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Economy Aware Token-Based Incentive
Strategy to Promote Device-to-Device (D2D)

Relay Use in Mobile Networks

You-Chiun Wang and Li-En Tai

Abstract—Device-to-device (D2D) relay enhances the capacity of a mobile network. If the channel quality of a user equipment (UE) is bad,

the UE asks a neighbor to get its data from the base station and forward the data to it by using D2D communication. Since cellular and

D2D communication can share spectrum resources, the spectral efficiency will rise. As UEs are owned by self-interested users, they may not

provide relay services gratis. Thus, some incentive methods let UEs exchange tokens to buy and sell relay services. However, they assume

that each relay service is worth one token and offers a fixed data rate, which lacks flexibility. Through the law of supply and demand, this

paper proposes an economy aware token-based incentive (EAT-BI) strategy. A supplier (i.e., the service provider) charges different prices for

its relay service with different rates. A consumer (i.e., the service requestor) takes different policies to choose a supplier based on its tokens

and may bargain with suppliers to avoid starvation. Simulation results show that EAT-BI can efficiently promote D2D relay use and increase

throughput with different mobility models of UEs.

Index Terms—D2D, incentive, relay, supply and demand, token.
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1 INTRODUCTION

IN a mobile network, two nearby user equipments (UEs) can
communicate with each other without connecting to a base

station (BS). This technique is called device-to-device (D2D)
communication and widely used in 5G systems [1]. Cooperative
relay can be carried out by D2D communication to improve
performance. Fig. 1 gives an example, where UE ui wants to
receive downlink data, but its channel quality from the BS is
not good (e.g., ui is farther from the BS). Thus, ui can ask
neighbor uj whose channel quality is better to get data from
the BS on behalf of ui. Then, uj forwards data to ui via D2D
communication. Such cooperative relay is known as D2D relay.
Since channel quality from the BS to uj and that from uj to ui

is good, D2D relay offers higher data rates, as compared with
the case that ui gets data directly from the BS. Moreover, D2D
and cellular communication can share the spectrum resource,
so network capacity increases [2].

Since UEs are usually owned by self-interested users, they
may not unconditionally provide relay services. Thus, incen-
tive is essential to prompt UEs to serve as relay nodes to exert
the effectiveness of D2D relay, where token-based methods are
especially fit for mobile networks [3], [4], [5]. They employ
tokens as virtual currencies for UEs to perform transactions of
relay services. UE ui can ask another UE uj to act as its relay
node by paying tokens to uj , as Fig. 1 shows. We call uj and ui

supplier and consumer, respectively, as uj sells the relay service
and ui buys that service. In this way, most UEs could be willing
to provide relay services, because they can earn tokens for later
use.

The existing token-based methods assume that the con-
sumer gives the supplier one token to buy its relay service.
However, this assumption constrains each supplier to provide
only one choice of the relay service, where the supplier uses the
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Fig. 1: Using D2D communication to realize cooperative relay.

fixed transmitted power to relay data to the consumer. In fact,
just like real trading, a supplier could offer multiple choices of
the relay service with different channel qualities (which can be
easily done by adjusting its power) and charged for different
prices. Thus, those poor UEs (i.e., with just few tokens) can
have an opportunity to buy “cheaper” relay services to avoid
starvation. Doing so gives far more flexibility to D2D relay and
improves the overall performance.

This paper proposes an economy aware token-based incentive
(EAT-BI) strategy, which considers the law of supply and demand
in economics. Depending on its own tokens, consumer ui has
different price elasticity of demand (PED). When ui has enough
tokens, its PED is relatively inelastic. Thus, ui adopts a rate-
preferred policy, which chooses the supplier offering the best
data rate. Otherwise, ui’s PED is relatively elastic, so it takes
a price-preferred policy, which looks for a cheaper service.
However, if ui cannot find suitable suppliers (e.g., due to high
prices), it bargains with suppliers. With the price elasticity of
supply (PES), a supplier can provide a discount by adjusting
the price and quality of its service. Through simulations, we
show that EAT-BI not only improves D2D throughput but also
reduces the number of non-served consumers, compared with
other methods.

2 PRELIMINARY

This section discusses the mode selection for UEs and briefly
introduces the law of supply and demand.
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2.1 Cellular and D2D Modes

Each UE can directly talk with the BS, which we call the cellular
mode. However, some UEs may have bad channel quality from
the BS due to interference and fading [6]. To improve the
transmission efficiency, they can ask neighbors to forward data
from the BS, which is called the relay mode. Specifically, we
adopt the two-hop relay, where each UE ui can select at most
one UE uj to be its relay node. In this case, the transmission
from the BS to ui is replaced by the two-hop transmission “BS
→ uj → ui”.

Given bandwidth Wb,i of the link between the BS (denoted
by b) and ui, ui’s data rate in the cellular mode is

Rb,i = Wb,i × log2(1 + Sb,i). (1)

Here, Sb,i denotes the signal-to-interference-plus-noise ratio
(SINR) from the BS to ui, which is estimated by [7] [8]

Sb,i =
Gb,i × Tb,i

N2
0 + Ii

, (2)

where Gb,i and Tb,i are the BS’s channel gain and transmitted
power to send data to ui, respectively, N2

0 is the noise power,
and Ii is the interference that ui encounters in the cell. On the
other hand, suppose that ui gets its data via the relay of UE
uj . Then, ui’s data rate in the relay mode is

R
(j)
b,i = W

(j)
b,i × log2(1 + S

(j)
b,i ). (3)

To improve resource utilization, D2D link (uj , ui) reuses the
spectrum resource allocated to cellular link (b, uj), so we have

W
(j)
b,i = Wb,i. Besides, SINR S

(j)
b,i is calculated by [9]

S
(j)
b,i =

Sb,j × Sj,i

1 + Sb,j + Sj,i

, (4)

where Sj,i is derived from Eq. (2) by replacing b with j. In
practice, each UE measures its SINR from the BS to let the BS
choose the modulation and coding scheme to send data [10].
Thus, uj tells ui SINR Sb,j in the response to ui’s query. On
getting uj ’s response, ui measures SINR Sj,i from uj . In this

way, ui can calculate S
(j)
b,i by Eq. (4).

Let Di be ui’s traffic demand. If Rb,i ≥ Di, ui chooses
the cellular mode to get data directly from the BS. Otherwise,
ui prefers using the relay mode to improve performance. In
particular, a neighbor uj is considered as a candidate of ui’s
suppliers (for relay services) if uj meets three conditions:

C1. uj is neither sending nor receiving data. In other words,
uj ’s transceiver is idle, so it is able to relay ui’s data.

