach will spend

(|Âdst|+ |Âsrc|)× b and 2dwb bits, respectively. Since d and w
are small constants [35], but Âdst and Âsrc may cover many

addresses, in effect we have 2dw ≪ |Âdst|+ |Âsrc|. Hence, the
CMS approach can reduce the memory usage of P4 switches
efficiently.

Theorem 1 analyzes the time complexity of entropy esti-
mation in our EAD scheme. Evidently, d is a small value,
so the computational cost to check for DDoS-F attacks will

be linearly proportional to the number of packets (i.e., |P̂|).
In other words, checking DDoS-F attacks by using the EAD
scheme will not put much burden on a P4 switch.

Theorem 1. Suppose that P̂ has n packets. With the CMS
approach, the worst-case time complexity of entropy es-
timation in the EAD scheme is O(nd).

Proof: In EAD, a P4 switch uses two d×w arrays to store
the occurring frequencies of destination and source addresses

(i.e., Âdst and Âsrc) of the packets in P̂ . According to the
analysis in [35], the updating time for an array entry is O(1).

From Eq. (5), d entries need to be updated for each address.
Hence, it takes time of 2nd × O(1) = O(nd) to update the

two arrays for all packets in P̂ for recording their occurring
frequencies. Then, to retrieve the occurring frequency of every

address in Âdst and Âsrc through Eq. (6), it will spend time
of 2nd × O(1) = O(nd) in total. Finally, using Eq. (3) and
Eq. (4) to find the destination and source IP entropies requires

O(|Âdst|) and O(|Âsrc|) time, respectively. Thus, the overall

time complexity is O(nd) + O(nd) + O(|Âdst|) + O(|Âsrc|).
Since each packet has only one destination address and one

source address, we have max{|Âdst|, |Âsrc|} ≤ n. Therefore,
the time complexity can be simplified to O(nd).

5.1.2 Threshold Adjustment

As discussed in Section 3, most entropy-based methods adopt
fixed thresholds. In practice, the thresholds should be adjusted
depending on the network status, more concretely, the en-
tropies of IP addresses of packets that the switch handled in the
past. For example, the destination IP entropy of elephant flows
(which carry a great deal of data) will be much lower [36]. If
one uses a fixed threshold on the destination IP entropy, these
legitimate elephant flows may be misjudged as DDoS-F flows,
causing many false positives.

To this end, we modify the exponentially weighted moving
average (EWMA) model, which is widely used to process serial
data and forecast the value of the current time series according
to the observed value [37]. For destination IP addresses (i.e.,
Âdst), the destination IP entropy at period t (i.e., the current
period) can be estimated by

Et
dst

= βEt−1
dst

+ (1− β)Ēdst, (7)

where Ēdst denotes the average destination IP entropy in the
past (excluding the value at period t− 1) and β is a coefficient
to reveal the degree of weighting decrease (0 ≤ β ≤ 1). Unlike
the original EWMA model, we make two modifications. First,
we count the average entropy Ēdst of no more than τ periods,
where τ ∈ Z

+. Doing so can save the switch’s computational
cost. Besides, older information of traffic actually has a smaller
influence on Ēdst. Second, if the switch inferred that a DDoS-F
attack occurred at period t − 1, we set β ≈ 0. In this way, we
can greatly reduce the impact of DDoS-F attacks on Ēdst.

Then, the threshold for destination IP entropy is defined by

δdst = max{(1− αdst)E
t
dst

, ζdst}, (8)

where 0 < αdst < 1, ζdst > 0, and ζdst ≈ 0. Based on Eq. (8),
once the current destination IP entropy is below (1 − αdst) ×
100% of the entropy Et

dst
calculated by Eq. (7), the destination

IP addresses are convergent. Here, we put a lower bound ζdst
on threshold δdst to make sure that δdst > 0.

For source IP addresses (i.e., Âsrc), the source IP entropy
at period t is calculated by

Et
src

= βEt−1
src

+ (1− β)Ēsrc, (9)

where Ēsrc indicates the average source IP entropy in the
past (without the value at period t − 1). The above two
modifications are also applied to Eq. (9).

There are two thresholds for source IP entropy. Specifically,
threshold δH

src
is defined by

δH
src

= min{(1 + αH

src
)Et

src
, ζH

src
}, (10)

where 0 < αH

src
< 1. Besides, we have ζH

src
< log2 |P̂| and

ζH
src
≈ log2 |P̂|. Based on Eq. (10), if the current source IP

6 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

entropy is above (1 + αH

src
)× 100% of the entropy derived by

EWMA (i.e., Et
src

), the source IP addresses are divergent. To

avoid (1 + αH

src
)Et

src
> log2 |P̂|, we impose an upper bound

ζH
src

on threshold δH
src

. On the other hand, threshold δL
src

is
defined by

δL
src

= max{(1− αL

src
)Et

src
, ζL

src
}, (11)

where 0 < αL

src
< 1. Also, we have ζL

src
> 0 and ζL

src
≈ 0.

From Eq. (11), if the current source IP entropy is lower than
(1−αL

src
)×100% of the entropy Et

src
estimated by Eq. (9), the

source IP addresses are convergent. To ensure that δL
src

> 0,
we give a lower bound ζL

src
in Eq. (11).

Theorem 2. Threshold adjustment in EAD takes O(1) time.

Proof: In EAD, we estimate threshold δdst on the des-
tination IP entropy by using EWMA to find Et

dst
. On getting

an entropy, it spends O(1) time updating the average destina-
tion IP entropy Ēdst. Thus, computing Et

dst
by Eq. (7) takes

O(1) time. Moreover, ζdst is a constant, so using Eq. (8) to
calculate δdst takes O(1) time. Since thresholds δH

src
and δL

src

on the source IP entropy are computed similarly, threshold
adjustment takes O(1) time.

All thresholds are adjusted period by period, not packet by
packet. Moreover, Theorem 2 shows that adjusting thresholds
is easy. Thus, threshold adjustment in EAD has little effect on
the computational burden of a P4 switch.

5.2 Information Record and Report Submission

P4 switches check if DDoS-F attacks occur and drop DDoS-
F packets on their own (as discussed later in Section 5.4).
Excluding DDoS-F flows, each switch stores information about
flows that they handle, which will be sent to the controller for
in-depth analysis.

5.2.1 Storing Flow Information

There are two formats widely used to store flow information:
packet capture (PCAP) and comma-separated values (CSV). PCAP
is an API used to get detailed information about network
traffic. A CSV file is a delimited text file using commas to
separate values. Each line in the file is a data record, where
each record has one or more fields separated by commas. In
CD2P, we choose CSV for two reasons. First, a CSV file is
smaller than a PCAP file. Second, if the switch sends a PCAP
file to the controller, it needs to convert the file into a CSV
file before conducting analysis. So, using CSV helps reduce
the cost for the controller to perform data processing on the
switch’s report.

Based on [38], we select the following fields of flow in-
formation to be stored in each record: start time, flags, proto-
col, source/destination IP addresses, source/destination ports,
packets, bytes, state, sequence number, source/destination
packets, source/destination bytes, and rate. The size of one
record is 121 bytes. In Section 6.3, we will analyze the overhead
of storing flow information using CSV.

5.2.2 Sending Reports

Besides attack analysis, the controller could also have other
tasks to perform. Switches should send reports when the con-
troller is not busy to avoid overloading it. Hence, we propose
two mechanisms for report submission.

In the passive mechanism, each switch regularly submits
its CSV report. The switch sends a submission-request message

to the controller. If the controller is not busy, it replies with a
submission-grant message, so the switch can send the report.
Otherwise, the controller replies with a submission-declining
message, and the switch will try later. The passive mechanism
is suitable for a small network with a few switches.

In the active mechanism, the controller periodically broad-
casts a beacon that reveals its status (i.e., busy or non-busy) to
all switches. If the status is non-busy, switches are allowed to
submit CSV reports. To avoid many switches sending reports
at the same time, which causes network congestion, switches
are divided into groups. Afterward, the controller indicates in
the beacon which group of switches can send their reports at
each given interval. In this way, we can mitigate congestion.

