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Delay-Aware Container Scheduling in Kubernetes
Wei-Kuang Lai, You-Chiun Wang, and Syu-Chen Wei

Abstract—Kubernetes is a powerful tool to manage containerized applications, which is also regarded as one promising platform to support

microservices in edge computing. The scheduler is a key component of Kubernetes. It allocates each pod (i.e., a set of running containers)

to one worker node (i.e., a machine). The default scheduler in Kubernetes is designed for the cloud environment containing homogeneous

nodes. However, IoT edge nodes usually have various computing power and network bandwidth. The paper proposes a delay-aware container

scheduling (DACS) algorithm to address the issue of node heterogeneity in edge computing. To efficiently assign pods to worker nodes, DACS

takes account of not only residual resources of worker nodes but also potential delays caused by the pod assignment. We build a Kubernetes

cluster by VMware to evaluate system performance. Experimental results reveal that DACS can significantly reduce both processing and

network delays, thereby helping Kubernetes perform more efficiently in an edge environment.

Index Terms—container, delay, edge, Kubernetes, scheduling.

✦

1 INTRODUCTION

AN IoT (Internet of Things) system consists of many small
computing devices that can self-organize and comprise a

network. They keep sensing the surroundings and produce a
massive amount of data to be sent through the network. Since
it is not efficient to send all data to the cloud for processing,
parts of the analytic work are transferred from the cloud to the
edge [1]. However, distributing and managing loads to several
hundred edge nodes is a big problem. A promising solution is
to use containerized techniques such as Kubernetes.

Kubernetes, a framework developed for deploying and or-
chestrating containerized applications, is widely used in cloud-
based web environments [2]. It also overcomes various diffi-
culties that users may encounter when applying IoT solutions,
like load management of IoT edge nodes. Kubernetes allocates
resources to containers, which offer isolated contexts to carry
out microservices. Containers should be carefully managed to
distribute resources and loads, while ensuring both scalability
and availability. To do so, Kubernetes uses the master-worker
architecture and labels objects by name tags. It also performs
jobs essential for reliably executing applications with efficient
resource utilization, such as replication and failover.

Many studies [3]–[6] have pointed out the necessity and
advantages of adopting Kubernetes in edge environments.
More concretely, an edge environment is decentralized, which
means that edge resources are more unstable, as compared to
centralized cloud resources [7]. How to reliably manage edge
resources and schedule tasks becomes a challenge. Kubernetes
offers a highly available execution environment for containers
and applies the Linux container technique [8] to support fault
tolerance and auto-scaling. Hence, Kubernetes is well suited
for managing unstable resources in an edge environment.

In Kubernetes, pods are considered as the smallest units of
computing. A pod is a group of containers with shared storage
and network resources, whose contents will be co-located and
co-scheduled, and run in a shared context. Besides, a worker
node (WN) is a machine used to host pods for execution, which
can be either physical or virtual. Then, scheduling refers to how
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TABLE 1: Comparison between KC scheduling and HD scheduling.
item KC scheduling HD scheduling

consideration resources owned by WNs capacities of instances
target processing/network delays task execution time

methodology various (Section 3) DAG or its variations

to assign pods to WNs. Kubernetes has a default scheduler
(called kube-scheduler) that chooses a WN for each pod by a
two-step method. The filtering step finds a set of WNs that
have sufficient resources to satisfy the resource demand of a
pod. Then, the scoring step ranks these WNs and assigns the
pod to the highest-ranking WN.

The kube-scheduler is competent for a cloud environment
that contains homogeneous nodes with a similar number of
resources. Nevertheless, IoT edge nodes are usually heteroge-
neous, which have diverse computing power, memory space,
and network bandwidth. Hence, Kubernetes performance may
degrade in an edge environment. To conquer the above prob-
lem, we propose a delay-aware container scheduling (DACS)
algorithm in this paper. To assign pods to WNs more efficiently,
DACS ponders not only residual resources of WNs but also
potential delays due to the pod assignment. In particular,
we consider two critical delays: the processing delay that each
WN takes to handle the assigned pods, and the network delay
caused by transmissions of container images and user data. To
evaluate system performance, we create a Kubernetes cluster
via the VMware Workstation [9]. Experimental results reveal
that the DACS algorithm can keep both delays low, thereby
reducing the amount of time required to complete all tasks, as
compared with the existing solutions. Our contribution is to
propose a novel scheduling algorithm to let Kubernetes work
more efficiently in the edge environment by considering the
heterogeneity of IoT edge nodes.

The Kubernetes container scheduling (called KC scheduling)
discussed in this paper is different from the delay-sensitive
scheduling in heterogeneous distributed environments (called
HD scheduling). In HD scheduling, a set of distributed tasks
with dependencies are dispatched to heterogeneous comput-
ing instances (e.g., CPUs or GPUs), whose primary objective
is to minimize the execution time of tasks. In essence, there
are three substantial differences between KC scheduling and
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Fig. 1: Architecture of a Kubernetes cluster.

HD scheduling, as summarized in Table 1. First, KC schedul-
ing considers the number of different resources (e.g., CPU,
memory, and network) owned by WNs, while HD scheduling
takes account of the capacities of computing instances. Second,
KC scheduling aims to reduce both processing and network
delays, whereas HD scheduling targets on saving task exe-
cution time. Third, there are various KC scheduling methods
proposed, as discussed later in Section 3. On the other hand,
most HD scheduling methods [10]–[12] are based on a directed
acyclic graph (DAG) or its variations.

This paper is organized as follows: Section 2 introduces
Kubernetes, Section 3 surveys the related work, and Section 4
gives the system model. We elaborate on the DACS algorithm
in Section 5 and discuss some issues in Section 6. Afterward,
the performance evaluation is presented in Section 7. Finally,
Section 8 concludes this paper and gives future work.

2 OVERVIEW OF KUBERNETES

2.1 Kubernetes Architecture

Fig. 1 gives the architecture of a Kubernetes cluster, which
contains one master node and multiple WNs. The master node
(i.e., control plane) is responsible for allocating work to WNs
and directing communications across the cluster. It has four
major components. The API server offers internal and external
interfaces to Kubernetes, which follows the representational
state transfer (REST) style [13]. An operator employs the API
server to cluster operations. The master node also uses it to
communicate with WNs. The scheduler assigns pending pods
to the WNs with enough resources to meet the users’ require-
ments. The default scheduler is called the “kube-scheduler”
(as discussed in Section 2.2), but it can be replaced by other
plug-ins. The controller manager consists of multiple controllers.
Each controller acts as a control loop that observes the shared
state of the Kubernetes cluster via the API server and transfers
the current state to the desired state by making some changes.
Examples of controllers include the replication controller, end-
points controller, namespace controller, and service-accounts
controller. The etcd is used to store data (e.g., configuration,
state, and metadata). Any node in the cluster can read and
write data through the etcd component.