C2. S
(j)
b,i ≥ Sb,i +ϕ. Based on Eqs. (1) and (3), ui’s data rate

can rise by using the relay mode via uj .
C3. Tmin

j ≤ Tj,i ≤ Tmax
j . This condition puts the lower and

upper bounds on uj ’s power for relaying data to ui.

Among all candidates, ui picks the most suitable supplier to
be the relay node, which depends on its tokens and the prices
asked by suppliers, as discussed in Section 4.

2.2 Law of Supply and Demand

In economics [11], demand is the willingness of a consumer to
buy a product. When nothing else changes, the quantity of
demand for the product is usually greater at lower prices than
higher prices. On the other hand, supply is the quantity of a
product that a supplier is willing to provide. Normally, the
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Fig. 2: The demand curve.

supplier prefers offering a greater quantity of the product at
higher prices than lower prices, if nothing else changes.

Let P and Q be the price and quantity of a product, respec-
tively. Then, PED Ed is a measurement of the change ∆Q in
consumption of that product in regard to the change ∆P in its

price, where Ed = −
(

∆Q
Q

)

/
(

∆P
P

)

= − lim∆P→0
∆Q
∆P
× P

Q
=

−dQ
dP
×P

Q
. Fig. 2 gives the demand curve with five types of PED.

Type D1 (Ed = −∞) is the perfectly elastic demand, where any
increase in the price makes the demand fall to zero. This type
models products that have their value defined by law (e.g.,
currency). For example, if an ordinary 100-dollar bill is sold for
anything more than $100, no one will purchase that bill. Type
D2 (−∞ < Ed < −1) is the relatively elastic demand. Let M̃D

and M̃P be the magnitude of change in the quantity of demand
and price, respectively. Since M̃D > M̃P, the supplier’s revenue
raises when the price reduces. Type D2 is also known as “small
profits and good sales”. Type D3 (Ed = −1) is the unitary elastic
demand, where M̃D = M̃P. Thus, changing the price has no
impact on the revenue. Type D4 (−1 < Ed < 0) is the relatively
inelastic demand, where M̃D < M̃P. The revenue increases as
the price rises. Type D5 (Ed = 0) is the perfectly inelastic
demand, where changes in the price will not affect the demand’s
quantity. It models products vital to survival. For example, a
man is going to die of thirst in a desert. To survive, he could
give all his money for buying water. This paper adopts types
D2 and D4, as they have a noticeable impact on the behavior
of consumers but will not cause extreme conditions (i.e., types
D1 and D5).

PES Es estimates responsiveness to a product’s supply by

changing its price. Es =
(

∆Q
Q

)

/
(

∆P
P

)

= lim∆P→0
∆Q
∆P
× P

Q
=

dQ
dP
× P

Q
. PES contains five types, as shown in Fig. 3. Type S1

(Es = ∞) is the perfectly elastic supply. The supply’s quantity
is unlimited at a given price, but changing the price leads
to no quantity of supply. This type is theoretical. Type S2
(1 < Es < ∞) is the relatively elastic supply, where M̃S > M̃P

and M̃S is the magnitude of change in the quantity of supply.
It models products that can be massively manufactured and
easily distributed (e.g., plastic toys). Type S3 (Es = 1) is the
unitary elastic supply, where M̃S = M̃P. Type S4 (0 < Es < 1)
is the relatively inelastic supply, where M̃S < M̃P. An example
is nuclear power plants, which take much effort to construct.
Type S5 (Es = 0) is the perfectly inelastic supply, where the
supply’s quantity will not be affected by the price. Type S5
is fit for products with limited quantities (e.g., paintings of
deceased artists). As the costs of relay services for UEs are not
large, type S2 is the most suitable to model the behavior of
suppliers in our work.
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Fig. 3: Five types of supply curves.

3 RELATED WORK

3.1 Issues of D2D Communication

How to let D2D and cellular communication share the BS’s
spectrum resource is widely discussed. Duong et al. [12] allot
resources to UEs based on their relative distances, so as to
reduce interference among UEs and support more D2D links.
The study [13] finds out the maximum pairs between cellular
UEs and D2D links by the Gale-Shapley scheme, whose result
achieves the Pareto optimality [14]. A graph-coloring method
is proposed in [15] for D2D links to reuse the resources
allocated to cellular UEs with negligible interference. Given
the traffic demand of each D2D sender, the work [7] decides
its transmission period and power to save energy and satisfy
the demand. By using a game-theoretic approach, the study
[16] finds the correlation among D2D and cellular UEs for
resource sharing to improve the energy efficiency. The work
[17] combines the maximal independent set and a knapsack
solution to handle resource sharing between cellular and D2D
communication. Liu et al. [18] develop a two-stage mechanism
to allocate channels for D2D links and decide their transmitted
power. Lai et al. [19] propose a pure D2D model to allow D2D
links sharing resources without involving cellular UEs. In [8],
the deep reinforcement learning is applied to select channels
and decide power for D2D UEs. The study [20] handles the
D2D resource and power management problem in the scenario
where multiple operators collocate in a BS and share resources.
Evidently, the above studies have different objectives with
ours.

Some studies discuss cooperative relay by D2D commu-
nication. The study [21] proposes a relay discovery method
to reduce periodic discovery transmissions of D2D UEs and
save their energy. The work [22] transfers services of UEs
among different cells via D2D relay, so as to balance loads
of BSs and turn off idle BSs. Wu et al. [23] model the relay
selection problem by multi-objective linear programming and
solve it by the fuzzy and entropy theories. The study [24] picks
relay nodes based on the communication range and social
relationship of each UE. With deep learning, the work [25]
builds the community relationship between D2D UEs to find
the best relay node. In [26], the Q-learning technique is used to
solve the relay selection problem. As can be seen, these studies
assume that UEs are compliant to offer relay services. When
most UEs are owned by self-interested users, this assumption
may not be valid.

3.2 Incentive Methods for D2D Relay

To inspire UEs to act as relay nodes, three types of incentive
methods are developed. In resource-exchanging methods, when
UE ui asks a neighbor uj to relay its data, ui has to compensate
uj by giving a portion of its resource, where the resource can
be the transmission time [27], relay service [28], or bandwidth
[29]. However, these methods request ui to compensate uj
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Fig. 4: Gaussian distributions for the selection of power Tj,i.

right after getting uj ’s relay service, no matter whether uj

needs ui’s assistance or not, which may degrade the perfor-
mance of D2D relay.