5.3 DNN-based Analysis

After getting reports from P4 switches, the controller carries
out data processing on these reports to facilitate analysis. Then,
it builds a DNN model to check whether there are non-DDoS
attacks (i.e., keylogging and data theft).

5.3.1 Data Processing

This procedure contains three steps.
Step 1: According to the well-known KDD-Cup99 dataset,

we pick 24 features from the reports (in CSV format)2:
[Connection] wrong fragment, duration, urgent, land, pro-

tocol type, service, flag, src bytes, dst bytes.
[Time] diff srv rate, srv diff host rate, srv count, count,

rerror rate, srv rerror rate, same srv rate.
[Host] dst host same src port rate, dst host rerror rate,

dst host srv diff host rate, dst host srv rerror rate,
dst host count, dst host srv count, dst host same srv rate,
dst host diff srv rate.

Step 2: Convert text to numbers. We use the one-hot encoding
method [40], which represents each word in the vocabulary
through a numerical positional vector whose elements are all
zeros except for the position of that word in the vocabulary
list. For example, we employ vectors [1, 0, 0], [0, 1, 0], and [0,
0, 1] to represent the three protocols TCP, UDP, and HTTP.

Step 3: For each value v, we adopt a z-score to normalize it:
(v − µ)/σ, where µ is the average and σ is the standard devi-
ation. Using the z-score avoids some excessively large values
affecting the analytic result, making the analysis inaccurate.

5.3.2 Model Building

In DNN, a logistic regression is known as a neuron, and a
neural network is composed of many neurons interconnected
with each other. A DNN model comprises one input layer,
multiple hidden layers, and one output layer. The neurons in
each layer are fully connected by the neurons in the previous
layer (called the fully connected feed-forward network). Data is
transferred from the input layer to the output layer. Fig. 4
shows the architecture of a DNN model.

The input layer handles features and feeds a feature vector
~X = [x1, x2, · · · , xn] to the first hidden layer, which calculates

an output vector ~Y = [y1, y2, · · · , ym] by

~Y = fA(W̃ × ~X + ~B). (12)

2. KDD-Cup99 is widely used to recognize intrusions in computer
networks and defines 42 features in total. A detailed description of
each feature can be found in [39]. We choose 24 features for detecting
keylogging and data theft. It may require additional features to detect
other types of attacks.

COLLABORATIVE DEFENSE AGAINST HYBRID NETWORK ATTACKS BY SDN CONTROLLERS AND P4 SWITCHES 7

Input

x2

xn

+

b1

+

b2

+

b3

…

Hidden layers Output

fA

fA

fAx1

xi Feature

bj Bias

+ Summation

Activation

function

Neuron

fA

Legend

Fig. 4: Architecture of a DNN model.

TABLE 1: The DNN model used by the controller.
(a) Parameters:

layer # of neurons activation function
input 10 ReLU

1st hidden 50 ReLU
2nd hidden 10 ReLU

output 2 Softmax

(b) Effect of the number of hidden layers:
of layers train loss validation loss

1 0.0516 0.0476
2 0.0495 0.0466
3 0.0571 0.0475

W̃ = [wi,j]n×m is a weight matrix, and ~B = [b1, b2, · · · , bm]
is a bias vector. Furthermore, fA(·) is an activation function,
where rectified linear unit (ReLU) and Softmax are two common

functions. Then, ~Y is employed as the input vector of the next
layer, which uses Eq. (12) to find an output vector. The above
procedure is repeated until we reach the output layer. A loss
function is used to compare the target and predicted output
values, which can be used to measure how well DNN models
the training data. The objective is to obtain suitable parameters

W̃ and ~B to minimize the loss between the predicted and
target outputs. This can be carried out by gradient descent, an
iterative optimization algorithm used to find a local minimum
of the differentiable function (the details can be found in [41]).

For implementation, we build a four-layer DNN model, as
shown in Table 1(a). The input layer uses ten neurons to handle
24 flow features. Because the controller needs to differentiate
between attack packets and legitimate packets, two neurons
are used in the output layer (i.e., binary classification). More-
over, we employ binary cross-entropy as the loss function:

Loss = −
1

K

∑K

i=1
ξi log ξ̂i + (1− ξi) log(1− ξ̂i), (13)

where ξ̂i is the i-th scalar value in the model output, ξi is the
target value, and K is the number of scalar values in the model
output. To avoid overfitting, an early stopping mechanism [42]
is applied, where we stop training the DNN model when the
loss calculated by Eq. (13) no longer decreases.

5.3.3 Attack Recognition

We adopt the botnet dataset in [38] to train the DNN model.
The training result (i.e., both weight matrix W̃ and bias vector
~B) is saved in an HDF5 file with hierarchical data format. The
controller processes the reports from P4 switches by the three-
step procedure in Section 5.3.1 and feeds the processed data to
the DNN model. Because the model uses binary classification,
the output will be either 0 (normal) or 1 (abnormal). If the

percent of 1’s outputs exceeds a predefined threshold (e.g.,
10%), the controller infers that an attack of keylogging or
data theft has taken place. In this way, we can avoid the
controller misjudging (i.e., causing false alarms) due to just
a few abnormal outputs.

5.3.4 Discussion on Model Setting

The DNN model employs binary classification of packets,
so the output layer uses Softmax as the activation function.
Then, the activation functions in other layers are ReLU. ReLU
has four advantages over other functions (e.g., Sigmoid and
Tanh) [43]: addressing the vanishing gradient, mitigating over-
fitting, capturing better features, and conserving computing
resources. Regarding the number of hidden layers, Table 1(b)
gives the train and validation losses calculated by Eq. (13) if
there are one, two, and three hidden layers. Both losses will
increase when adding the third hidden layer. Hence, we use
two hidden layers in the DNN model.

5.4 Attack Blocking and Traffic Recovery

Depending on the type of attack, we use different strategies to
block the attack and recover traffic after the attack ends.

5.4.1 DDoS-F Attack

On detecting a DDoS-F attack, the P4 switch discards attack
packets on its own without asking the controller for permis-
sion. However, the switch can notify the controller of the
incident to warn the network administrator of the DDoS-F
attack.

Let P̂i be the subset of packets in P̂ whose destination IP

addresses are ai, where P̂ is the set of packets processed by the

switch in the last period. If |P̂i|/|P̂| ≥ ̺1, where 0 < ̺1 < 1,
the host with an IP address of ai could be a potential victim3.

Let Âi denote the set of source IP addresses of the packets in

P̂i. Then, there are two cases to be considered.
Case 1: The switch detects a DDoS-F attack due to diverse source

IP addresses. We compute the source IP entropy H(Âi) using

Eq. (4). If H(Âi) ≥ ̺2 × δH
src

, where 0 < ̺2 < 1, there is
a good possibility that the attack targets the host whose IP
address is ai. Hence, the switch discards subsequent packets

whose source IP addresses belong to Âi and whose destination

IP addresses are ai. Since Âi ⊆ Âsrc, we derive that H(Âi) ≤
H(Âsrc). That is why we add a coefficient ̺2.

Case 2: The switch detects a DDoS-F attack due to convergent
source IP addresses. We check the proportion of packets sent

by each source. Let P̂i,j be the subset of packets in P̂i whose

source IP addresses are aj . If |P̂i,j |/|P̂i| ≥ ̺3 (0 < ̺3 < 1),
it implies that many packets originate from a source aj (or
their source addresses are spoofed to aj by the attacker). The
switch drops subsequent packets with source IP addresses
of aj and destination IP addresses of ai. Notice that if the
attacker changes the spoofed address to, say, ak later, since

the condition of |P̂i,k|/|P̂i| ≥ ̺3 will hold, the switch can still
block the attack packets whose source addresses are ak.

Then, when no attack packets can be found (based on the
above checking conditions), it means that the DDoS-F attack
has terminated. As no packets will be dropped by the switch
in this situation, traffic recovery is automatically carried out.

3. As mentioned in Section 5, the switch checks if a DDoS-F attack occurs
when it finds that the amount of traffic rises abnormally (that is, P̂ has
many packets). Thus, when the packets in P̂ that overtake the proportion
of ̺1 are sent to a single host, the host would be a potential victim.