WNs can host containers. A container is the lowest-level
unit of the execution of an application, which holds running
programs, libraries, and dependencies. There are three primary
components in a WN. The kubelet ensures that the WN is in a
running state and monitors the wholeness of every container. It
takes care of the process of starting, stopping, and maintaining
containers. The WN also interacts with the master node via

its kubelet. The kube-proxy carries on the implementation of
both load balancer and network proxy. It routes traffic to an
adequate container based on the IP address and port number.
Then, the container runtime creates and manages containers. To
facilitate management, containers are grouped into pods.

2.2 Kubernetes Scheduler

When pods are created, they are added to a pending queue.
Then, the scheduler iteratively fetches one pod from the queue
and assigns it to a WN according to the pod’s request. The
default scheduler, namely kube-scheduler, employs a two-step
method. In the filtering step, the kube-scheduler checks if the
unused resources on a selected WN are sufficient. If not, the
WN is filtered out. On the other hand, the scoring step ranks
WNs that survived filtering by using the scoring equations:

score =
SCPU + SMEM

2
× 10, (1)

SCPU =
XCPU − YCPU

XCPU

and SMEM =
XMEM − YMEM

XMEM

, (2)

where XCPU and XMEM denote the WN’s CPU and memory
capacities, respectively. Besides, YCPU and YMEM are the number
of CPU and memory resources requested by the WN’s pods,
respectively. After that, the kube-scheduler chooses the WN
whose score is the highest to serve the pod. If there is a tie, a
WN is randomly selected. In this way, the loads among WNs
could be balanced in the long term [14].

The kube-scheduler is easy to implement and can be
suitable for a cloud environment with homogeneous nodes.
However, the computing power and network bandwidth of
IoT edge nodes tend to be varied, which may result in different
delays in processing and data transmissions. This issue is not
addressed in the design of kube-scheduler.

2.3 Kubernetes Networking

Kubernetes networking takes charge of routing user requests
between nodes in the cluster to their target pods, which relies
on network plug-ins like Calico [15]. The iptables module [16]
is used to control the network connections between pods. In
Kubernetes, users can connect to their pods without keeping
track of IP addresses. Furthermore, since each pod has its IP
address and the containers within a pod listen to their native
ports, the port mapping can be simplified or even ignored.

When a request reaches a WN, the WN’s kube-proxy settles
where the request is routed. If the target is a local pod on the
same WN, the request is directly passed to the pod’s interface.
Otherwise, the request is forwarded to the assigned WN based
on the L3 routing mechanism adopted and incorporated by the
network plug-in. In this case, there will be a network delay.
To evaluate this delay, we employ the average round-trip time
(RTT) of packets between two nodes as a metric in our work.

3 RELATED WORK

Different scheduling methods have been proposed for Ku-
bernetes, which are divided into three categories. Label-based
scheduling methods arrange pods through the label mechanism
in Kubernetes. Resource-based scheduling methods handle pod
allocation based on the number of resources owned by WNs.
Delay-based scheduling methods take account of delays when
assigning pods to WNs.
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3.1 Label-based Scheduling Methods

Kubernetes offers a label mechanism to let pods be assigned to
the WNs that meet certain conditions. For example, a user can
request the scheduler to allocate the application to a WN with
solid-state disks. Users need to know what types of labels are
supported in a Kubernetes cluster.

In [17], four labels are employed for applications: high CPU
usage, low CPU usage, high disk usage, and low disk usage.
To reduce resource contention, the containers that wrap many
applications with high CPU or disk usage will not be assigned
to the same WN. The work [18] proposes a labeling system to
customize labels, where a label indicates the usage degree (i.e.,
large, medium, and small) of a resource by each application.
The scheduler assigns pods to WNs by referring to the labels
of their applications. However, as labels hold only information
on a rough amount of resource consumption by applications,
the scheduler cannot assign pods to WNs very efficiently to
improve their utilization.

3.2 Resource-based Scheduling Methods

Hu et al. [19] model the scheduling of containers through a
vector bin packing problem. They assume that the containers
of a distributed service have dependencies, and improve the
tradeoff between load balance and dependency of WNs. The
study [20] selects a WN for each container according to six
criteria: CPU utilization, memory utilization, disk utilization,
power consumption, the number of running containers, and
the time required to send the container image. Two schedulers
are proposed in [21]. The batch scheduler deals with tasks
in rush time to increase throughput. The dynamic scheduler
handles long-running tasks (e.g., deep-learning tasks) that are
hungry for CPU resources, where their priorities may change.

With empirical profiling, Han et al. [22] analyze resource
demands of the microservices for sensor data collection, Word-
Press, and online shopping, and use a greedy-based method to
schedule containers based on the profiled result. The study [23]
indicates that the overhead from network traffic and resource
contention in disks may degrade Kubernetes performance, so it
assigns containers that have dependencies in data to the same
WN. Nguyen et al. [24] apply Kubernetes to fog computing,
which allots resources to fog nodes according to the amount
of network traffic that applications access at various locations.
However, the above studies do not address the delay issue.

3.3 Delay-based Scheduling Methods

Some scheduling methods consider delays caused by different
WN capabilities or network transmissions, which apply to
edge environments. The work [25] assumes that more running
containers on a WN postpone their completion time due to
vying for the WN’s resources. It estimates the contention rate
(i.e., a measurement of degrees of resource competition) of
each WN and then schedules containers to balance the resource
contention on WNs. Fard et al. [26] aim to maximize system
throughput, which is reflected by the number of completed
microservices in a time interval, where the execution time of a
microservice includes the scheduling latency, the waiting time
for a WN, and the runtime of the microservice. However, both
[25] and [26] consider only the processing delays on WNs.

Yin et al. [27] indicate that the completion time of a task
will depend on the execution time on its WN and the network
delay to transmit the task’s container image and data. Given

the deadlines of tasks, a scheduling approach is proposed to
increase the number of accepted tasks (i.e., the tasks can be
done within deadlines). Unlike the objective in [27], our work
targets minimizing processing and network delays. The study
[28] diminishes the service delivery time of each application,
which is defined as the sum of data propagation and process-
ing time for the application. The propagation time is estimated
by the average input data size of the application divided by the
network bandwidth. As compared with [28], we additionally
consider the average RTTs between nodes, which offers a more
accurate estimation of network delays. In [29], RTT values are
assigned to WNs to be labels, which helps the scheduler place
microservices in specific zones or suitable WNs based on the
location delays. The study [30] applies the concept in [29] to
deploying service function chains, where the containers of the
same chain are placed on the adjacent WNs with lower RTT
values. Both [29] and [30] designate some WNs as preferred
nodes and assign pods to these WNs when they have enough
resources. However, doing so would burden preferred nodes
with heavy loads and thus increase their processing delays.

As compared with the above methods, our DACS algo-
rithm assigns pods to WNs according to their resources and
factors both processing and network delays incurred by as-
signments. DACS considers node heterogeneity, which is fairly
common in edge computing. Taking node heterogeneity into
consideration can greatly better container scheduling, which
should not be ignored. Hence, DACS can make Kubernetes
perform more efficiently in an edge environment.