In indirect-reciprocity-based methods [30], [31], each UE ob-
serves the relaying behavior of neighbors to evaluate their
reputation. If a UE refuses relaying data many times, it will
have bad reputation. As a penalty, other UEs decline to provide
relay services to that UE. In these methods, UEs keep exchang-
ing their evaluations to track reputation, which is carried out
by the omnidirectional broadcast. However, this is difficult to
implement in mobile networks due to using the MIMO and
beam-forming techniques [32].

Token-based methods [3], [4] adopt tokens as virtual curren-
cies to let UEs trade in relay services. Each UE earns tokens
by relaying data for its neighbors. If it needs help from others,
the UE can purchase their relay services by paying tokens.
The work [33] analyzes the relationship between the number
of tokens and the profit in D2D relay. A supervised learning
method is proposed in [5] to help each UE decide whether to
sell its relay service. The study [34] applies a Markov decision
process (MDP) to model the trade of relay services, which aims
at maximizing the long-term utility of each UE. The utility is
defined by the difference between the benefit that a UE obtains
when getting data via D2D relay and the cost that the UE
pays for relay services. To avoid some UEs hoarding tokens
maliciously, three token circulation methods are developed
in [35]. Since tokens can preserve value, token-based meth-
ods are more flexible than resource-exchanging and indirect-
reciprocity-based methods. However, the above token-based
methods assume that each relay service has an identical price
(i.e., one token). It motivates us to propose the EAT-BI strategy
that relaxes this assumption and applies the law of supply and
demand to token transactions, so as to promote D2D relay use.

4 SYSTEM MODEL

Let us consider one cell that covers a set Û of UEs, where
they can move and have the ability of D2D relay. We slice
time into periods to facilitate management. In each period,

the BS arranges a subset ÛDL of UEs from Û for downlink
communication. The period length should be long enough for

a UE ui ∈ ÛDL to obtain its downlink data in the relay mode,
which includes the time for ui to choose its mode (as discussed
in Section 2.1), the time for ui to negotiate with its candidates
to pick out a relay node uj , and the time to perform the two-
hop transmission “BS → uj → ui”. Moreover, the channel
quality and locations of ui and uj cannot change significantly.
One good choice of the period length is a frame defined in 5G,
which is 10 ms.

Each UE in Û is given some initial tokens. If ui asks
uj to relay its data, ui has to pay tokens to uj . Unlike the
existing token-based methods, we propose using micro-tokens
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TABLE 1: Summary of notations used in the EAT-BI strategy.
notation definition

Û , ÛDL sets of all UEs and the UEs that will get downlink data

N̂i, Ĉi sets of neighbors and supplier candidates of a UE ui

Sb,i, Rb,i ui’s SINR and data rate (from the BS)
Tj,i uj ’s power to relay data to ui (Tmin

j ≤ Tj,i ≤ Tmax

j )
Γ the number of m-tokens equivalent to a token
Mi the number of m-tokens owned by ui

Pj service’s price asked by uj (Pmin ≤ Pj ≤ Pmax)
δC a threshold for ui to choose between Algos. 2 and 3
δH
S

, δL
S

two thresholds for a supplier to decide its discount
γ1, γ2, γ3 reduction ratio of the price
λ1, λ2, λ3 reduction ratio of the transmitted power

(m-tokens), where Γ m-tokens are equivalent to a token (Γ > 1).
It brings two benefits by using one m-token to be the unit of
transaction prices. First, the value of (original) tokens is not
diluted, so there is no inflation of tokens. Second, UEs can
provide more fine-grained prices of their relay services, which
adds flexibility to token-based methods.

Let Pmax and Pmin denote the maximum and minimum
legal prices, respectively. Suppose that the transmitted power
of supplier uj used to relay data is Tj,i. Then, uj charges a
number Pj of m-tokens for its relay service:

Pj = max

{⌊

Tj,i − Tmin
j

Tmax
j − Tmin

j

× Pmax

⌋

, Pmin

}

. (5)

Here, price Pj is proportional to power Tj,i, which is uj ’s cost
on the D2D relay. According to Eq. (5), when uj is willing
to use the maximum power Tmax

j , which provides the best
channel quality for the D2D relay, the price is set to Pmax. On
the contrary, if uj offers the worst channel quality by using the
minimum power Tmin

j , the price is set to Pmin. Furthermore,
we can set Tj,i based on a Gaussian distribution, whose prob-

ability density function is f(x) = e−
1

2
( x−µ

σ
)2/(σ

√
2π), where

µ is the mean and σ is the standard deviation. Specifically,
the mean depends on the ratio of uj ’s residual energy Ej

to its budget energy EBE used for D2D relay, as shown in
Fig. 4. When Ej ≥ 2

3EBE, we set µ = 1
4 (T

min
j + 3Tmax

j ). If
1
3EBE ≤ Ej < 2

3EBE, we set µ = 1
2 (T

min
j + Tmax

j ). Otherwise,

we set µ = 1
4 (3T

min
j + Tmax

j ). In this way, when uj has more
energy, there is a higher possibility that uj chooses a larger
value of Tj,i, and vice versa.

We modify the protocol in [35] for UEs to exchange mes-
sages for the trade of relay services. When UE ui wants to
buy the relay service from another UE uj , ui sends a relay
request to uj . If uj is willing to act as a relay node, it sends ui

a relay reply that contains the price of its relay service. Once
ui also accepts the price, it sends uj a relay confirmation, which
involves the transfer of m-tokens from ui to uj . Let Mi be the
number of ui’s m-tokens. A number Pj of m-tokens will be
transferred from ui to uj . Therefore, we have Mi = Mi − Pj

and Mj = Mj + Pj . With the relay confirmation, uj notifies
the BS that it will help relay ui’s data. In this case, the BS
sends ui’s data to uj by using ui’s resource blocks (RBs), and
uj reuses these RBs to forward the data to ui. Notice that if
ui cannot afford the price, ui may ask uj for a discount by
sending a bargaining message. Then, uj sends a relay reply that
includes the new price to ui. To save the message cost, the
above bargaining procedure can be performed at most once.
Like [5], we assume that these messages are protected by some
security mechanisms (e.g., authentication by the public-key

Algorithm 1: The EAT-BI Strategy

1 foreach ui ∈ ÛDL do
2 if Rb,i ≥ Di or Mi < Pmin then
3 let ui use the cellular mode and then continue;

4 Ĉi ← ∅;
5 foreach uj ∈ N̂i do

6 if uj is idle, S
(j)
b,i ≥ Sb,i + ϕ, and

Pmin ≤ Pj ≤ Pmax then

7 Ĉi ← Ĉi ∪ {uj};

8 if Ĉi = ∅ then
9 let ui use the cellular mode and then continue;

10 if Mi > δC then

11 pick a supplier uj from Ĉi by Algo. 2;
12 else

13 pick a supplier uj from Ĉi by Algo. 3;
14 if uj = null then
15 find a supplier uj by Algo. 4;

16 if no supplier is found then
17 ui gets data in the cellular mode;
18 else
19 Mi ←Mi − Pj and Mj ←Mj + Pj ;
20 ui gets data in the relay mode via uj ;

cryptography). Thus, no UE can defraud others of their tokens
by tampering messages.