8 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

5.4.2 Non-DDoS Attack

Suppose that after analyzing a switch sj ’s report, the con-
troller discovers an attack (e.g., keylogging or data theft)
whose source IP address is as, destination IP address is
av (i.e., the victim’s address), and protocol number is pk.
Then, the controller gives sj a flow rule to drop attack
packets. The matching rule is “eth type=0x0800, ipv4 src=as,
ipv4 dst=av , ip proto=bk”, where ‘eth type=0x0800’ means
IPv4 packets. For IPv6, we set ‘eth type=0x86dd’ and replace
‘ipv4 src’ and ‘ipv4 dst’ with ‘ipv6 src’ and ‘ipv6 dst’. The
term ‘ip proto=bk’ avoids dropping legitimate packets.

Besides, we set the ‘hard timeout’ field to an amount T of
time in the flow rule. Thus, after timeout T , sj performs traffic
recovery (since the flow rule is automatically removed). Doing
so has two benefits. First, the controller does not need to keep
checking if the attack is over4, which saves its computational
cost. Second, it incurs no extra message overhead to recover
traffic, as there is no need for the controller to send messages
to notify the switch of the removal of the flow rule.

5.5 Rationale and Innovation Points

Our CD2P framework is designed to help both the controller
and P4 switches cooperate in defense against hybrid network
attacks composed of DDoS-F and non-DDoS attacks. Switches
eliminate DDoS-F packets, and the controller finds non-DDoS
attacks. To do so, we propose the EAD scheme for switches
to check if DDoS-F attacks occur. Considering the computing
power of switches, EAD adopts Shannon entropy rather than
more complex entropy calculations (e.g., ϕ-entropy mentioned
in Section 3). Except for DDoS-F flows, switches record flow
information and submit reports to the controller. Afterward,
the controller uses a DNN model to analyze the reports to
discover non-DDoS attacks like keylogging and data theft.

As compared with the current studies, our CD2P frame-
work has four innovation points. First, each P4 switch uses two
CMS arrays to record the frequencies of source and destination
IP addresses, which saves memory usage. Theorem 1 shows
that the EAD scheme has a low time complexity, which means
that computing IP entropies will not put much burden on a
switch.

Second, unlike most entropy-based methods that use fixed
thresholds, EAD lets P4 switches adjust the thresholds on IP
entropies. Since each switch has merely a local view, dynamic
thresholds can help switches adapt themselves to changes in
network status and make more accurate judgments of DDoS-
F packets. As discussed in Section 7.1, our CD2P frame-
work (with EAD) outperforms other entropy-based methods
in terms of F1-score, which implies that it can improve the
detection of DDoS-F attacks and reduce false alarms.

Third, to help P4 switches store flow information and
send reports more efficiently, we employ the CSV format and
carefully select fields of flow information to be recorded. Doing
so reduces the storage overhead for switches to record flow
information in their memory, the communication overhead for
switches to send reports to the controller, and the computation
overhead for the controller to perform data processing on these
reports. In Section 6.3, we will analyze these overheads.

4. If the attack persists after timeout T , the controller will be able to
detect it through the method in Section 5.3. In this case, we increase the
value of T to extend the attack blocking time. This can be done by using
the exponential backoff method proposed in our previous work [36].

Fourth, the controller conducts data processing in the re-
ports of switches to facilitate analysis. Instead of using an
individual DNN model to analyze every type of non-DDoS
attack, CD2P builds one shared DNN model in the controller
to recognize multiple non-DDoS attacks (i.e., keylogging and
data theft). In this way, we can make our DNN model scalable,
allowing for detection of more types of non-DDoS attacks to
be added.

With these innovation points, the controller and P4
switches can efficiently perform the defense mission and fa-
cilitate their collaboration on resisting hybrid network attacks.

6 DISCUSSION

Three issues are discussed in this section: 1) differentiating
the packets of DDoS-F and non-DDoS attacks, 2) the scenario
of multiple P4 switches, and 3) communication, computation,
and storage overheads for CSV reports.

6.1 Differentiation of Attack Packets

In the CD2P framework, P4 switches filter out most DDoS-
F packets. Without disturbance by DDoS-F packets, the con-
troller can focus on identifying non-DDoS attacks. In essence,
DDoS-F attacks and the non-DDoS attacks handled by CD2P
(i.e., keylogging and data theft) are different. DDoS-F attacks
drain a victim’s bandwidth and resources by sending nu-
merous packets. Keylogging and data theft steal data from
the victim, which produces a similar number of packets as a
normal flow. This essential difference helps P4 switches cleanly
and easily distinguish between DDoS-F and non-DDoS attack
packets by using our EAD scheme in Section 5.1.

In effect, it will not have a significant impact even if a
switch misjudges some attack packets. Suppose that the switch
judges some packets containing keylogging or data theft as
DDoS-F packets. Since these packets are discarded by the
switch, they cannot cause any damage (that is, steal data) to
the victim. On the other hand, if a few DDoS-F packets are
missed by the switch and sent to the controller for inspection,
the controller’s burden will not significantly rise due to their
small number.

Someone may suggest using a more sophisticated method
to make a very clean distinction between DDoS-F and non-
DDoS attack packets. However, doing so is unprofitable and
inefficient. Despite spending a lot of computing resources (on
P4 switches or the controller) on distinguishing attack packets,
it does not help much in preventing the attack from harming
the victim.

6.2 Scenario of Multiple Switches

Through the EAD scheme, each P4 switch can check if there
are DDoS-F flows passing its ports and discard attack packets
on its own. In general, data communication could go through
multiple switches, and thus some switches may not see all the
evidence of a DDoS-F attack. Despite this, there is no need to
coordinate between switches in the CD2P framework to detect
DDoS-F attacks due to the following three reasons:

First, a DDoS-F attack produces numerous packets that
have convergent destination addresses and many (or a few)
source addresses. If the DDoS-F flow goes through multiple
switches, each switch will obtain a subset of the flow’s packets
that also reveal a low destination IP entropy and a high (or
low) source IP entropy. Thus, the switch is capable of detecting

COLLABORATIVE DEFENSE AGAINST HYBRID NETWORK ATTACKS BY SDN CONTROLLERS AND P4 SWITCHES 9

0

5

10

15

20

25

30

35

40

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

5 10 15 20 25 30

S
iz

e
 o

f
C

S
V

 r
e

p
o

rt
 (

M
B

)

A
m

o
u

n
t

o
f

ti
m

e
 (

s
e

c
o

n
d

)

Number of records (x10000)

Communication overhead

Computation overhead

Storage overhead

Fig. 5: Communication, computation, and storage overheads for a CSV
report.

the DDoS-F flow even if it does not see all packets of the flow.
Besides, EAD lets a switch adjust thresholds on IP entropies
based on the network status. Compared to other entropy-based
methods using fixed thresholds, EAD helps a switch faster
discover the changes in IP entropies (caused by the DDoS-
F flow), which is more adaptable to the scenario of multiple
switches, where each switch may only get partial packets of a
DDoS-F flow.

Second, there are two possible ways to coordinate between
switches. One is to let switches exchange messages with each
other. Evidently, this increases not only the message overhead
but also the computational cost of switches (as switches need
to consider how to cooperate with each other to check whether
they detect the same DDoS-F attack). The other is to ask the
controller to serve as the coordinator, which collects messages
related to DDoS-F flows from switches and makes decisions.
However, doing so violates the design intent of CD2P, which
prevents the controller from being disturbed by DDoS-F flows
to help it focus on finding non-DDoS attacks.

Third, the attack packets will be intercepted by the switches
that they pass through during transmission. Let us take Fig. 1
as an example, where both s1 and s6 are gateway switches, and
the DDoS-F attack targets a victim that connects to switch s4.
If the attack comes from exterior networks, gateway switches
will first get attack packets. Hence, both s1 and s6 can weed
out most DDoS-F packets. When the attack originates from the
interior network (e.g., by some compromised hosts linking to
switch s2), s2 can detect and discard DDoS-F packets. Even if
some DDoS-F packets are not captured by s2, the subsequent
switches (i.e., s3 and s5) will receive these packets and discard
them. As can be seen, most attack packets can be intercepted
by switches. This is not too late, as DDoS will not occur at
the victim. Moreover, as discussed in Section 7.1, experimental
results also reveal that switches can quickly and accurately
find DDoS-F flows using the EAD scheme.