4 SYSTEM MODEL

We are given a Kubernetes cluster that contains a set N̂ of

WNs. For each WN ni ∈ N̂ , a vector ~Ri = (rCPUi , rMEMi , rNETi )
comprises its available resources, where rCPUi , rMEMi , and rNETi

denote the number of ni’s residual CPU, memory, and network

resources, respectively1. There is a set P̂ of pods in the cluster.

For each pod pj ∈ P̂ , a vector ~Cj = (cCPUj , cMEMj , cNETj ) presents
its basic demand for resources, where cCPUj , cMEMj , and cNETj

represent the minimum number of CPU, memory, and network
resources that pj needs to complete its task, respectively.

Suppose that a user uk logins to a node fl(uk), and uk’s
application executes on a pod pj assigned to a WN ni, where

fl(uk) ∈ N̂ ∪ {m̃}, ni ∈ N̂ , and m̃ is the master node. If
fl(uk) 6= ni, pj is a remote pod; otherwise, pj is a local pod.
To efficiently assign pods to WNs, we should consider residual
resources of WNs and also delays caused by pod assignments.
Let D̃p(uk, pj , ni) and D̃n(uk, pj , ni) denote the processing delay
and network delay of uk’s application running on pod pj hosted
by WN ni (How to calculate these two delays will be discussed
in Section 5.1). Besides, let zik,j be an indicator of whether uk’s

application runs on pod pj of WN ni. If so, zik,j = 1; otherwise,

zik,j = 0. Then, the scheduling problem can be expressed by

Minimize
1

|Û |

∑

uk∈Û

∑

pj∈P̂

∑

ni∈N̂

zik,j × (αD̃p(uk, pj , ni)+

(1− α)D̃n(uk, pj , ni)), (3)

1. Similar to most studies discussed in Section 3, the CPU resource is the
quantized computing power of the CPU, the memory resource is the space
of the RAM, and the network resource is the network bandwidth.
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TABLE 2: Summary of notations.
notation definition

Û set of users (uk : a user in Û )

P̂ set of pods (pj : a pod in P̂)

N̂ set of WNs (ni: a WN in N̂ )

N̂CAN, N̂SEL candidate sets found by the scheduling and

ranking modules (N̂SEL ⊆ N̂CAN ⊆ N̂ )
~Ri ni’s resource vector, ~Ri = (rCPUi , rMEMi , rNETi )

for CPU, memory, and network resources
~Cj pj ’s demand vector, ~Cj = (cCPUj , cMEMj , cNETj )

for CPU, memory, and network resources
α coefficient to adjust the weights of delays
zi
k,j

indicator to check if uk’s app runs on pj of ni

D̃p(uk, pj , ni) processing delay of uk’s app on pj hosted by ni

D̃n(uk, pj , ni) network delay of uk’s app on pj hosted by ni

Ã(cCPUj , lCPUj , rCPUi ) the number of ni’s CPU resources given to pj
(lCPUj : limit of CPU resources given to pj )

fl(uk) the WN to which uk logins
fv(uk) data volume of uk’s app
τ(ua, ub) average RTT between two nodes ua and ub

ζi the number of pods served by ni

Ωi,j average delay for ni to serve pj
app: application

subject to

0 ≤ α ≤ 1, (4)

zik,j ∈ {0, 1}, (5)

cCPUj ≤ rCPUi , cMEMj ≤ rMEMi , cNETj ≤ rNETi , if zik,j = 1, (6)
∑

ni∈N̂
zik,j ≤ 1, ∀pj ∈ P̂. (7)

The objective function in Eq. (3) aims to minimize the average

delay for users to access their applications, where Û is the set
of users. To add flexibility, we employ a coefficient α to adjust
the weights of processing and network delays. For constraints,
Eq. (4) shows that α is between 0 and 1, and Eq. (5) points
out that zik,j is an indicator whose value is either 0 or 1.
Eq. (6) gives the resource constraints, where WN ni must have
enough CPU, memory, and network resources to meet pod
pj ’s basic requirement (if pj is served by ni). Then, Eq. (7)
means that each pod can be placed on only a WN at most
if designated. The above formulation is in the form of mixed-
integer linear programming (MILP), so the scheduling problem
is NP-hard. Table 2 summarizes the notations used in this
paper.

5 THE PROPOSED DACS ALGORITHM

Our DACS algorithm has two modules. For each pod pj in

P̂ , the scheduling module filters out inappropriate WNs from N̂
according to pj ’s resource demand (i.e., ~Cj). Then, the ranking
module grades the WNs that pass filtering brought up by the
scheduling module, and presents it with the highest-rank WN
to run pj . To do so, the ranking module takes account of not
only residual resources of WNs but also the processing and
network delays induced by the pod assignment. Below, we
discuss the calculation of delays, detail both scheduling and
ranking modules, and give the innovation points of DACS.

5.1 Delay Calculation

Let fv(uk) be the volume of data of a user uk’s application to

be processed. When uk’s application runs on a pod pj ∈ P̂

assigned to a WN ni ∈ N̂ , the processing delay is defined by

D̃p(uk, pj , ni) =
fv(uk)

Ã(cCPUj , lCPUj , rCPUi )
, (8)

where Ã(cCPUj , lCPUj , rCPUi ) is the number of CPU resources given
to pj . According to the Kubernetes documentation [31], each
user can specify both demand (i.e., cCPUj ) and limit (i.e., lCPUj )
of CPU resources for his/her pod pj , where cCPUj ≤ lCPUj . If
ni has ample CPU resources, pj can be allocated with more
CPU resources to expedite its completion (but no more than
lCPUj threshold). Hence, we adopt function Ã(cCPUj , lCPUj , rCPUi )
instead of demand cCPUj in the denominator of Eq. (8). For
example, we can define the function as follows:

Ã(cCPUj , lCPUj , rCPUi ) = max{cCPUj ,min{ϕrCPUi , lCPUj }}, (9)

where rCPUi ≥ cCPUj and 0 < ϕ ≤ 1. In this way, we can avoid a
pod consuming the most of ni’s residual CPU resources when
lCPUj is set too large. Specifically, if lCPUj > ϕrCPUi > cCPUj , pj is
allocated with ϕrCPUi CPU resources to speed up execution. On
the other hand, when ni’s CPU resources are not plenteous
(i.e., cCPUj > min{ϕrCPUi , lCPUj }), pj will be given the minimum
guaranteed number cCPUj of CPU resources.