Our problem asks how to select the supplier for each
consumer, such that network throughput can be maximized.
Table 1 summarizes the notations used in EAT-BI.

5 THE PROPOSED EAT-BI STRATEGY

Algo. 1 gives EAT-BI’s pseudocode. In lines 2–3, we judge
whether UE ui gets data directly from the BS by two condi-
tions: 1) ui itself can meet demand Di (i.e., Rb,i ≥ Di), or 2) ui

is too poor to afford any relay service (i.e., Mi < Pmin). If so,

ui chooses the cellular mode, and we check the next UE in ÛDL.
Otherwise, we find a set Ĉi of supplier candidates for ui, whose

code is shown in lines 4–7. Let N̂i be the set of ui’s neighbors.

The if-statement in lines 6–7 picks candidates from N̂i by the
three conditions in Section 2.1. From Eq. (5), condition C3 (i.e.,
Tmin
j ≤ Tj,i ≤ Tmax

j ) implies that Pmin ≤ Pj ≤ Pmax. In line 6,
we replace condition C3 by the condition Pmin ≤ Pj ≤ Pmax,

so ui need not query uj about its power Tj,i. However, if Ĉi = ∅
(i.e., no candidate), ui has to use the cellular mode, as shown
in lines 8–9.

In lines 10–15, ui adopts different methods to select a

suitable supplier from Ĉi to be its relay node, which depends
on the number Mi of its m-tokens. If ui has more than δC
m-tokens (which means that ui is relatively rich), it uses the
rate-maximizing selection (RMS) method in Algo. 2 to choose a
supplier that offers the best data rate. Otherwise, ui uses the
budget-oriented selection (BOS) method in Algo. 3 to look for a
cheaper relay service. However, if no supplier is found by
Algo. 3, ui uses the bargaining method in Algo. 4 to ask for a

discount from some UEs in Ĉi and find a supplier accordingly,
as shown in lines 14 and 15.
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Algorithm 2: The RMS Method

1 SORT(Ĉi, S(j)
b,i );

2 foreach uj ∈ Ĉi do
3 if Mi ≥ Pj then
4 return uj ;

5 return null;

If no supplier is found by Algo. 4, ui has to get data directly
from the BS. Otherwise, ui pays Pj m-tokens to uj , and asks
uj to relay data. The code is given in lines 16–20. Theorem 1
analyzes the time complexity of Algo. 1.

Theorem 1. Suppose that ÛDL contains ζU UEs and every UE

in Û has no more than ζN neighbors. Algo. 1 takes time of
ζU(O(ζN) + max{τ2, τ3 + τ4}), where τ2, τ3, and τ4 are the
computational time of Algos. 2, 3, and 4, respectively.

Proof: In Algo. 1, the outer for-loop repeats ζU times. The
if-statement in lines 2–3 spends a constant time to check if ui

should use the cellular mode. As |N̂i| ≤ ζN, the inner for-loop
in lines 5–7 has at most ζN iterations. In the inner for-loop, the
if-statement in lines 6–7 checks three conditions C1, C2, and
C3. As discussed in Section 2.1, it is easy to estimate SINR S

(j)
b,i

in condition C2. Thus, the if-statement takes O(1) time, and the
inner for-loop requires O(ζN) time. Moreover, the if-statement
in lines 8–9 consumes O(1) time. Then, ui chooses between
Algo. 2 and Algo. 3 (including Algo. 4) to find a supplier

from Ĉi. Since the code in lines 10–11 and the code in line
12–15 are mutually exclusive, the code in lines 10–15 spends
time of max{τ2, τ3 + τ4}. Finally, each statement in lines 16–20
takes O(1) time. To sum up, the time complexity of Algo. 1 is
ζU(O(ζN) + max{τ2, τ3 + τ4}).

Below, we detail the RMS, BOS, and bargaining methods in
Sections 5.1, 5.2, and 5.3, respectively. After that, we make a
discussion on the EAT-BI strategy in Section 5.4.

5.1 The RMS Method

The RMS method takes a rate-preferred policy, which makes

UE ui ∈ ÛDL adopt type D4 of PED (i.e., relatively inelastic
demand, where −1 < Ed < 0). Thus, ui seeks to choose the
relay service with the best quality (i.e., offering the maximum
data rate), as it has ample m-tokens.

Algo. 2 presents RMS’s pseudocode. Line 1 sorts ui’s

supplier candidates in Ĉi decreasingly based on SINR S
(j)
b,i ,

as denoted by SORT(Ĉi, S(j)
b,i ). From Eq. (3), since the chosen

candidate will reuse ui’s RBs to relay data (i.e., bandwidth

W
(j)
b,i is the same for each candidate in Ĉi), higher SINR S

(j)
b,i

implies higher data rate R
(j)
b,i . That is why we replace data

rate R
(j)
b,i with SINR S

(j)
b,i in line 1. Doing so helps reduce

computation. The for-loop in lines 2–4 picks a candidate uj

from Ĉi, and check if ui can afford to pay the price asked by
uj (i.e., Mi ≥ Pj). If so, ui selects uj to be its relay node.
Theorem 2 analyzes the time complexity of RMS.

Theorem 2. Suppose that each UE has at most ζN neighbors.
Algo. 2 requires O(ζN log2 ζN) time in the worst case.

Proof: In Algo. 2, line 1 sorts the candidates in Ĉi. Since

|Ĉi| ≤ |N̂i| = ζN, line 1 consumes O(ζN log2 ζN) time. Then,
the for-loop in line 2–4 repeats at most ζN times, where each

Algorithm 3: The BOS Method

1 ĈAi ← ∅;
2 if Mi − ⌈β ×Mi⌉ ≥ Pmin then

3 MB
i ← ⌈β ×Mi⌉;

4 else

5 MB
i ←Mi;

6 foreach uj ∈ Ĉi do

7 if Pj ≤MB

i then

8 ĈAi ← ĈAi ∪ {uj};

9 if ĈAi = ∅ then
10 return null;

11 return argmax
∀uj∈ĈA

i
S
(j)
b,i ;

statement takes O(1) time. Thus, the total time complexity is
O(ζN log2 ζN) + ζN ×O(1) = O(ζN log2 ζN).