6.3 Overheads for CSV Reports

As mentioned in Section 5.2, each P4 switch stores flow in-
formation in a CSV file and sends its report to the controller
for analysis. Fig. 5 shows overheads for a CSV report, where
the number of records in the report is increased from 50,000 to
300,000, and fast Ethernet links are used (whose bandwidth is
100 Mbps). Specifically, we consider three types of overheads.
The communication overhead is the amount of time taken by the
switch to send the report to the controller. The computation

sa

sb

sc

sd

sv

Victim

Controller

Attack

Attack

Attack

Fig. 6: Network topology used in Mininet experiments.

overhead is the amount of time that the controller consumes to
conduct data processing (using the procedure in Section 5.3.1)
on the report. The storage overhead is the report’s size.

Evidently, as the number of records increases, all overheads
grow merely linearly. The maximum communication and com-
putation overheads are below 3.15 s and 0.37 s, respectively.
This implies that the transmission delay (for sending a CSV
report) is low, and the controller can quickly process the report.
Moreover, even if the report contains 300,000 records, the file
size (i.e., storage overhead) is no larger than 34.62 MB. Hence,
using our method in Section 5.2 to store flow information will
not consume much memory space of a P4 switch.

7 PERFORMANCE EVALUATION

Owing to the relatively recent development of the P4 language,
there are merely a few high-priced commodity switches on
the market that can support P4 (e.g., Intel Tofino switch
[44]). Despite this, software solutions are capable of promoting
the research progress on programmable networks. Hence, we
conduct experiments by using software switches (e.g., Open
vSwitch). Doing so will not significantly affect the evaluation
of performance, since P4 is target-independent (as mentioned
in Section 2.2) and the study [25] points out that hardware and
software targets (i.e., switches) are functionally equivalent.

To implement software P4 switches, we use P4-Utils [45],
a Python package for programmers to create virtual networks
including P4 switches, in the Mininet environment. The capa-
bility of network creation is inherited from Mininet, and the P4
targets are taken from the behavioral model (i.e., a collection of
software P4 switches). Compared with P4-programmable com-
modity switches that are expensive and difficult to operate, P4-
Utils provides a convenient and cheap means of developing
P4 data planes and control plane software written for them. In
addition, Mininet is a powerful network emulation framework
that can efficiently carry out virtualization of network nodes
such as switches and hosts through the Linux kernel. Mininet
and P4-Utils allow us to create an SDN environment in which
P4 switches and hosts can be connected and tested.

Our testbed for Mininet experiments is installed on a vir-
tual machine executing Ubuntu 16.04 with 4 processors and
32 GB of RAM. Fig. 6 illustrates the network topology used
in the experiments, which is similar to that in [24]. More
concretely, we consider one SDN-based network comprising
a controller and five P4 switches. Each switch connects to two
(legitimate) hosts. One host linking to switch sv is chosen as
the victim. Besides, we will inject attack flows into switches
sa, sb, or sc (depending on the attack scenario discussed in

10 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

Section 7.1). In addition to attack flows, some hosts generate
normal flows whose destinations are also the victim. A normal
flow makes five packets per second on average.

7.1 Performance on Blocking DDoS-F Attacks

We compare our CD2P framework with the three DDoS-F so-
lutions mentioned in Section 3. The principal component analysis
(PrCA) method [17] converts the traffic dataset to a smaller
dataset to facilitate traffic examination for discovering DDoS-
F attacks. Then, the entropy-based DDoS-F prevention (EDP)
method [20] calculates the entropy of source IP addresses by
Eq. (1) and checks if a DDoS-F attack occurs. Both PrCA and
EDP are executed by the controller. The BUNGEE method [24]
lets P4 switches analyze source and destination IP entropies
for attack detection based on fixed thresholds.

Regarding the generation of DDoS-F flows, we employ the
dataset in [46] and call it a basic DDoS-F attack (BDA) flow. A
BDA flow is a mixture of TCP SYN, UDP, and HTTP flood
attack flows. The BDA has a duration of 20 s and its attack
target is the victim. Then, we consider the following five attack
scenarios in the experiments (referring to Fig. 6):

A1. We study the effect of a DDoS-F attack on the victim’s
bandwidth consumption. One BDA flow is injected into switch
sc. However, we let sc neglect attack packets, so all packets of
the BDA flow will arrive at switch sv . Thus, sv has to block
attack packets in P4-based methods (i.e., BUNGEE and CD2P)
or ask the controller to identify attack packets in controller-
based methods (i.e., PrCA and EDP). Doing so allows for a fair
comparison of each method, since the attack is handled by the
same switch (i.e., sv).

A2. We study the effect of different attack rates. To do so,
we halve and double the packet-generating rate of a BDA flow,
called 1/2-rate BDA flow and 2-rate BDA flow, respectively. In
different experiments, we inject a 1/2-rate BDA flow, a 1-rate
BDA flow (i.e., the original BDA flow), and a 2-rate BDA flow
into switch sa.

A3. We study the effect of different attack durations. With-
out changing the packet-generating rate, we respectively inject
a BDA flow whose duration is 20 s (i.e., the original duration),
30 s, and 40 s into switch sa in each experiment.

A4. We study the effect of different numbers of attackers.
The number of attackers is set to 1, 2, and 3, where the first,
second, and third attackers inject one BDA flow into switches
sa, sb, and sc, respectively.

A5. We study the effect of mixed DDoS-F and non-DDoS
attacks. One BDA flow is injected into switch sa and a non-
DDoS attack flow is injected into switch sb. The non-DDoS
attack flow has the same duration (i.e., 20 s) and target (i.e., the
victim) with the BDA flow, and we use the dataset mentioned
in Section 7.2 to generate its packets.

If a switch receives suspicious packets, it conducts recog-
nition or notifies the controller5. The experiment time is 60 s
in scenario A1 and 100 s in other scenarios. The purpose of
shortening the experiment time in scenario A1 is to provide
a better observation of the victim’s bandwidth consumption.
Each experiment has attacks that take place halfway through
it. Hence, in scenario A1, the attack starts at the 20th second.
In other scenarios, attacks start at the 40th second.

In scenarios A2–A5, we measure the detection time, F1-score,
and message overhead of each method. The detection time is

5. The only exception is switch sc in scenario A1.

0

10

20

30

4�

50

6�

7�

8�

9�

100

0 10 20 30 4� 50 6�

B
a

n
d

w
id

th
 c

o
n

s
u

m
p

ti
o

n
 r

a
ti
o

 (
%

)

Time (second)

No block

PrCA

EDP

BUNGEE

CD2P

Fig. 7: Victim’s bandwidth consumption in scenario A1.

the amount of time required by a method to recognize DDoS-
F attacks. The F1-score is computed by Eq. (17), where a
higher F1-score implies a better detection rate and fewer false
positives. For PrCA and EDP, the message overhead is defined
by the number of Packet In messages that switches submit to
the controller for identifying DDoS-F packets. For BUNGEE
and CD2P, the message overhead is defined by the number of
Packet In messages that switches use to notify the controller
of an incident of DDoS-F attacks (since switches can detect
DDoS-F attacks on their own).

7.1.1 Attack Scenario A1

In Fig. 7, we present the bandwidth consumption ratio of the
victim over time (measured by switch sv in Fig. 6). Moreover,
we also show the result without any defense (i.e., no block)
as a reference. Evidently, all methods (including no block)
have little difference in results without any attack (i.e., 0th–
19th seconds and 41st–60th seconds). At the 20th second,
the attack is launched. Thus, the bandwidth consumption
ratio rises drastically (in particular, above 90%), which means
that the victim is flooded with numerous requests and runs
out of bandwidth. After analyzing packets, each method can
recognize the attack and discard malicious packets. Hence, the
bandwidth consumption ratio drops swiftly. Despite this, there
are still differences in the detection speed of each method.
Specifically, the PrCA method is the slowest, as it may take
more time to do the transformation of the dataset and then
conduct analysis. Though EDP also estimates the IP entropy, it
is slower than BUNGEE and CD2P, as EDP requires switches
to send data to the controller for entropy estimation. On the
contrary, BUNGEE and CD2P let P4 switches detect DDoS-
F flows on their own, so they can quickly discover attacks.
This result reveals the superiority of P4-based methods (i.e.,
BUNGEE and CD2P) over controller-based methods (i.e., PrCA
and EDP) on the detection speed for DDoS-F attacks.