Depending on the location of pod pj , there are two cases
for calculating the network delay of uk’s application. If pj is a
local pod (i.e., fl(uk) = ni), the network delay will be

D̃n(uk, pj , ni) = tIMj + fv(uk)/c
NET

j . (10)

The first term tIMj indicates the amount of time required to
download pj ’s container image. The second term fv(uk)/c

NET
j

gives the amount of time taken to transmit uk’s application
data. We use bandwidth demand cNETj in the denominator of
the second term. On the other hand, when pj is a remote pod
(i.e, fl(uk) 6= ni), we estimate the network delay as follows:

D̃n(uk, pj , ni) = tIMj +
fv(uk)

cNETj

+
τ(ni, fl(uk)) + σi

2
. (11)

In Eq. (11), the last term indicates the communication latency
from ni to fl(uk), where τ(ni, fl(uk)) is the average RTT
between ni and fl(uk), and σi is the standard deviation of
RTTs between ni and all other WNs in the Kubernetes cluster:

σi =

√

√

√

√

∑

na∈N̂\{ni}
τ(ni, na)2

|N̂ | − 1
− µ2

i , (12)

µi =

∑

nb∈N̂\{ni}
τ(ni, nb)

|N̂ | − 1
. (13)

Specifically, considering that the network may be sometimes
unstable, we thus add the standard deviation σi to the calcu-
lation of the last term in Eq. (11) to reflect network variation.

5.2 Scheduling Module

Algorithm 1 gives the pseudocode of the scheduling module.
We use a variable ζi to record the number of pods that each

WN ni ∈ N̂ has served (this information is required by the
ranking module, as discussed later in Section 5.3). The code
in lines 1–2 initializes the ζi value. Then, the for-loop in lines

3–15 iteratively picks a pod pj from P̂ and finds a suitable WN

to cope with pj , until all pods in P̂ have been checked. To do

so, we maintain a candidate set N̂CAN for pj , which is initially

set to N̂ (i.e., all WNs in the Kubernetes cluster), as shown
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Algorithm 1: The Scheduling Module

Data: set Û of users, set P̂ of pods, and set N̂ of WNs
in a Kubernetes cluster

Result: assignment of a WN in N̂ for each pod in P̂
1 foreach ni ∈ N̂ do
2 ζi ← 0;

3 foreach pj ∈ P̂ do

4 N̂CAN ← N̂ ;

5 uk ← the user in Û whose application runs on pj ;

6 foreach ni ∈ N̂CAN do

7 if ~Ri <F
~Cj then

8 N̂CAN ← N̂CAN \ {ni};

9 if N̂CAN = ∅ then
10 pj .state← pending;
11 continue;

12 nx ← Ranking(uk, pj , N̂CAN);
13 Assign pod pj to WN nx;
14 ζx ← ζx + 1;

15 Update ~Rx based on ~Cj ;

in line 4. Moreover, let uk ∈ Û be the user whose application
runs on pj . Like the filtering step in kube-scheduler, the code

in lines 6–8 checks each WN ni in N̂CAN, and removes those
WNs without sufficient CPU, memory, or network resources

(i.e., rCPUi < cCPUj , rMEMi < cMEMj , or rNETi < cNETj ) from N̂CAN. Here,

we denote by “~Ri <F
~Cj” the above check in line 7.

However, if N̂CAN becomes empty after the filtering step in
lines 6–8, which implies that no WN in the Kubernetes cluster
has enough resources to serve pj , we set pj ’s state to pending.
In this case, pj will be scheduled in the next round. The code
is given in lines 9–11. Otherwise, we find an appropriate WN

from N̂CAN by the ranking module. Suppose that the ranking
module returns a WN nx. Then, we assign pj to nx, increase
ζx by one (since nx will serve pj), and update nx’s resource

vector ~Rx according to pj ’s demand vector ~Cj as follows:

rCPUx = rCPUx − Ã(cCPUj , lCPUj , rCPUx ), (14)

rMEMx = rMEMx − Ã(cMEMj , lMEMj , rMEMx ), (15)

rNETx = rNETx − cNETj . (16)

In Eqs. (14) and (15), nx will allocate Ã(cCPUj , lCPUj , rCPUx ) CPU

resources and Ã(cMEMj , lMEMj , rMEMx ) memory resources to pj , as
mentioned earlier in Section 5.1. Here, we can use Eq. (9)
to define Ã(cMEMj , lMEMj , rMEMx ) by replacing the term “CPU” with
the term “MEM”. Besides, nx gives pj the number of network
resources that pj requests (i.e., cNETj ), as shown in Eq. (16).

Fig. 2(a) presents an example of a Kubernetes cluster with

four WNs, where N̂ = {n1, n2, n3, n4}. Suppose that a user
uk logins to WN n1, whose application runs on pod pj and

pj ’s demand vector is ~Cj = (4, 5, 3). Each WN has served
some pods, and the resource vectors of WNs n1, n2, n3, and

n4 are ~R1 = (7, 8, 8), ~R2 = (2, 5, 5), ~R3 = (9, 7, 8), and ~R4 =
(4, 3, 6), respectively. According to Algorithm 1, the candidate

set N̂CAN is initially set to {n1, n2, n3, n4} by line 4. In lines
6–8, we filter out WNs without enough resources to serve pj .

Because ~R2 <F
~Cj and ~R4 <F

~Cj , both WNs n2 and n4 are

removed from N̂CAN (due to not enough CPU and memory
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Fig. 2: An example of the execution of the DACS algorithm.

resources, respectively). Hence, we obtain N̂CAN = {n1, n3},
from which the ranking module in Section 5.3 will pick a WN
to serve pj . Then, Theorem 1 analyzes the time complexity of
the scheduling module in Algorithm 1.

Theorem 1. Given ξP pods in P̂ and ξN WNs in N̂ , Algorithm 1
takes O(ξP (ξN + Ts)) time in the worst case, where Ts is the time
required to run the ranking module.

Proof: In Algorithm 1, the first for-loop in lines 1–2 takes
O(ξN ) time. All other statements are wrapped in the second

for-loop (in lines 3–15), which repeats ξP times. Since N̂CAN ⊆
N̂ , we have |N̂CAN| ≤ |N̂ | = ξN . Hence, the inner for-loop in
lines 6–8 spends no more than O(ξN ) time. Apart from line 12,
which needs Ts time to run the ranking module, each residual
statement takes a constant time. Thus, the time complexity is
O(ξN ) + ξP (O(ξN ) + Ts +O(1)) = O(ξP (ξN + Ts)).

5.3 Ranking Module

The ranking module picks the WN with the highest standing

from candidate set N̂CAN to run pod pj . Algorithm 2 gives the

pseudocode. For each WN ni in N̂CAN, we calculate the delay
D̃p(uk, pj , ni) for ni to process pj by Eq. (8). If pj is a local
pod, we compute its network delay by Eq. (10); otherwise, we
adopt Eq. (11). The code is given in lines 2–6. By combining
processing and network delays, line 7 gives the average delay
Ωi,j for ni to serve pj , which corresponds to the objective
function in Eq. (3). However, when ni has been assigned with
other pods (i.e., ζi > 0), we have to consider the extra delay
caused by context switch and resource competition, as denoted by
Γi. How to estimate Γi will be discussed in Section 6.1.