5.2 The BOS Method

When a UE ui ∈ ÛDL is not rich (i.e., Mi ≤ δC ), it inclines to
leave some m-tokens for later use. In this case, ui’s PED will
be relatively elastic (i.e., type D2, where −∞ < Ed < −1). In
view of this, the BOS method takes a price-preferred policy for
ui to select its supplier.

Algo. 3 gives BOS’s pseudocode, where ĈAi is the subset of

candidates in Ĉi whose prices are acceptable by ui. Specifically,
ui tries to keep the budget for buying the current relay service
below MB

i , which is set to ⌈β ×Mi⌉, where 0 < β < 1, as
shown in lines 2–3. However, if the number of residual m-
tokens is fewer than Pmin after buying the relay service (i.e.,
Mi − ⌈β ×Mi⌉ < Pmin), ui should bring all the m-tokens into
the budget (i.e., MB

i = Mi). That is because too few m-tokens
remain, and ui cannot afford any relay service in the next time
if it does not earn m-tokens from others. The code is given in
lines 4–5.

In lines 6–8, we put those candidates that offer prices no

larger than MB

i into set ĈAi . If ĈAi is empty, which means that

ui has very few m-tokens, or all candidates in Ĉi charge too
much, the BOS method returns a null value, as shown in lines
9–10. Otherwise, among all candidates in ĈAi , ui chooses the

one whose SINR S
(j)
b,i is the best, as line 11 shows. Theorem 3

analyzes the time complexity of BOS.

Theorem 3. Algo. 3 requires O(ζN) time, where ζN is the

maximum number of neighbors of each UE in Û .

Proof: As ĈAi ⊆ Ĉi ⊆ N̂i, we have |ĈAi | ≤ |Ĉi| ≤ |N̂i| =
ζN. Each statement in lines 1–5 consumes O(1) time. The for-
loop in lines 6–8 takes O(ζN) time, and the if-statement in
lines 9–10 spends O(1) time. It spends O(ζN) time to find the

candidate in ĈAi with the maximum SINR by line 11. To sum
up, the total time complexity is O(ζN).

5.3 The Bargaining Method

According to lines 13–15 in Algo. 1, the bargaining method is
executed only if the BOS method cannot find any supplier for a

UE ui ∈ ÛDL due to the insufficient budget or high fees charged
by neighbors. In this case, ui will ask them for a discount.
Algo. 4 gives the pseudocode of the bargaining method. In line

1, we sort all candidates in Ĉi by their SINRs S
(j)
b,i decreasingly.
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Algorithm 4: The Bargaining Method

1 SORT(Ĉi, S(j)
b,i );

2 foreach uj ∈ Ĉi do

3 (P ′
j , S

′(j)
b,i )← Discount(uj);

4 if Mi ≥ P ′
j and S

′(j)
b,i ≥ Sb,i + ϕ then

5 return uj ;

6 return null;

Algorithm 5: The Discount Procedure

1 if Mj > δHS then
2 P ′

j ← max{⌈γ1 × Pj⌉, Pmin} and T ′
j,i ← λ1 × Tj,i;

3 else if δLS < Mj ≤ δHS then
4 P ′

j ← max{⌈γ2 × Pj⌉, Pmin} and T ′
j,i ← λ2 × Tj,i;

5 else
6 P ′

j ← max{⌈γ3 × Pj⌉, Pmin} and T ′
j,i ← λ3 × Tj,i;

7 if T ′
j,i < Tmin

j then

8 T ′
j,i ← Tmin

j and P ′
j ← Pmin;

9 Compute S
′(j)
b,i based on T ′

j,i by Eq. (4);

10 return (P ′
j , S

′(j)
b,i );

The for-loop in lines 2–5 iteratively picks a candidate uj from

Ĉi and asks uj to lower its price. This is done by the Discount
procedure, which returns a new price P ′

j and the corresponding

SINR S
′(j)
b,i (i.e., updated quality of uj ’s relay service), where

P ′
j < Pj and S

′(j)
b,i < S

(j)
b,i . Then, ui judges whether to choose

uj to be its relay node by two conditions: 1) ui can afford the
new price (i.e., Mi ≥ P ′

j), and 2) even if uj ’s SINR reduces,
ui can still improve the data rate by using the relay mode via

uj (i.e., S
′(j)
b,i ≥ Sb,i + ϕ). The second condition removes those

candidates whose services cannot meet ui’s demand. The code
is given in lines 4–5. However, if no supplier can be found, the
bargaining method returns a null value, as shown in line 6.
The time complexity of this method is presented in Theorem 4.

Theorem 4. Let ζN be the maximum number of neighbors of all
UEs. Algo. 4 takes time of O(ζN log2 ζN) + ζNτ5, where τ5 is
the computational time of the Discount procedure.

Proof: In Algo. 4, line 1 consumes O(ζN log2 ζN) time to

sort Ĉi. The for-loop repeats at most ζN times, where line 3
requires τ5 time to execute the Discount procedure, and lines
4–5 take a constant time. Then, line 6 returns a null value
and spends O(1) time. Thus, the time complexity of Algo. 4
is O(ζN log2 ζN) + ζN(τ5 +O(1)) +O(1) = O(ζN log2 ζN) + ζNτ5.

Supplier uj uses the Discount procedure to decide the
amount of reduction in its price Pj and power Tj,i for the

relay (which decides SINR S
(j)
b,i ), whose pseudocode is given

in Algo. 5. If a supplier has more m-tokens, its willingness to
reduce the price decreases, and vice versa. In view of this, we
divide uj ’s financial situation (i.e., the number Mj of its m-
tokens) into three levels by using two thresholds δHS and δLS :
rich (i.e., Mj > δHS ), ordinary (i.e., δLS < Mj ≤ δHS ), and poor
(i.e., Mj ≤ δLS). If uj is rich, ordinary, and poor, the new price
P ′
j will be max{⌈γ1 × Pj⌉, Pmin}, max{⌈γ2 × Pj⌉, Pmin}, and

max{⌈γ3×Pj⌉, Pmin}, respectively, where 0 < γ3 < γ2 < γ1 <

1. Specifically, the new price cannot be smaller than Pmin (i.e.,
the lowest legal price), so P ′

j is set to max{⌈γk × Pj⌉, Pmin}
instead of simply ⌈γk × Pj⌉, for k = 1, 2, 3. On the other
hand, the new power T ′

j,i is set to λ1 × Tj,i, λ2 × Tj,i, and
λ3 × Tj,i when uj is rich, ordinary, and poor, respectively,
where 0 < λ3 < λ2 < λ1 < 1. We suggest setting
γk ≤ λk (k = 1, 2, 3). In this way, though uj reduces its price,
the service quality (in terms of data rate) will not deteriorate
sharply. The code is given in lines 1–6.