During the attack (i.e., 20th–40th seconds), the bandwidth
consumption ratios in PrCA, EDP, and BUNGEE are down
to zero. This implies that all flows to the victim (including
legitimate flows) are actually blocked by these three methods.
On the other hand, CD2P discards packets according to their
IP entropies (as discussed in Section 5.4). In this way, our CD2P
framework can allow some legitimate packets to still be sent to
the victim and thus reduce false positives, as compared with
the PrCA, EDP, and BUNGEE methods.

COLLABORATIVE DEFENSE AGAINST HYBRID NETWORK ATTACKS BY SDN CONTROLLERS AND P4 SWITCHES 11

1000

1���

1���

2200

2600

3000

3���

PrCA EDP BUNGEE CD2P

D
e

te
c
ti
o

n
 t

im
e

 (
m

s
)

1������	
��

1����	
��

�����	
��

(a) detection time

0��

0�0

0��

0��

0��

0��

�00

PrCA EDP BUNGEE CD2P

F
�
� s

c
o

re

�������� ��� ������ ��� ������ ���

(b) F1-score

0

500

1000

1500

2000

2500

3000

3500

PrCA EDP BUNGEE CD2P

P
�

!
"
#$
%&
'
"
(
(
�
)
"
(

*+,-./24 567

*-./24 567

,-./24 567

(c) message overhead

Fig. 8: Performance comparison between different methods in scenario A2 (i.e., different attack rates).

7.1.2 Attack Scenario A2

Fig. 8(a) shows the detection time of each method with dif-
ferent attack rates. As the attack rate grows, the speed for
switches to collect evidence (i.e., attack packets) increases.
Hence, each method can recognize the attack faster, thereby
reducing the detection time. EDP computes the source IP en-
tropy of packets while PrCA conducts dataset transformation,
so EDP’s detection time is lower than that of PrCA. Since both
BUNGEE and CD2P let switches forthright detect attacks (by
using IP entropies), they have a much lower detection time
than PrCA and EDP.

Fig. 8(b) presents the F1-score of each method with different
attack rates. As the attack rate increases, more attack packets
are generated. Since the number of normal packets (produced
by legitimate hosts) does not change, the percentage of attack
packets increases. Thus, the detection rate improves, and false
positives (due to misjudgment of normal packets) reduce. That
explains why the F1-score of each method can increase as the
attack rate grows. Interestingly, entropy-based methods (i.e.,
EDP and BUNGEE) have lower F1-scores than PrCA (using
principal component analysis) in the case of 1/2-rate BDA.
That is because sometimes attack packets may not be enough
to make IP entropies overtake (fixed) thresholds. This problem
can be mitigated by adjusting thresholds based on the network
status in CD2P (referring to Section 5.1.2). In fact, our CD2P
framework keeps the highest F1-score, which verifies that it
can detect DDoS-F attacks more accurately.

Fig. 8(c) gives the message overhead of each method with
different attack rates. In PrCA and EDP, since switches have
to send packet information to the controller to identify DDoS-
F attacks, their message overheads significantly rise when the
attack rate increases. For BUNGEE and CD2P, switches detect
DDoS-F attacks by themselves and only notify the controller
of the incident of DDoS-F attacks. In this case, two Packet In
messages are enough for notification (i.e., one indicates when
the attack starts, and the other indicates when the attack ends).

7.1.3 Attack Scenario A3

In this scenario, we vary the attack duration. Figs. 9(a) and 9(b)
show the detection time and F1-score. Evidently, increasing
the attack duration has almost no effect on the detection
time and F1-score of each method. The reason is that during
the attack, legitimate hosts also send packets to the victim.
Without changing the packet-generating rates of attack and
normal flows, the ratio of attack packets to normal packets
will not change. Thus, both the detection time and F1-score
of each method remain the same, no matter how the attack

duration changes. As compared with other methods, our CD2P
framework can efficiently save detection time and raise the F1-
score.

On the other hand, the attack duration affects the message
overheads of controller-based methods, as shown in Fig. 9(c).
Since more attack packets are generated when the attack lasts
longer, switches need to transmit more Packet In messages to
the controller in both PrCA and EDP, which increases their
message overheads significantly.

7.1.4 Attack Scenario A4

In Fig. 10(a), we show the detection time with 1–3 attackers.
These attackers inject their BDA flows into different switches in
Fig. 6, causing different effects on controller-based (i.e., PrCA
and EDP) and P4-based methods (i.e., BUNGEE and CD2P).
Since PrCA and EDP require the controller to analyze data
from all switches, more attackers imply that the controller can
collect more evidence of attacks, which facilitates the analysis.
So, the detection time of PrCA and EDP can be reduced if there
are more attackers. This phenomenon is especially evident
when the number of attackers increases from 1 to 2. On the
other hand, BUNGEE and CD2P let switches detect DDoS-F
attacks independently. In this case, the number of attackers
has no impact on their detection time. Despite this, P4-based
methods are still superior to controller-based methods in terms
of detection time.

The reasons above also explain how different numbers of
attackers affect F1-scores, as Fig. 10(b) shows. The F1-scores of
PrCA and EDP rise when there are more attackers, but those of
BUNGEE and CD2P will not change. Thanks to the threshold
adjustment mechanism in Section 5.1.2 and the attack blocking
mechanism in Section 5.4, our CD2P framework can achieve
the highest F1-score among all methods.

Fig. 10(c) presents the message overhead with 1–3 attackers.
For PrCA and EDP, the number of Packet In messages greatly
increases as there are more attackers. By allowing P4 switches
to detect DDoS-F attacks on their own, BUNGEE and CD2P
incur almost no message overhead.

7.1.5 Attack Scenario A5

Fig. 11(a) gives the detection time with hybrid network attacks
(i.e., mixing DDoS-F and non-DDoS attacks). In PrCA and EDP,
the controller additionally analyzes packets of the non-DDoS
attack (to check if a DDoS-F attack launches), so the detection
time of PrCA and EDP slightly increases in the case of hybrid
network attacks. For BUNGEE and CD2P, the DDoS-F packets
will be blocked by switch sa. On the other hand, switch sb

12 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

1000

1���

1���

22��

2���

3���

3���

PrCA EDP BUNGEE CD2P

D
e

te
c
ti
o

n
 t

im
e

 (
m

s
)

D�����	
� 2��

D�����	
� 3��

D�����	
� ���

(a) detection time

0��

0�0

0��

0��

0��

0��

�00

PrCA EDP BUNGEE CD2P

F
�
� s

c
o

re

��������� �0� ��������� 0�

��������� �0�

(b) F1-score

0

500

1000

1500

2000

2500

3000

3500

PrCA EDP BUNGEE CD2P

P
!
"
#
$
%&
'(
)
$
*
*
!
+
$
*

,-./45678 9:;

,-./45678 <:;

,-./45678 =:;

(c) message overhead

Fig. 9: Performance comparison between different methods in scenario A3 (i.e., different attack durations).

1000

>?@@

>A@@

BB@@

BC@@

E@@@

E?@@

PrCA EDP BUNGEE CD2P

D
e

te
c
ti
o

n
 t

im
e

 (
m

s
)

1 attacker

2 attackers

3 attackers

(a) detection time

GHII

GHJG

GHJK

GHJL

GHJM

GHJI

NHGG

PrCA EDP BUNGEE CD2P

O
Q
R s

c
o

re

1 attacker 2 attackers 3 attackers

(b) F1-score

0

500

1000

1500

2000

2500

3000

3500

PrCA EDP BUNGEE CD2P

S
T
U
V
W
XY
Z[
\
W
]
]
T
^
W
]

1 attacker

2 attackers

3 attackers

(c) message overhead

Fig. 10: Performance comparison between different methods in scenario A4 (i.e., different numbers of attackers).