Afterward, we rank each WN in N̂CAN based on its average
delay Ωi,j , where the lower the average delay is, the higher the
rank will be. Then, line 10 picks the WN with the highest rank,
which is denoted by nref. Moreover, we also choose a subset

N̂SEL of WNs from N̂CAN to be final candidates. Naturally, nref
should be the default member in N̂SEL, as indicated by line

11. When a WN ni ∈ N̂CAN (ni 6= nref) satisfies the following

condition, it is added to N̂SEL:

Ωi,j ≤ Ωref + λ, (17)
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Algorithm 2: The Ranking Module

Data: user uk, pod pj , and candidate set N̂CAN of WNs
Result: the selected WN to serve pj

1 foreach ni ∈ N̂CAN do

2 Calculate D̃p(uk, pj , ni) by Eq. (8);
3 if fl(uk) = ni then

4 Calculate D̃n(uk, pj , ni) by Eq. (10);
5 else

6 Calculate D̃n(uk, pj , ni) by Eq. (11);

7 Ωi,j ← αD̃p(uk, pj , ni) + (1− α)D̃n(uk, pj , ni);
8 if ζi > 0 then
9 Ωi,j ← Ωi,j + Γi;

10 nref ← argmin
ni∈N̂CAN

Ωi,j ;

11 N̂SEL ← {nref};
12 Let Ωref be the average delay of nref;

13 foreach ni ∈ N̂CAN \ {nref} do
14 if Ωi,j ≤ Ωref + λ then

15 N̂SEL ← N̂SEL ∪ {ni};

16 if |N̂SEL| > 1 then
17 return argmax

ni∈N̂SEL
min{rCPUi , rMEMi };

18 return nref;

where Ωref denotes the average delay of nref and λ is a small
constant. The idea behind Eq. (17) is that if ni’s average delay
is merely slightly larger than nref, picking nref or ni doesn’t
make much of a difference (in terms of the average delay). In
this case, we should view ni as a final candidate, and refer
to other metrics to compare nref with ni. The corresponding
code is presented in lines 13–15.

If there is only one final candidate in N̂SEL (which is
the best WN), the ranking module directly returns nref by

line 18. Otherwise, among all candidates in N̂SEL, we select
the WN with the maximum combination of residual CPU
and memory resources. The code is given in lines 16–17.
Intuitively, one may suggest adopting the sum of residual
CPU and memory resources (i.e., rCPUi + rMEMi ) to represent
the combination. However, doing so may encounter some
extreme conditions. Let us consider an example with two

WNs na and nb in N̂SEL, where (rCPUa , rMEMa ) = (1, 9) and
(rCPUb , rMEMb ) = (4, 5). Besides, pj requires 1 CPU resource
and 2 memory resources. Since rCPUa + rMEMa > rCPUb + rMEMb ,
na is chosen. However, na’s CPU resources will be used up,
leaving many memory resources wasted. Hence, we adopt
min{rCPUi , rMEMi } in line 17 to represent the combination. In this
case, min{rCPUa , rMEMa } < min{rCPUb , rMEMb }, so nb is chosen, which
is a better solution.

Fig. 2(b) continues the example discussed in Section 5.2,

where N̂CAN = {n1, n3}. As WN n3 has more CPU resources
than WN n1, n1 has a higher processing delay than n3, that
is, D̃p(uk, pj , n1) > D̃p(uk, pj , n3). Since user uk logins to n1,
pod pj is a local pod for n1 and a remote pod for n3. Hence,

n1 has a lower network delay than n3, that is, D̃n(uk, pj , n1) <
D̃n(uk, pj , n3). Let α = 0.5, Γ1 = Γ3 = 0.1 (i.e., overhead of
context switch and resource competition), and λ = 0.05. The
average delays for both WNs to serve pj will be

n1 : Ω1,j = 0.5× 5 + 0.5× 2 + 0.1 = 3.6,

n3 : Ω3,j = 0.5× 3 + 0.5× 3 + 0.1 = 3.1.

Since Ω1,j > Ω3,j + λ (i.e., the condition in line 14 is not
met), we thus assign pj to n3. Theorem 2 analyzes the time
complexity of the ranking module in Algorithm 2.

Theorem 2. Given ξC WNs in N̂CAN, Algorithm 2 requires
O(ξC log2 ξC) time in the worst case.

Proof: In Algorithm 2, the first for-loop (i.e., lines 1–9) re-
peats ξC times. The calculation of Eq. (8) and Eq. (10) take O(1)
time. In Eq. (11), we need the standard deviation σi of RTTs
between a WN ni and all other WNs, as computed by Eq. (12).
Fortunately, σi can be calculated in advance before running
the ranking module. Hence, line 6 takes O(1) time. Since the
code in lines 7–9 spends a constant time, the first for-loop takes
O(ξC) time. Finding a WN with the minimum average delay in
line 10 requires O(ξC log2 ξC) time, as we have to sort all WNs

in N̂CAN. The second for-loop in lines 13–15 takes O(ξC − 1)
time. Since N̂SEL ⊆ N̂CAN, we have |N̂SEL| ≤ |N̂CAN| = ξC . Thus,
line 17 spends O(ξC log2 ξC) time in the worst case (due to
sorting). To sum up, the total time complexity of Algorithm 2
is O(ξC) + O(ξC log2 ξC) + O(ξC − 1) + O(ξC log2 ξC) =
O(ξC log2 ξC).

5.4 Innovation Points

The kube-scheduler could be efficient in a cloud environment
with homogeneous nodes, where they have similar CPU and
memory resources. However, IoT edge nodes are usually het-
erogeneous, which may degrade Kubernetes performance. As
compared with the kube-scheduler, our DACS algorithm has
three innovation points to help improve Kubernetes perfor-
mance in an edge environment:

• In addition to CPU and memory resources (i.e., rCPUi

and rMEMi ), DACS considers network resources (i.e., rNETi )
of WNs. In this way, DACS can efficiently assign each
pod pj to a WN according to its bandwidth demand
cNETj to reduce the application’s response time. This is
especially important in the edge environment.

• DACS reflects WN heterogeneity in edge computing via
processing delay D̃p(uk, pj , ni) in Eq. (8) and network

delay D̃n(uk, pj , ni) in Eqs. (10) and (11). In addition, a
coefficient α is used to adjust the weights of processing
and network delays in the calculation of average delay,
which adds more flexibility.

• Instead of forthright selecting the WN with the mini-
mum average delay to serve a pod pj , DACS’s ranking

module finds a set N̂SEL of WNs that have shorter
average delays. Then, it picks the WN ni from N̂SEL

with the maximum combination of residual CPU and
memory resources. Doing so has three benefits. First, a
user (whose application running on a pod) will merely
be served by a WN with enough CPU, memory, and
network resources. In this way, a WN will exclusively
utilize its resources on users that it can support. Second,
since ni has ample CPU or memory resources, ni can
allocate more CPU or memory resources to pj than pj
requests to facilitate its execution. Third, we can reduce
the out-of-CPU or out-of-memory probabilities. This sit-
uation may occur when some users underestimate or
dynamically raise their CPU or memory usage (i.e., cCPUj

or cMEMj ), as discussed in Section 6.2.