In lines 7–8, we handle a special case where uj reduces
its power too much, such that T ′

j,i is below the minimum

power Tmin
j . In this case, the new power should be adjusted to

Tmin
j and the price is set to Pmin accordingly. With Eq. (4), we

can find the new SINR S
′(j)
b,i based on power T ′

j,i. Then, line

10 returns the result (P ′
j , S

′(j)
b,i ). Theorem 5 analyzes the time

complexity of the Discount procedure.

Theorem 5. The time complexity of Algo. 5 is O(1).

Proof: Each statement in lines 1–8 takes O(1) time. Line

9 uses Eq. (4) to compute S
′(j)
b,i by the new power T ′

j,i, which
requires a constant time (as discussed in Theorem 1). Since line
10 only returns the result, the time complexity is O(1).

In our design, suppliers take type S2 of PES. In Fig. 3(b),
the slope of the supply curve is between 0 and 1. Thus, the
supply is elastic, where products (i.e., relay services) can be
easily produced. In this case, most suppliers are willing to
lower their prices to earn m-tokens. Besides, when a supplier
has fewer m-tokens, the amount of reduction in its price is
larger, which implies that the supplier has more willingness
on the discount to attract consumers. On the other hand, the
possibility that consumers with only few m-tokens can buy
(cheap) relay services also rises. In this way, we can promote
D2D relay use and increase network throughput.

5.4 Discussion

We discuss the rationale of the EAT-BI strategy. In the past
token-based methods, the charge for every relay service is a
token, which has two drawbacks. First, most consumers prefer
the suppliers that provide better-quality services. Thus, those
suppliers whose channel qualities are not good cannot attract
customers to buy their services. This evidently wastes relay
services and reduces system performance. Second, if each UE
is given a few initial tokens as starting, some UEs may use
up tokens soon (as relay services are relatively expensive). If
they cannot earn tokens from others in a short time, these UEs
cannot buy relay services and thus have to use the cellular
mode to receive data at low speeds. Although the problem may
be solved by giving more initial tokens to UEs, this solution
could reduce the willingness of UEs to provide relay services
(because they have many tokens).

EAT-BI adopts m-tokens in the trade of relay services,
where Γ m-tokens are equivalent to a token, to support more
fine-grained and flexible pricing. Accordingly, suppliers can
provide different qualities of relay services by adjusting their
transmitted power. Based on the financial status, each con-

sumer ui ∈ ÛDL uses different methods to select its supplier.
If ui is rich (i.e., Mi > δC ), its PED is relatively inelastic (i.e.,
type D4). Thus, ui adopts the RMS method in Algo. 2 to choose
a supplier that offers the best quality of service. Otherwise,
ui is more conservative on spending m-tokens and its PED
becomes relatively elastic (i.e., type D2). In this case, ui uses
the BOS method in Algo. 3 to look for cheaper services and
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TABLE 2: Simulation parameters.
parameter value
General parameters:
BS bandwidth: 10 MHz; power: 46 dBm
UE number: 100∼1500; power: 13∼23 dBm
traffic full-buffer traffic model
mobility models: LIM, RWM, MAM; speed: 1.6∼2 m/s
Parameters relevant to the communication model:
path loss BS to UE: 128.1 + 37.6 log10 distance(BS, ui)

UE to UE: 148 + 40 log10 distance(ui, uj )
propagation loss urban macrocell model
shadow fading zero-mean log-normal distribution
noise (N2

0
) spectrum density: -174 dBm/Hz

Token-related parameters:
initial m-tokens 100 (= 10 tokens)
legal prices Pmin = 1, Pmax = 10
thresholds δC = 50, δH

S
= 75, δL

S
= 25

discounts price: γ1 = 0.9, γ2 = 0.7, γ3 = 0.5
power: λ1 = 0.95, λ2 = 0.8, λ3 = 0.65

save m-tokens. However, if ui still cannot afford the prices, it
uses Algo. 4 to bargain with suppliers, so as to increase the
possibility to purchase the relay service. Besides, the Discount
procedure in Algo. 5 takes PES into consideration, where a
supplier is more willing to provide a higher discount when it
is not rich. The above designs distinguish our EAT-BI strategy
from the existing token-based methods and promote D2D
relay use. Theorem 6 gives the time complexity of the EAT-
BI strategy.

Theorem 6. Given ζU UEs in ÛDL, the time complexity of EAT-BI

is O(ζUζN log2 ζN), where |N̂i| ≤ ζN, ∀ui ∈ Û .

Proof: Based on Theorems 1–5, EAT-BI’s time complex-
ity is ζU(O(ζN) + max{O(ζN log2 ζN), O(ζN) + O(ζN log2 ζN) +
O(ζN)}) = O(ζUζN log2 ζN).

6 PERFORMANCE EVALUATION

We evaluate performance by OMNet++, where one macrocell

covers 100 to 1500 UEs (i.e., Û ) whose range is 1 km. Table 2
presents simulation parameters. For the connection model, we

pick 1/3 UEs in Û to get downlink data (i.e., ÛDL) in each
period. As discussed in Section 4, the period length is 10 ms.
Those UEs not selected may sell relay services to others to earn
tokens/m-tokens in that period. Moreover, we adopt the full-

buffer traffic model [36], so every UE in ÛDL always has data
to receive. In this way, no UE will squander RBs when it is
selected for downlink communication.

Since multiple UEs are picked to receive data in every pe-
riod, there will be multiple flows (or connections) generated in

the simulation. On the other hand, as the number of UEs in Û
increases, more UEs will be added to ÛDL to get downlink data
and compete for the fixed spectrum resource. In particular,

when |Û | ≥ 1100, the BS may not have enough resource to

serve all UEs in ÛDL. In this case, we can view it as a congested
scenario.

UEs can move in the cell, where we adopt three mobility
models. In the linear mobility (LIM) model, a UE has the linear
motion with a fixed speed. In the random-waypoint mobility
(RWM) model, each UE arbitrarily picks a location to move
toward with a random speed. After arriving at the location,
it pauses for a while and selects the next location. In the mass
mobility (MAM) model, each UE moves along a straight line for
a random period of time. If the UE wants to make a turn, it
uses a normally distributed random number, whose average
is equal to the previous direction and standard deviation is 30

degrees, to choose the new moving direction. The MAM model
describes the movement of a node with momentum (i.e., the
node does not abruptly stop or turn).