1000

_`aa

_baa

ccaa

cdaa

eaaa

e`aa

PrCA EDP BUNGEE CD2P

D
e

te
c
ti
o

n
 t

im
e

 (
m

s
)

wfghijg kiklmmin oggopq

wfgh kiklmmin oggopq

(a) detection time

rstt

rsur

rsuv

rsux

rsuy

rsut

zsrr

PrCA EDP BUNGEE CD2P

{
|
} s

c
o

re

without ~�~����� attack

���� ~�~����� ������

(b) F1-score

0

500

1000

1500

2000

2500

3000

3500

PrCA EDP BUNGEE CD2P

�
�
�
�
�
��
��
�
�
�
�
�
�
�
�

������� �������� �� ¡¢

���� �������� �� ¡¢

(c) message overhead

Fig. 11: Performance comparison between different methods in scenario A5 (i.e., hybrid network attacks).

records the packets of non-DDoS attacks and sends reports to
the controller later for analysis. Therefore, the detection time
of BUNGEE and CD2P will not change in this case.

Fig. 11(b) presents the F1-score with hybrid network at-
tacks. Regarding PrCA and EDP, since the controller obtains
the packets of DDoS-F and non-DDoS attacks, some packets
of the non-DDoS attack could be mistaken for the packets of
the DDoS-F attack, which lowers their F1-scores. Since DDoS-F
and non-DDoS attacks are handled by different switches, the
F1-scores of both BUNGEE and CD2P remain the same even
if there are hybrid network attacks. This result also shows the
benefit of using P4 switches to detect DDoS-F attacks.

Fig. 11(c) gives the message overhead with hybrid network
attacks. As the packet-generating rate of the non-DDoS attack
is identical with a normal flow (i.e., around 5 packets/s), the
message overheads of PrCA and EDP slightly increase when
adding a non-DDoS attack. In BUNGEE and CD2P, switch sb

is actually aware that the packets do not belong to a DDoS-F
attack (but sb cannot know whether these packets belong to
a non-DDoS attack). According to the definition of message
overhead, the reports sent by sb will not be counted in the
message overheads of BUNGEE and CD2P6.

7.2 Performance on Detecting Non-DDoS Attacks

As discussed in Section 3, none of the existing methods build
ML models to detect keylogging or data theft (i.e., non-DDoS
attacks). Hence, we compare the DNN model (in CD2P) with
the support vector machine (SVM), which is one of the most
commonly used classification methods.

SVM is a kernel-based ML model for data classification and
regression analysis. Owing to its generalization capability and

6. In fact, even if we count in sb’s reports (below 100 Packet In mes-
sages), CD2P still has a much lower message overhead than PrCA and
EDP.

COLLABORATIVE DEFENSE AGAINST HYBRID NETWORK ATTACKS BY SDN CONTROLLERS AND P4 SWITCHES 13

TP

99�����

FP

0�����

FN

0�����

TN

99�����

P
r
e

d
ic

te
d

 c
la

s
s

Actual class

P
o
s
it
iv
e

N
e
g
a
ti
v
e

Positive Negative

(a) keylogging (SVM)

TP

��	�

�

FP

�	��

FN

�	����

TN

��	����

P
r
e

d
ic

te
d

 c
la

s
s

Actual class

N
e
g
a
ti
v
e

Positive Negative

P
o
s
it
iv
e

(b) keylogging (DNN)

TP

7������

FP

��7���

FN

�2�77��

TN

22��7��

P
r
e

d
ic

te
d

 c
la

s
s

Actual class

P
o
s
it
iv
e

N
e
g
a
ti
v
e

Positive Negative

(c) data theft (SVM)

TP

�������

FP

���1��

FN

������

TN

����� �

P
r
e

d
ic

te
d

 c
la

s
s

Actual class

N
e
g
a
ti
v
e

Positive Negative

P
o
s
it
iv
e

(d) data theft (DNN)

Fig. 12: Confusion matrices of SVM and DNN models.

discriminative power, SVM has attracted much attention from
the pattern recognition, data mining, and ML communities.
SVM is a powerful tool for addressing many binary clas-
sification problems (including attack identification). Besides,
SVM has been shown to be superior to other supervised ML
methods [47]. In effect, many studies apply SVM to recognize
various attacks, such as eavesdropping attacks [48], false data
injection attacks [49], and DDoS attacks [50]. Hence, we use
SVM for performance comparisons.

To train the SVM model, we set hyperparameters C and γ,
where C gives penalties for misclassified data points. A small
C value makes SVM choose a decision boundary with a large
margin, thereby increasing misclassifications. When the kernel
function is RBF (radial basis function), γ adjusts the distance of
influence of a training point. A small γ value results in a large
similarity radius and more points being grouped together. If
γ is large, the points need to be pretty close to each other to
be included in the same group, which may cause overfitting.
To tune hyperparameters, we use GridSearchCV [51] with the
instruction: “tuned parameters = [{‘kernel’: [‘rbf’], ‘gamma’:
[1e-3, 1e-4], ‘C’: [0.1, 1, 10, 100]}, {‘kernel’: [‘linear’], ‘C’:
[0.1, 1, 10, 100]}].” GridSearchCV returns the score for each
combination of γ (= 0.001 and 0.0001) and C (= 0.1, 1, 10, 100)
using the RBF kernel and each value of C (= 0.1, 1, 10, 100)
using the linear kernel. Then, we choose the one that has the
highest score, which sets C = 10 and γ = 0.001 (with RBF as
the kernel function).

For performance evaluation, we fetch 600,432 records from
the botnet dataset [38], where the training set contains 540,388
records and the validation set has 60,044 records. The attack
flow is injected into switch sc in Fig. 6. Then, Fig. 12 gives the
confusion matrices of SVM and DNN. In a confusion matrix,
each row represents an instance (i.e., positive or negative) in
the predicted class, and each column displays one instance in
the actual class. The matrix is composed of four entries: 1) the
true positive (TP) gives the percentage of packets where the
model predicts that they are attack packets, and these packets

TABLE 2: Performance of SVM and DNN on detecting attacks.
(a) keylogging

model accuracy precision recall F1-score
SVM 0.996990 0.997719 0.996258 0.996988
DNN 0.999193 0.999156 0.999229 0.999193

(b) data theft
model accuracy precision recall F1-score
SVM 0.847499 0.989830 0.702212 0.821576
DNN 0.980130 0.988236 0.971828 0.979963

TABLE 3: Amount of time taken to detect non-DDoS attacks.
procedure amount of time spent (in seconds)

report submission 6.299 (link bandwidth: 100 Mbps)
data processing 0.729
model training SVM: 1080.366, DNN: 139.041

attack identification SVM: 61.631, DNN: 3.481

actually are, 2) the false positive (FP) gives the percentage of
packets where the model predicts that they belong to attack
packets, but these packets actually are not, 3) the false negative
(FN) gives the percentage of packets where the model predicts
that they are not attack packets, yet these packets actually are,
and 4) the true negative (TN) gives the percentage of packets
where the model predicts that they are not attack packets, and
the packets actually are not. TP and TN are the correct cases,
while FP and FN are the wrong cases.

Regarding keylogging, since its features are relatively ap-
parent, both SVM and DNN can detect keylogging efficiently.
More specifically, the TPs of SVM and DNN (for detecting
keylogging) exceed 99.6 and 99.9, respectively. On the other
hand, data theft is a more crafty attack. In this case, SVM’s
TP drops below 70.3, while DNN’s TP still stays above 97.1.
The result demonstrates that the DNN model outperforms the
SVM model, especially in detecting data theft.

Table 2 lists the accuracy, precision, recall, and F1-score of
SVM and DNN on detecting keylogging and data theft, which
are calculated as follows:

accuracy = (TP + TN)/(TP + TN + FP + FN), (14)

precision = TP/(TP + FP), (15)

recall = TP/(TP + FN), (16)

F1-score = 2(precision× recall)/(precision + recall). (17)

As can be seen, the DNN model (used in CD2P) is superior
to the SVM model, and the performance gap between them is
especially evident when detecting data theft. This result shows
the high effectiveness of using the DNN model to detect non-
DDoS attacks, including keylogging and data theft.