Theorem 3 analyzes DACS’s time complexity.
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Theorem 3. Suppose that a Kubernetes cluster has ξN WNs and
ξP pods. The worst-case time complexity of the DACS algorithm is
O(ξN (ξN + ξP log2 ξN )).

Proof: As mentioned in Theorem 2, the standard devi-
ation σi of RTTs between a WN and other WNs can be cal-
culated beforehand. According to Eqs. (12) and (13), it spends
O(ξN ) time to find σi for a WN. Since there are ξN WNs, this
part spends O(ξ2N ) time. By combining Theorems 1 and 2, the
time complexity of DACS is O(ξ2N ) +O(ξP (ξN + ξC log2 ξC)),
where ξC is the number of WNs in N̂CAN. As N̂CAN is a subset
of N̂ , we derive that ξC ≤ ξN . Hence, the time complexity can
be simplified to O(ξN (ξN + ξP log2 ξN )).

6 DISCUSSION

In this section, we discuss two issues. One is the resource
competition when multiple pods are assigned to the same
WN. The other is the dynamic environment where users may
change resource usage at runtime.

6.1 Resource Competition

When multiple pods are scheduled to a WN, the resource
competition (or resource contention) between these pods may
occur if the total number of resources requested by them over-
takes the WN’s capacity. To handle the resource competition,
Kubernetes allocates resources to pods on a first-come-first-
served basis [32]. This causes extra delays, which rise rapidly
as more pods are assigned to the WN and vie for resources.

In DACS, the scheduling module first filters out those WNs
whose resources cannot satisfy a pod’s demand (referring to
lines 6–8 in Algorithm 1). By doing so, we can ensure that
a WN has enough resources to support pods assigned to it,
which substantially reduces the possibility of resource compe-
tition. However, resource competition may still occur if some
pods use resources more than they request2. Therefore, the
ranking module also takes account of the resource competition
problem. In lines 8–9 of Algorithm 2, when a WN ni already
serves some pods (i.e., ζi > 0), in addition to the processing
delay D̃p(uk, pj , ni) and the network delay D̃n(uk, pj , ni) for
ni to handle a new pod pj , we consider the extra delay Γi due
to the context switch and resource competition:

Γi = βCS + 2(ζi−1)βRC, (18)

where βCS is the delay caused by a context switch, which in
general takes from 100 nanoseconds to some microseconds,
depending on the CPU’s architecture and the context’s size
[33]. The term 2(ζi−1)βRC is the delay caused by the resource
competition. According to [34], this delay grows exponentially
with the number ζi of pods (on the scale of several millisec-
onds). Hence, we suggest setting βRC to a few microseconds.
By using the extra delay Γi, when a WN serves more pods,
the chance of assigning a new pod to it will decrease (as the
overall delay Ωi,j rises). In this way, the ranking module will
not assign many pods to the same WN, thereby mitigating the
impact of resource competition.

2. As discussed in Section 5.1, Kubernetes allows a user to specify
demand cCPUj and limit lCPUj of CPU resources for his/her pod pj , where
cCPUj ≤ lCPUj . Hence, pj can use more than cCPUj (but below lCPUj ) CPU
resources. The same situation is also applied to memory resources.

TABLE 3: Software programs used to create a Kubernetes cluster and set
up the experiment environment.

software program version
Kubernetes 1.19.9
VMware Workstation 15.5.6 build-16341506
operating system Ubuntu 18.04.5 LTS
Linux kernel 5.4.0-58-generic
Golang gol.15.2
Flannel 0.13.0
MetalLB 0.8.1
Contour 1.16.0
Prometheus 2.27.1
Grafana 8.0.1
ApacheBench 2.3
stress-ng 0.09.25-1 amd64

6.2 Dynamic Environment

In a dynamic environment, users may change resource usage
at runtime. To adapt to such an environment, we ameliorate
the DACS algorithm as follows: Suppose that a user changes

the demand vector of pod pj from ~Cj = (cCPUj , cMEMj , cNETj ) to
~Cj′ = (cCPUj′ , cMEMj′ , cNETj′ ). Besides, pj is currently assigned to WN
ni. Then, two cases are considered.

• rXi ≥ cXj′−c
X
j , for X ∈ {CPU, MEM, NET}: This case implies

that ni has enough residual resources to handle changes
in pj ’s resource demands. Hence, we let pj stay in ni for
execution and update rXi by rXi − (cXj′ − cXj ).

• Otherwise: To reduce the risk of resource competition
at ni, we let pj migrate to another WN, say, nk if nk has
sufficient resources to meet pj ’s new demands. In this
case, we update the resource vectors of both ni and nk

by rXi = rXi +cXj and rXk = rXk−c
X
j′ , respectively. However,

if no such WN can be found, we pick a WN with the
most residual resources (possibly ni) and assign pj to
that WN.

The work [35] considers deep learning applications hosted
on the cloud with a cluster of containers, where each learning
model is placed in a container. The objective is to offer users
the services with QoE (quality of experience) targets. Based on
these targets, WNs dynamically adjust resource limits for their
containers to optimize the overall performance. This inspires
us to improve DACS in future work to schedule containers
that have QoE targets or may dynamically change limits on
resources (i.e., lCPUj and lMEMj ) by users.

7 PERFORMANCE EVALUATION

This section discusses how to construct a Kubernetes cluster
and set up our experiment environment, gives scenario de-
sign and scheduling methods for comparison, and evaluates
system performance in two scenarios with homogeneous and
heterogeneous WNs in the Kubernetes cluster.

7.1 Kubernetes Cluster Creation and Environment Setup

For performance evaluation, we create a Kubernetes cluster
by the VMware Workstation [9], which runs on a computer
equipped with an Intel-i7 3.6 GHz CPU (which has 4 cores) and
32 GB RAM. The operating system is Ubuntu with the Linux
kernel of version 5.4. The Kubernetes cluster consists of one
master node and three WNs, which are virtual machines. Since
the master node has to manage the whole cluster, it is given
more resources, specifically, 2 virtual CPUs (vCPUs) and 8 GB
RAM. Each WN is allocated with resources of 1 or 2 vCPUs and
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TABLE 4: Average RTTs between nodes in scenario 1.
node master WN n1 WN n2 WN n3

master – 200 ms 150 ms 160 ms
WN n1 200 ms – 50 ms 60 ms
WN n2 150 ms 50 ms – 10 ms
WN n3 160 ms 60 ms 10 ms –
average 170.0 ms 103.3 ms 70.0 ms 76.7 ms

TABLE 5: Average RTTs between nodes in scenario 2.
node master WN n1 WN n2 WN n3

master – 350 ms 210 ms 200 ms
WN n1 350 ms – 160 ms 150 ms
WN n2 210 ms 160 ms – 10 ms
WN n3 200 ms 150 ms 10 ms –
average 253.3 ms 220.0 ms 126.7 ms 120.0 ms

3 GB or 4 GB RAM, depending on the cloud or edge scenarios.
The scheduler’s program (to implement different scheduling
methods) is written in the Go programming language (Golang)
[36]. The detail of scenarios and scheduling methods will be
discussed later in Section 7.2. To let nodes communicate with
each other, we employ Flannel [37] to be the container network
interface and build an IPv4 network to realize Kubernetes
networking mentioned in Section 2.3.