For the communication model, we consider the fading
effects caused by path loss, propagation loss, and shadow.
The path loss is decided by the distance between a UE and
its sender (i.e., the BS or another UE), which is measured in
km. For the propagation loss, we consider the environment in
a dense urban area. We model shadow fading by a log-normal
distribution whose standard deviation is 10 dB and 3 dB for
cellular and D2D communication, respectively.

Then, let us discuss token-related parameters. Similar to
currencies, we use a decimal system and set Γ to 10. Each UE is
given 100 initial m-tokens (i.e., 10 tokens) for a start. Since the
transmitted power of a UE ranges between 13 dBm and 23 dBm
(which can be divided into 10 intervals), we set Pmin = 1 and
Pmax = 10. Thus, each interval of power can map to a price.
Besides, the maximum legal price (i.e., Pmax) is equivalent to
a token, so we can provide a fair comparison between the
methods using m-tokens and the methods using tokens. As for
thresholds, δC is used to judge whether a UE is rich or poor,
which makes the UE take different policies to select a supplier.
Here, we set δC = 50 (i.e., 1/2 of initial m-tokens). Moreover,
δHS and δLS help a supplier decide its discount. We set δHS = 75
and δLS = 25 (i.e., 3/4 and 1/4 of initial m-tokens, respectively).
In Algo. 5, we set γ1 = 0.9, γ2 = 0.7, and γ3 = 0.5, which
means that a supplier gives a discount of 10%, 30%, and 50%,
respectively. To avoid over-degrading the service quality, we
add 0.05, 0.1, and 0.15 to power coefficients λ1, λ2, and λ3,
respectively. That is why λ1 = 0.95, λ2 = 0.8, and λ3 = 0.65
in Table 2.

We compare the EAT-BI strategy with four methods. As
discussed in Section 3.2, the MDP method [34] aims to maximize
the long-term utility of UEs. In the RMS method, each UE
adopts Algo. 2 to select a supplier that provides the best data
rate. The BOS method in Algo. 3 asks UEs to select suppliers
based on their budgets to save m-tokens. The hybrid method
combines RMS and BOS. In other words, it is the EAT-BI
strategy without the bargaining method (i.e., removing lines
14 and 15 from Algo. 1). In MDP, each relay service is charged
for one token. Except for MDP, the unit of transaction prices
is one m-token in all other methods. The simulation time is
3600 seconds.

Next, we measure system performance in terms of D2D
throughput, network throughput, and non-served consumers
in Sections 6.1, 6.2, and 6.3, respectively. Then, Section 6.4
discusses the effect of token-related parameters.

6.1 D2D throughput

In a period, let φR(ui) be the number of data bits that a UE

ui ∈ ÛDL gets from the BS via relay node(s), and tR(ui) be the
amount of time (in seconds) that ui spends to receive data by
using the relay mode. The amount of D2D throughput in the
period is defined by

∑

ui∈ÛDL

φR(ui)/tR(ui). Then, we take the
average of D2D throughput in all periods.

Fig. 5(a)–(c) show D2D throughput of each method, which

rises as |Û | grows. That is because each UE in ÛDL has more
choices of suppliers to offer relay services. However, when the

network becomes congested (i.e., |Û | ≥ 1100), the magnitude
of rise in D2D throughput diminishes. In the MDP method,
D2D throughput even starts degrading. That explains why
there exist turning points in D2D throughput of most methods
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(a) D2D throughput (LIM model)
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(b) D2D throughput (RWM model)
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(c) D2D throughput (MAM model)
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(d) Network throughput (LIM model)
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(e) Network throughput (RWM model)

7

8

9

10

11

12

13

14

15

100 300 500 700 900 1100 1300 1500

N
e

tw
o

rk
 t

h
ro

u
g

h
p

u
t 

(M
b

p
s
)

Number of UEs

MDP

RMS

BOS

Hybrid

EAT-BI

(f) Network throughput (MAM model)
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(g) Non-served consumers (LIM model)
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(h) Non-served consumers (RWM model)
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(i) Non-served consumers (MAM model)

Fig. 5: Comparison of system performance with different mobility models.

TABLE 3: Improvement percent by EAT-BI.
(a) D2D throughput

model MDP RMS BOS hybrid
LIM 84.93% 25.87% 38.77% 14.78%

RWM 90.13% 27.73% 39.13% 16.82%
MAM 99.23% 33.43% 43.18% 22.04%

(b) Network throughput
model MDP RMS BOS hybrid
LIM 26.52% 9.19% 10.91% 4.82%

RWM 28.49% 10.28% 11.53% 5.70%
MAM 28.83% 11.40% 11.94% 6.82%

(c) Non-served consumers
model MDP RMS BOS hybrid
LIM 8.51% 4.85% 2.62% 3.24%

RWM 8.73% 5.15% 2.85% 3.93%
MAM 8.88% 5.25% 4.02% 4.06%

when there are 1100 UEs. This phenomenon also shows the
effect of congestion on D2D throughput.

MDP charges a token (= 10 m-tokens) every relay service.

Some UEs in ÛDL may use up tokens quickly and cannot
afford any relay service after that (unless their signal qualities
improve and they can sell others relay services to earn tokens).
Other methods use m-tokens to offer fine-grained and flexible
prices. In this way, some relay services become cheaper, so

more UEs in ÛDL can buy relay services. That explains why
other methods have higher D2D throughput than MDP, with-

out depending on the mobility model. Among all affordable
relay services, the RMS method chooses the service with the
best data rate. The BOS method asks UEs to leave some m-
tokens for later use. Thus, RMS has higher D2D throughput
than BOS. The hybrid method combines RMS and BOS, which
encourages rich UEs to buy better services and asks poor UEs
to save m-tokens. Thus, the hybrid method outperforms RMS
and BOS. By allowing poor UEs to bargain with suppliers, our
EAT-BI strategy could help them obtain relay services. Thus,
EAT-BI always has the highest D2D throughput.