Then, we study the amount of time taken by each proce-
dure in our CD2P framework for detecting non-DDoS attacks,
as shown in Table 3. Regarding the report submission proce-
dure, the amount of time taken by a P4 switch to send its
report to the controller will depend on the link bandwidth.
In particular, this procedure takes 6.299 s when the bandwidth
is 100 Mbps (i.e., fast Ethernet). The above result reveals that
the additional traffic (i.e., report submission) introduced by
CD2P will not add much latency to normal communications.
In addition, the data processing procedure (discussed in Sec-
tion 5.3.1) spends just 0.729 s on computation, which shows
its low complexity. Since the training set is larger than the
validation set, model training takes more time than attack
identification. As can be seen, DNN requires much less time
than SVM. Specifically, on model training and attack identifica-
tion, SVM consumes nearly 7.77 and 17.71 times as much time

14 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

as DNN, respectively. This result demonstrates the efficiency
of our DNN model.

8 CONCLUSION AND FUTURE WORK

Unlike previous studies using either an SDN controller or P4
switches solely to find DDoS-F attacks, this paper lets the
controller and P4 switches collaborate to resist hybrid network
attacks. In particular, we develop the CD2P framework, where
P4 switches drop DDoS-F packets and the controller identifies
non-DDoS attacks. To recognize DDoS-F attacks, each switch
exploits the proposed EAD scheme that can adjust thresholds
on IP entropies based on the network status. Except for DDoS-
F flows, switches store flow information in CSV format and
send the CSV reports to the controller for in-depth analysis. To
reduce the burden on the controller and switches, our design
in CD2P takes account of communication, computation, and
storage overheads for CSV reports. Moreover, switches send
reports when the controller is not busy to avoid overloading it.
Then, the controller builds a DNN model to analyze CSV re-
ports to discover keylogging and data theft. Simulation results
reveal that CD2P can detect DDoS-F attacks more quickly than
PrCA and EDP and more accurately than BUNGEE. Besides,
the DNN model used in CD2P outperforms the SVM model
in recognizing keylogging and data theft, in terms of detection
and time efficiency.

The EAD scheme is developed for DDoS-F attacks. There
are other types of DDoS attacks, such as amplification attacks
and slow attacks. A DNS amplification attack is a specimen of
amplification attack. It makes use of public DNS servers to
flood a victim with DNS responses [52]. A slow HTTP attack
is representative of slow attacks. The attacker divides HTTP
requests into parts and transmits them to the victim slowly to
use up resources [53]. Due to their different properties, these
DDoS attacks may not be detected by entropy-based methods
(including EAD). Hence, how to help P4 switches identify the
above DDoS attacks deserves further investigation. This may
require cooperation among multiple switches.

In CD2P, we build a shared DNN model for the controller
to detect two non-DDoS attacks, namely keylogging and data
theft. This demonstrates the feasibility and scalability of using
a single DNN model to recognize multiple attacks (by properly
selecting features, layers, neurons, and activation functions). In
effect, attacks are open-ended, and anticipating all of them in
a general solution is difficult or even infeasible. Despite this,
CD2P offers an efficient framework to make P4 switches filter
out DDoS-F packets and send necessary flow information to
the controller for analysis. If an attack X or a class of attacks
X is important or challenging, we can develop a new detecting
method for X (possibly tailoring the original DNN model or
adopting other ML methods) and easily add the method to the
controller. In this way, we can expand the practical coverage
of our CD2P framework (i.e., detecting new non-DDoS attacks)
without changing other components and the operation process
(in Fig. 2) of the framework.

REFERENCES

[1] N. Hoque, D.K. Bhattacharyya, and J.K. Kalita, “Botnet in DDoS
attacks: Trends and challenges,” IEEE Comm. Surveys & Tutorials, vol.
17, no. 4, pp. 2242–2270, 2015.

[2] W.K. Lai, Y.C. Wang, Y.C. Chen, and Z.T. Tsai, “TSSM: Time-sharing
switch migration to balance loads of distributed SDN controllers,”
IEEE Trans. Network and Service Management, vol. 19, no. 2, pp. 1585–
1597, 2022.

[3] Q. Yan, F.R. Yu, Q. Gong, and J. Li, “Software-defined networking
(SDN) and distributed denial of service (DDoS) attacks in cloud
computing environments: A survey, some research issues, and chal-
lenges,” IEEE Comm. Surveys & Tutorials, vol. 18, no. 1, pp. 602–622,
2016.

[4] P. Dong, X. Du, H. Zhang, and T. Xu, “A detection method for a novel
DDoS attack against SDN controllers by vast new low-traffic flows,”
Proc. IEEE Int’l Conf. Comm., 2016, pp. 1–6.

[5] E.F. Kfoury, J. Crichigno, and E. Bou-Harb, “An exhaustive survey
on P4 programmable data plane switches: Taxonomy, applications,
challenges, and future trends,” IEEE Access, vol. 9, pp. 87094–87155,
2021.

[6] N. Anerousis, P. Chemouil, A.A. Lazar, N. Mihai, and S.B. Weinstein,
“The origin and evolution of open programmable networks and
SDN,” IEEE Comm. Surveys & Tutorials, vol. 23, no. 3, pp. 1956–1971,
2021.

[7] Y.C. Wang and T.J. Hsiao, “URBM: User-rank-based management of
flows in data center networks through SDN,” Proc. IEEE Int’l Conf.
Computer Comm. and the Internet, 2022, pp. 142–149.

[8] Nexusguard, “DDoS statistical report for 1HY 2022,” http://blog.
nexusguard.com/threat-report/ddos-statistical-report-for-1hy-2022.

[9] M. McCormick, “Data theft: A prototypical insider threat,” in Insider
Attack and Cyber Security Beyond the Hacker. Boston: Springer, 2008,
ch. 4, pp. 53–68.

[10] D. Nyang, A. Mohaisen, and J. Kang, “Keylogging-resistant visual
authentication protocols,” IEEE Trans. Mobile Computing, vol. 13, no.
11, pp. 2566–2579, 2014.

[11] R. Mohammadi, R. Javidan, and M. Conti, “SLICOTS: An SDN-based
lightweight countermeasure for TCP SYN flooding attacks,” IEEE
Trans. Network and Service Management, vol. 14, no. 2, pp. 487–97, 2017.

[12] Y.H. Tung, H.C. Wei, Y.W. Ti, Y.T. Tsou, N. Saxena, and C.M. Yu,
“Counteracting UDP flooding attacks in SDN,” Electronics, vol. 9, no.
8, pp. 1–27, 2020.

[13] P. Rengaraju, V.R. Ramanan, and C.H. Lung, “Detection and preven-
tion of DoS attacks in software-defined cloud networks,” Proc. IEEE
Conf. Dependable and Secure Computing, 2017, pp. 217–223.

[14] K. Kalkan, G. Gur, and F. Alagoz, “SDNScore: A statistical defense
mechanism against DDoS attacks in SDN environment,” Proc. IEEE
Symp. Computers and Comm., 2017, pp. 669–675.

[15] Y.C. Wang and Y.C. Wang, “Efficient and low-cost defense against
distributed denial-of-service attacks in SDN-based networks,” Int’l J.
Comm. Systems, vol. 33, no. 14, pp. 1–24, 2020.

[16] D. Wu, J. Li, S.K. Das, J. Wu, Y. Ji, and Z. Li, “A novel distributed
denial-of-service attack detection scheme for software defined net-
working environments,” Proc. IEEE Int’l Conf. Comm., 2018, pp. 1–6.

[17] S. Salaria, S. Arora, N. Goyal, P. Goyal, and S. Sharma, “Implementa-
tion and analysis of an improved PCA technique for DDoS detection,”
Proc. IEEE Int’l Conf. Computing Comm. and Automation, 2020, pp. 280–
285.

[18] S. Gao, Z. Peng, B. Xiao, A. Hu, Y. Song, and K. Ren, “Detection and
mitigation of DoS attacks in software defined networks,” IEEE/ACM
Trans. Networking, vol. 28, no. 3, pp. 1419–1433, 2020.