We adopt both MetalLB [38] and Contour [39] to help users
access their pods in the Kubernetes cluster. Whenever a user
issues a service request, MetalLB picks an address from the
predefined IP pool for the service. Afterward, Contour acts as
a reverse proxy between users and pods. In this way, users
need to know only the IP address of the reverse proxy, thereby
facilitating the deployment of pods (based on the scheduling
result). Moreover, since users do not know where their pods
are assigned, the security strength can be improved.

The traffic control module of Linux is used to generate the
transmission latency, which affects the network delay. We set
the RTTs between nodes in the Kubernetes cluster according
to both [24] and [40]. In particular, we consider that the master
node is placed in the cloud (with higher latency), while WNs
are IoT edge nodes with lower latency.

Moreover, we use Prometheus [41] to monitor the resource
utilization of WNs, which collects data based on the HTTP
pull method and stores data in a time series database. The
collected data can be visualized through Grafana [42]. Besides,
after deploying pods, we adopt ApacheBench [43] to measure
the average network delay that users access their pods.

Regarding stress testing, we use the stress-ng (stress next
generation) tool [44] to generate CPU workloads. The tool can
produce a static workload for CPUs, like floating point, integer,
and bit manipulation. Moreover, stress-ng also supports CPU
bomb applications with dynamic workloads, such as the fast
Fourier transform (FFT) [45]. To evaluate the effect of dynamic
CPU workloads on different scheduling methods, we choose to
use FFT and consider two cases. In the low-load case, each pod
runs 250 FFT iterations. In the high-load case, each pod executes
3000 FFT iterations. Table 3 summarizes the software programs
and their versions used to construct a Kubernetes cluster and
set up the experiment environment.

7.2 Scenario Design and Comparing Methods

Two scenarios are designed to evaluate system performance in
different environments. Scenario 1 is for a cloud environment,
where all WNs are homogeneous in terms of resources. In
particular, each WN is given 2 vCPUs and 4 GB RAM. There

are 10 pods to be deployed, and Table 4 shows the average RTT
between any two nodes in the Kubernetes cluster. On the other
hand, scenario 2 considers an edge environment. WNs are IoT
edge nodes, which are heterogeneous and with relatively fewer
resources. More concretely, WNs n1, n2, and n3 are allocated
with 2 vCPUs, 1 vCPU, and 1 vCPU, and 4 GB, 4 GB, and
3 GB RAM, respectively. Since WNs have fewer resources, we
reduce the number of pods to 6. Table 5 lists the average RTT
between any two nodes in scenario 2.

The master node does not partake in the execution of user
applications, so pods are merely assigned to WNs. To observe
the effect of RTTs between the master node and WNs on system
performance, we let some users login from the master node to
access their pods (in this case, these pods are remote). The
numbers of logged-in users and service requests of each node
will be similar.

In addition to the kube-scheduler3 (i.e., the default sched-
uler in Kubernetes), we compare our DACS algorithm with
four scheduling methods discussed in Section 3:

• ElasticFog [24]: Based on the amount of network traffic,
it assigns a corresponding number of pods to each WN.
Every WN has at least one pod.

• Task scheduling and resource allocation (TSRA) [27]: By
considering the execution time of each task and the
transmission time for the task’s data and container
image, TSRA aims to maximize the number of tasks
that can be completed before deadlines.

• Network-aware scheduling (NAS) [29]: Some WNs are
designated as preferred nodes (PNs). Pods are assigned
to PNs if they have enough resources. Otherwise, NAS
picks the WNs whose links to PNs have shorter RTTs.

• Kubernetes container scheduling strategy (KCSS) [20]: It
places pods on WNs to raise resource utilization.

In DACS, we set α to 0.25, 0.5, and 0.75 to study its effect.

7.3 Scenario 1 (Cloud): Homogeneous WNs

Scenario 1 is for a cloud environment, where WNs have the
same number of resources. Fig. 3(a) shows the number of pods
assigned to each WN by different methods. Specifically, the
kube-scheduler scores WNs based on their residual resources.
After allocating some pods to WNs n1 and n2, WN n3 has
the most residual resources. Thus, the remaining 5 pods are
given to n3. Regarding ElasticFog and TSRA, since all WNs
are homogeneous, they allot 3 pods to each WN. The extra
one pod is randomly assigned (here, they select n1 to serve
this pod). In NAS, the pod assignment depends on the choice
of PNs. The PN (indicated in the brackets) handles 6 pods,
while its neighbor with the minimum average RTT takes 4
pods. KCSS aims to improve resource utilization, so it places
4, 6, and 0 pods on n1, n2, and n3, respectively. Unlike NAS
and KCSS, DACS gives each WN 3 pods to balance their loads
(as they have the same number of resources). When α ≤ 0.5,
the proportion of network delay in Eq. (3) becomes relatively
larger. In this case, DACS prefers to lower the network delay.
That is why DACS chooses n2 (with the minimum average
RTT in Table 4) to handle the extra pod.

Fig. 3(b) and (c) present the average processing delays in
the low-load and high-load cases, where each pod runs 250
and 3000 FFT iterations, respectively. The processing delay

3. In Fig. 3 and 4, we mark the kube-scheduler as KS as an abbreviation.
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Fig. 3: Performance evaluation in scenario 1.

substantially rises in the high-load case, but the trend in each
method does not change. Since the kube-scheduler allocates a
half of pods to n3, n3 has a much higher processing delay than

TABLE 6: Amount of time to complete all tasks in scenario 1.
method low load high load

kube-scheduler 13.25 s 127.00 s
ElasticFog 11.80 s 104.03 s

TSRA 11.78 s 104.01 s
NAS 16.62 s 198.51 s
KCSS 17.04 s 204.19 s

DACS (0.25) 11.31 s 101.52 s
DACS (0.5) 11.23 s 100.91 s
DACS (0.75) 11.02 s 99.41 s

n1 and n2. For ElasticFog and TSRA, since n1 handles one
more pods, it has a higher processing delay than the other two
WNs. Regarding NAS, we take the average of experimental
results by evenly choosing n1, n2, and n3 to be the PN. Since
the PN has to handle 6 pods, it incurs a significantly high
processing delay. In KCSS, n1 and n2 are assigned with 4
and 6 pods, respectively, so n2 has a higher processing delay
than n1. As n3 need not handle any pod, it has no processing
delay. Like ElasticFog and TSRA, DACS assigns 3 pods to each
WN and selects a WN (based on its average RTT) to handle
one more pod, so the selected WN has a higher processing
delay. From Fig. 3(b) and (c), ElasticFog, TSRA, and DACS
have the lowest average processing delays, since they balance
loads among WNs in a cloud environment with homogeneous
WNs.