In Table 3(a), we give the improvement percent of D2D
throughput by EAT-BI, as compared with the MDP, RMS, BOS,
and hybrid methods. Let XEAT-BI and Xother be the amount
of average D2D throughput (with different numbers of UEs)
of EAT-BI and a method for comparison, respectively. Then, it
is defined by XEAT-BI−Xother

Xother

× 100%. EAT-BI performs the best
with the MAM model, followed by RWM and LIM models.
The reason is that the MAM model will not make UEs abruptly
stop/turn (as compared with the RWM model), and they can
move more freely (as compared with the LIM model). In this

case, each UE in ÛDL could have more choices of suppliers,
which raises the probability for the UE to find a good supplier
in EAT-BI.
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6.2 Network throughput

Let φC(ui) be the number of data bits that a UE ui ∈ ÛDL gets
directly from the BS and tC(ui) be the amount of time that ui

spends to receive data by using the cellular mode in a period.
The amount of cellular throughput in the period is defined by
∑

ui∈ÛDL

φC(ui)/tC(ui). Then, network throughput will be the
sum of D2D throughput and cellular throughput, where we
take the average of network throughput in all periods.

Fig. 5(d)–(f) compare network throughput. When ui’s chan-
nel quality from the BS is good enough to satisfy its demand
(i.e., Rb,i ≥ Di), ui gets data from the BS directly. Besides, if
ui prefers the relay mode but no supplier is found, ui has to
adopt the cellular mode. In this case, ui’s cellular throughput
will be pretty low (as its channel quality from the BS is bad).
Therefore, there is little difference in cellular throughput of
each method. That is why the trend of network throughput
in Fig. 5(d)–(f) is similar to the trend of D2D throughput in
Fig. 5(a)–(c). Specifically, network throughput rises as there are

more UEs in Û . The ranking of methods in Fig. 5(d)–(f) is also
the same with that in Fig. 5(a)–(c), that is, EAT-BI > hybrid >
RMS > BOS > MDP.

Table 3(b) gives the improvement percent of network
throughput by EAT-BI, whose definition is similar to that
discussed in Section 6.1. The result shows the superiority of
our EAT-BI strategy on improving network throughput, and it
performs the best with the MAM model.

6.3 Non-served Consumers

The non-serving percent of consumers is defined as the percent-

age of non-served UEs in ÛDL, where a UE is non-served if it
needs relay services but cannot find any supplier. A lower
non-serving percent implies that the method helps consumers
better utilize their tokens/m-tokens on buying relay services.

From Fig. 5(g)–(i), when the number of UEs in Û grows, the
non-serving percent reduces. That is because each consumer
has more choices of suppliers. As each relay service is worth a
token in the MDP method, some consumers may fast run out
of their tokens. In this case, they cannot afford relay services
(until these UEs earn enough tokens). That is why MDP has
the highest non-serving percent.

Other methods can reduce non-served consumers by using
a smaller unit of transaction prices (i.e., m-tokens). The RMS
method lets consumers splash out their m-tokens on high-
quality services, whereas the BOS method asks consumers
to look for cheaper services to save m-tokens. Thus, BOS
has a lower non-serving percent than RMS. Since the hybrid
method is a combination of RMS and BOS, its non-serving
percent is between them. Thanks to the bargaining method in
Algo. 4, our EAT-BI strategy allows poor consumers to request
suppliers for discounts, so it can further decrease the non-
serving percent.

Table 3(c) presents the improvement percent of non-served
consumers by EAT-BI. Let YEAT-BI and Yother be the average
number of non-served consumers (with different numbers
of UEs) of EAT-BI and one chosen method for comparison,
respectively. Then, this improvement percent is defined by
Yother−YEAT-BI

Yother

× 100%. Since UEs stably move in the MAM
model, EAT-BI will have the best performance accordingly.
Even with other mobility models, EAT-BI can efficiently reduce
non-served consumers than other methods.
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Fig. 6: Effect of token-related parameters.

6.4 Effect of Token-related Parameters

Lastly, we study the effect of token-related parameters on
the performance of the EAT-BI strategy. Based on the results
in Sections 6.1, 6.2, and 6.3, higher D2D throughput implies
higher network throughput and lower non-serving percent,
so we use D2D throughput as the performance metric. The

number of UEs in Û is set to 1100 (i.e., congested scenario).
Fig. 6(a) shows the effect of δC , which affects how a UE ui

chooses its supplier. Based on lines 10–15 in Algo. 1, if δC is
too small (i.e., δC = 10), ui usually selects suppliers by using
the RMS method. If δC is too large (i.e., δC = 90), ui prefers
using the BOS method. Since RMS lets ui choose a supplier
that offers the best data rate while BOS forces ui to save m-
tokens, EAT-BI has higher D2D throughput when δC = 10, as
compared with that when δC = 90. By setting δC = 50, we
can strike a good balance between RMS and BOS. In this case,
EAT-BI can achieve the highest D2D throughput.

In Algo. 5, a supplier decides the amount of discount via
two thresholds δHS and δLS . Fig. 6(b) shows D2D throughput
by setting (δHS , δ

L
S) to (0,−1), (75, 25), and (501, 500). When

(δHS , δ
L
S) = (0,−1), each supplier offers 10% discount and

set P ′
j = 0.95Pj , where P ′

j and Pj are new and original
power, respectively. In this case, some poor UEs still cannot
afford to pay new prices, thereby degrading D2D throughput.
On the other hand, when (δHS , δ

L
S) = (501, 500), all suppliers

offer 50% discount but set P ′
j = 0.65Pj . Though poor UEs

may afford to pay new prices, the service quality become
worse. By setting (δHS , δ

L
S) to (75, 25), we can make suppliers

provide different discounts and service qualities. In this way,
the UEs with relatively more m-tokens can choose services
with better qualities to improve performance, while the UEs
with very few m-tokens can still buy (bad-quality) services
to avoid starvation. That is why EAT-BI has the highest D2D
throughput when (δHS , δ

L
S) = (75, 25).

7 CONCLUSION

D2D relay provides an alternative way for UEs to get data
efficiently when their signal quality from the BS is not good.
As the owners of most UEs are self-interested, token-based
methods let UEs carry out transactions of relay services by
using tokens. In these methods, each relay service has the
identical price (i.e., one token), which lacks flexibility. Thus,
we use m-tokens to provide fine-grained service prices, and
propose the EAT-BI strategy to help UEs select relay nodes
based on the law of supply and demand. When a consumer is
rich, it finds a supplier whose service achieves the maximum
data rate. Otherwise, it preferentially chooses cheaper services
to save m-tokens. If the consumer cannot find any suitable
relay node due to high prices requested by suppliers, it can
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bargain with suppliers to seek for discounts. Through simu-
lations, we verify that EAT-BI not only improves throughput
but also reduces non-served consumers, as compared with the
MDP, RMS, BOS, and hybrid methods.
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