[19] A. Mishra, B.B. Gupta, D. Perakovic, S. Yamaguchi, and C.H. Hsu,
“Entropy based defensive mechanism against DDoS attack in SDN-
cloud enabled online social networks,” Proc. IEEE Int’l Conf. Consumer
Electronics, 2021, pp. 1–6.

[20] C.S. Whittle and H. Liu, “Effectiveness of entropy-based DDoS
prevention for software defined networks,” Proc. IEEE Int’l Symp.
Technologies for Homeland Security, 2021, pp. 1–7.

[21] R. Li and B. Wu, “Early detection of DDoS based on ϕ-entropy in SDN
networks,” Proc. IEEE Information Technology, Networking, Electronic
and Automation Control Conf., 2020, pp. 731–735.

[22] H. Lotfalizadeh and D.S. Kim, “Investigating real-time entropy fea-
tures of DDoS attack based on categorized partial-flows,” Proc. Int’l
Conf. Ubiquitous Information Management and Communication, 2020, pp.
1–6.

[23] Z.Y. Shen, M.W. Su, Y.Z. Cai, and M.H. Tasi, “Mitigating SYN flood-
ing and UDP flooding in P4-based SDN,” Proc. Asia-Pacific Network
Operations and Management Symp., 2021, pp. 374–377.

[24] L.A.Q. Gonzalez, L. Castanheira, J.A. Marques, A. Schaeffer-Filho,
and L.P. Gaspary, “BUNGEE: An adaptive pushback mechanism for
DDoS detection and mitigation in P4 data planes,” Proc. IFIP/IEEE
Int’l Symp. Integrated Network Management, 2021, pp. 393–401.

[25] A.S. Ilha, A.C. Lapolli, J.A. Marques, and L.P. Gaspary, “Euclid: A
fully in-network, P4-based approach for real-time DDoS attack de-
tection and mitigation,” IEEE Trans. Network and Service Management,
vol. 18, no. 3, pp. 3121– 3139, 2021.

[26] D. Ding, M. Savi, F. Pederzolli, M. Campanella, and D. Siracusa, “In-
network volumetric DDoS victim identification using programmable

COLLABORATIVE DEFENSE AGAINST HYBRID NETWORK ATTACKS BY SDN CONTROLLERS AND P4 SWITCHES 15

commodity switches,” IEEE Trans. Network and Service Management,
vol. 18, no. 2, pp. 1191–1202, 2021.

[27] G. Li, M. Zhang, S. Wang, C. Liu, M. Xu, A. Chen, H. Hu, G. Gu, Q.
Li, and J. Wu, “Enabling performant, flexible and cost-efficient DDoS
defense with programmable switches,” IEEE/ACM Trans. Networking,
vol. 29, no. 4, pp. 1509–1526, 2021.

[28] J. Xing, W. Wu, and A. Chen, “Ripple: A programmable, decentralized
link-flooding defense against adaptive adversaries,” Proc. USENIX
Security Symp., 2021, pp. 3865–3881.

[29] H. Zhou, S. Hong, Y. Liu, X. Luo, W. Li, and G. Gu, “Mew: Enabling
large-scale and dynamic link-flooding defenses on programmable
switches,” Proc. IEEE Symp. Security and Privacy, 2023, pp. 3178–3192.

[30] J. Fu, Y. Liang, C. Tan, and X. Xiong, “Detecting software keyloggers
with dendritic cell algorithm,” Proc. Int’l Conf. Comm. and Mobile
Computing, 2010, pp. 111–115.

[31] C. Bacara, V. Lefils, J. Iguchi-Cartigny, G. Grimaud, and J.P. Wary,
“Virtual keyboard logging counter-measures using human vision
properties,” Proc. IEEE Int’l Conf. High Performance Computing and
Comm., 2015, pp. 1230–1235.

[32] S. Verma and A. Singh, “Data theft prevention & endpoint protection
from unauthorized USB devices,” Proc. Int’l Conf. Advanced Comput-
ing, 2012, pp. 1–4.

[33] P.C. Patel and U. Singh, “Detection of data theft using fuzzy inference
system,” Proc. IEEE Int’l Advance Computing Conf., 2013, pp. 702–707.

[34] J. C. Doshi and B. Trivedi, “Hybrid intelligent access control frame-
work to protect data privacy and theft,” in International Conference
on Advances in Computing, Communications and Informatics, 2015, pp.
1766–1770.

[35] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: The count-min sketch and its applications,” J. Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[36] Y.C. Wang and S.Y. You, “An efficient route management framework
for load balance and overhead reduction in SDN-based data center
networks,” IEEE Trans. Network and Service Management, vol. 15, no.
4, pp. 1422–1434, 2018.

[37] S. Sukparungsee, Y. Areepong, and R. Taboran, “Exponentially
weighted moving average: Moving average charts for monitoring the
process mean,” PLoS ONE, vol. 15, no. 2, pp. 1–24, 2020.

[38] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards
the development of realistic botnet dataset in the Internet of Things
for network forensic analytics: Bot-IoT dataset,” Future Generation
Computer Systems, vol. 100, pp. 779–796, 2019.

[39] S. Choudhary and N. Kesswani, “Analysis of KDD-Cup’99, NSL-
KDD and UNSW-NB15 datasets using deep learning in IoT,” Procedia
Computer Science, vol. 167, pp. 1561–1573, 2020.

[40] J.D. Prusa and T.M. Khoshgoftaar, “Improving neural network design
with new text data representation,” J. Big Data, vol. 4, no. 7, pp. 1–16,
2017.

[41] S. Santra, J.W. Hsieh, and C.F. Lin, “Gradient descent effects on
differential neural architecture search: A survey,” IEEE Access, vol.
9, pp. 89602–89618, 2021.

[42] P. Lukac and P. Tarabek, “Improving DNN solution using repeated
training,” Proc. Int’l Conf. Information and Digital Technologies, 2019,
pp. 311–315.

[43] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” Proc. Int’l Conf. Artificial Intelligence and Statistics, 2011,
pp. 315–323.

[44] A. Agrawal and C. Kim, “Intel Tofino2 – A 12.9Tbps P4-
programmable Ethernet switch,”Proc. IEEE Hot Chips 32 Symp., 2020,
pp. 1–32.

[45] P4-Utils. [Online]. Available: https://nsg-ethz.github.io/p4-utils/
index.html

[46] A. Hamza, H.H. Gharakheili, T. Benson, and V. Sivaraman, “Detecting
volumetric attacks on IoT devices via SDN-based monitoring of MUD
activity,” Proc. ACM Symp. SDN Research, 2019, pp. 36–48.

[47] J. Cervantes, F. Garcia-Lamont, L. Rodriguez-Mazahua, and A. Lopez,
“A comprehensive survey on support vector machine classification:
Applications, challenges and trends,” Neurocomputing, vol. 408, pp.
189–215, 2020.

[48] T.M. Hoang, T.Q. Duong, H.D. Tuan, S. Lambotharan, and L. Hanzo,
“Physical layer security: Detection of active eavesdropping attacks by
support vector machines,” IEEE Access, vol. 9, pp. 31595–31607, 2021.

[49] Z. Zhang, J. Hu, J. Lu, J. Cao, and F.E. Alsaadi, “Preventing false data
injection attacks in LFC system via the attack-detection evolutionary
game model and KF algorithm,” IEEE Trans. Network Science and
Engineering, vol. 9, no. 6, pp. 4349–4362, 2022.

[50] G.O. Anyanwu, C.I. Nwakanma, J.M. Lee, and D.S. Kim, “Optimiza-
tion of RBF-SVM kernel using grid search algorithm for DDoS attack
detection in SDN-based VANET,” IEEE Internet of Things J., vol. 10,
no. 10, pp. 8477–8490, 2023.

[51] GridSearchCV. [Online]. Available: https://scikit-learn.org/stable/
modules/generated/sklearn.model selection.GridSearchCV.html

[52] Cybersecurity and Infrastructure Security Agency, “DNS
amplification attacks,” https://www.cisa.gov/uscert/ncas/alerts/
TA13-088A.

[53] Y.C. Wang and R.X. Ye, “Credibility-based countermeasure against
slow HTTP DoS attacks by using SDN,” Proc. IEEE Annual Computing
and Comm. Workshop and Conf., 2021, pp. 890–895.