Then, we evaluate the average network delay, as shown in
Fig. 3(d). According to Table 4, the master node has higher
RTTs, so users who login to the master node will encounter
higher network delays. The kube-scheduler, ElasticFog, NAS4,
and KCSS methods do not consider the time spent to transmit
data and container images of tasks. Hence, they have higher
network delays. By taking the transmission time into account,
TSRA has a lower network delay than the above methods.
Our DACS algorithm uses Eq. (11) additionally to calculate
network delays for remote pods, which considers the average
RTT between two nodes. Thus, DACS can further reduce the
average network delay, as compared with TSRA.

Table 6 lists the amount of time consumed by each method
to complete all tasks in scenario 1. Our DACS algorithm has
the minimum completion time when α = 0.75. In the low-
load case, DACS has 16.8%, 6.6%, 6.5%, 33.7%, and 35.3% less
completion time than the kube-scheduler, ElasticFog, TSRA,
NAS, and KCSS methods, respectively. In the high-load case,
DACS saves 21.7%, 4.4%, 4.4%, 49.4%, and 51.3% of completion
time, as compared with kube-scheduler, ElasticFog, TSRA,
NAS, and KCSS, respectively.

7.4 Scenario 2 (Edge): Heterogeneous WNs

In scenario 2, we consider an edge environment, where WNs
n1, n2, and n3 are IoT edge nodes with different CPU and
memory resources. In particular, n1 has more CPU resources
than n2 and n3, and n3 is allocated with the fewest memory
resources. Besides, the master node is located in the cloud, and
the average RTTs between nodes are larger than in scenario 1
(referring to Tables 4 and 5).

Fig. 4(a) gives the number of pods assigned to each WN.
The kube-scheduler first places pods on n1 (with the most re-
sources). After placing 2 pods, n1 has fewer residual resources
than others. Hence, the remaining pods are split between n2

4. For NAS, it considers RTTs only when the PN can no longer serve
pods (due to running out of resources).
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Fig. 4: Performance evaluation in scenario 2.

and n3. For ElasticFog, since the amount of traffic of WNs
is similar, each WN is assigned with 2 pods. TSRA prioritize
picking a WN with adequate resources to serve pods (to meet

TABLE 7: Amount of time to complete all tasks in scenario 2.
method low load high load

kube-scheduler 16.92 s 168.47 s
ElasticFog 15.95 s 160.13 s

TSRA 15.65 s 159.09 s
NAS 17.49 s 277.20 s
KCSS 19.59 s 284.81 s

DACS (0.25) 14.05 s 139.95 s
DACS (0.5) 14.37 s 141.05 s
DACS (0.75) 14.39 s 143.17 s

deadlines). Therefore, TSRA gives 4, 1, and 1 pod to n1, n2, and
n3, respectively. In NAS, if n1 is the PN, all pods are assigned
to n1 (as it has the most resources). Otherwise, n2 and n3 are
each given 3 pods since each of them does not have enough
resources to handle all pods. KCSS aims to maximize resource
utilization, so it prefers placing pods on WNs with relatively
fewer resources (i.e., n2 and n3). DACS assigns 3 pods to n1,
as n1 has ample resources. If α = 0.25, DACS prioritizes the
network delay, so n3 is given one more pod than n2 (though
they have the same number of CPU resources). When α ≥ 0.5,
since n2 has more memory resources than n3, n2 is assigned
with more pods than n3 instead.

Fig. 4(b) and (c) present the average processing delays in
both low-load and high-load cases, respectively. Since kube-
scheduler and ElasticFog have the identical assignment of pods
in Fig. 4(a), their average processing delays will be similar.
Specifically, since n1 has twice of CPU resources as n2 and
n3, and each WN is given an equal number of pods, n1’s
processing delay is nearly a half of that of n2 and n3. TSRA
assigns 4 pods to n1, making n1’s processing delay higher than
others. In NAS, when n1 is the PN, it has to cope with all pods.
That is why n1’s processing delay is the highest in NAS. KCSS
allots 3 pods to each of n2 and n3 (i.e., the same with NAS
when n2 and n3 are the PNs). Thus, the processing delays of
n2 and n3 are close to each other in KCSS and NAS. Our DACS
algorithm gives 3 pods to n1. Then, n2 is given 1 or 2 pods,
depending on α, and n3 has to handle the remaining pods.
Since n1 has 2 vCPUs but either n2 or n3 has only 1 vCPU, n1’s
processing delay is lower than the higher processing delay of
n2 and n3.

Fig. 4(d) compares the average network delay. As discussed
in Section 7.3, since TSRA considers the transmission time
for data and container images of tasks, its average network
delay will be lower than kube-scheduler, ElasticFog, NAS, and
KCSS. Our DACS algorithm further takes account of RTTs
between nodes, so DACS has the lowest network delay among
all methods, especially when α = 0.25. That is because the
proportion of network delay is larger than that of processing
delay in the objective function in Eq. (3).

Table 7 shows the amount of time spent by each method
to wind up all tasks in scenario 2. DACS has the minimum
completion time when α = 0.25. In the low-load case, DACS
decreases 17.0%, 11.9%, 10.2%, 19.7%, and 28.3% completion
time than kube-scheduler, ElasticFog, TSRA, NAS, and KCSS,
respectively. Regarding the high-load case, DACS reduces
16.9%, 12.6%, 12.0%, 49.5%, and 50.9% of completion time, as
compared with the kube-scheduler, ElasticFog, TSRA, NAS,
and KCSS methods, respectively. This result shows the superi-
ority of our DACS algorithm in terms of task completion time
in an edge environment.
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8 CONCLUSION AND FUTURE WORK

Kubernetes provides the orchestration and management of
containerized applications and serves as a good platform for
supporting edge-computing microservices. How to efficiently
allocate pods to WNs plays a key role in Kubernetes perfor-
mance. The kube-scheduler in Kubernetes is developed for a
cloud environment with homogeneous nodes. However, IoT
edge nodes have different resources and bandwidth. To this
end, the paper proposes the DACS algorithm that consists of
scheduling and ranking modules. For each pod, the scheduling
module screens out WNs without sufficient resources to deal
with this pod. Then, among those WNs that pass the screening,
the ranking module picks a WN that not only has a shorter
average delay but also holds more resources to serve the pod.
By adopting the VMware Workstation to build a Kubernetes
cluster for performance evaluation, we demonstrate that DACS
strikes a good balance between processing delays and network
delays among pods. Hence, DACS takes less time to complete
tasks in cloud and edge environments, as compared with kube-
scheduler, ElasticFog, TSRA, NAS, and KCSS.

For future work, we expect to deploy a number of IoT edge
nodes on the cloud and then implement a Kubernetes cluster to
manage these nodes. It is interesting to study how the deploy-
ment and applications of IoT edge nodes will affect Kubernetes
performance and schedule containers accordingly to improve
the performance. Moreover, as mentioned in Section 6.2, we
will consider scheduling containers that have QoE targets or
may dynamically change resource limits by users.
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