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Abstract—Wireless sensor networks provide long-term monitoring of the environment, but sensors are powered by small batteries. Using

a mobile charger (MC) to replenish energy of sensors is one promising solution to prolong their usage time. Many approaches have been

developed to find the MC’s moving path, and they assume that sensors have a fixed sensing rate (SR) and prefer to fully charge sensors. In

practice, sensors can adaptively adjust their SRs to meet application demands or save energy. Besides, due to the fully charging policy, some

sensors with low energy may take long to wait for the MC’s service. Thus, the paper formulates a path and charge (P&C) problem, which

asks how to dispatch the MC to visit sensors with adaptive SRs and decide their charging time, such that both survivability and throughput

of sensors can be maximized. Then, we propose an efficient P&C scheduling (EPCS) algorithm, which builds the shortest path to visit each

sensor. To make the MC fast move to charge the sensors near death, some sensors with enough energy are excluded from the path. Moreover,

EPCS adopts a floating charging mechanism based on the ratio of workable sensors and their energy depletion. Simulation results verify that

EPCS can significantly improve the survivability and throughput of sensors.

Index Terms—mobile charger, path & charge scheduling, sensing rate, survivability, wireless sensor network.

✦

1 INTRODUCTION

THE Internet of things has ushered in a brand-new era,
where wireless sensor networks (WSNs) are extensively used

in industry and people’s livelihood [1], [2]. A WSN is made
up of many sensors, which are small wireless devices that
can gather data from the surroundings and report what they
collect to a remote sink. Various WSN applications have been
proposed to improve the quality of life, from air-pollution de-
tection [3] to health care [4], light control [5], object surveillance
[6], precision agriculture [7], and smart shopping [8].

In most WSN applications, the sensors have to provide
long-term monitoring. As limited by their size, sensors can
only adopt small batteries to be the power supply. The feasible
solutions to this dilemma include energy-efficient routing [9],
data compression [10], sleep scheduling [11], energy harvest-
ing [12], and wireless charging [13]. This paper aims to use
a mobile charger (MC) to extend the available working time of
sensors, which is a wireless charger equipped on one mobile
platform (e.g., vehicle or drone) [14] and can move to visit
sensors for recharging their batteries.

How to arrange the MC’s path to visit sensors and their
charging time has a great impact on the available working
time of sensors. The existing methods usually consider that
sensors have the identical sensing rate (SR). Some methods
even assume that the MC can fast charge sensors’ batteries,
so they take the fully charging policy. In real applications,
sensors may have adaptive SRs, in the sense that their SRs
will change in different situations. Specifically, when sensors
detect abnormal events or reside in an interested region, they
may be asked to increase their SRs to collect more data [15].
On the other hand, the sensors whose residual energy become
low could reduce their SRs to conserve energy [16]. Adaptive
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SRs lead to different speeds of energy depletion for sensors,
which degrades the performance of those methods based on
the assumption of fixed SRs. Moreover, when the MC simply
takes the fully charging policy, the waiting time for each sensor
to be served by the MC will rise accordingly. Some low-energy
sensors may stop working quickly (due to no energy) and
remain in the “dead” state for a long time (until the MC
recharges them). These sensors not only leave coverage holes
but also decrease the WSN’s throughput.

This paper formulates a path and charge (P&C) problem to
schedule both moving path and charging time for the MC with
the consideration of adaptive SRs of sensors. The objective is to
increase the percentage of workable sensors (i.e., survivability)
and the amount of sensing data sent to the sink (i.e., through-
put). Therefore, we propose an efficient P&C scheduling (EPCS)
algorithm, whose idea is to let the MC charge the sensors in
urgent need of energy as soon as possible. To do so, EPCS first
finds the shortest path to visit all sensors, and then removes
some sensors whose energy is enough for operation from the
path. Depending on the proportion and energy consumption
of workable sensors, the MC will charge sensors in a floating
fashion. Through simulations, we demonstrate that our EPCS
algorithm can keep high survivability and throughput of sen-
sors, as compared with the existing methods.

2 RELATED WORK

How to place wireless chargers to extend a WSN’s lifetime
is widely discussed. The work [17] uses the fewest chargers
to recharge all sensors and finds their optimal locations by the
Daubechies wavelet method. The study [18] analyzes the effect
of obstacles on charger placement, and finds their locations by
a dominating coverage set extraction scheme. Dai et al. [19]
consider placing chargers to ensure electromagnetic radiation
safety in the sensing field, and convert the placement problem
to a multi-dimensional 0/1 knapsack problem. Given a set of
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directional chargers, the study [20] finds the best location and
orientation angle for each charger subject to the connectivity
constraint, such that the overall charging utility is maximized.
Other issues of wireless chargers are also addressed. Guo et al.
[21] propose a concurrent charging schedule to mitigate inter-
ference between two chargers and save the time to recharge
sensors. The work [22] moves mobile sensors to the locations
of events for analysis. Mobile sensors will visit chargers on
the way to event locations, so as to replenish energy during
their working time. However, these studies consider only fixed
chargers.

The problem of finding the MC’s optimal moving path to
charge sensors is NP-hard [23]. Many studies [24], [25], [26],
[27] are based on approximate solutions to the traveling sales-
man problem (TSP), which builds a Hamiltonian cycle to visit
sensors. Various strategies are also developed. The first-come-
first-serve (FCFS) strategy [28] makes the MC charge sensors
based on the sequence of their charging requests. For the
nearest-job-next with preemption (NJNP) strategy [29], the MC
picks the closest requestor as the next candidate for charging.
In the earliest-deadline-first (EDF) strategy [30], the MC first
serves those sensors about to exhaust energy. The temporal
and distantial priority charging scheduling (TADP) method [31]
considers the MC’s moving distance and also the arrival time
of requests from sensors. In [32], a Hilbert curve is used to
find the MC’s path to visit each sensor. However, the above
studies assume that sensors have the same SR. This motivates
us to develop the EPCS algorithm to charge sensors with
adaptive SRs efficiently, so as to improve their survivability
and throughput.

3 SYSTEM MODEL

We are given a set Ŝ of sensors in the sensing field. Each sensor

si ∈ Ŝ is powered by a rechargeable battery whose capacity
is emax

i , and ei denotes si’s residual energy. As discussed
in Section 3.1, si spends energy on sensing, sending, and
receiving data. The SR ri of si may dynamically change (i.e.,
adaptive SR). Specifically, if ei is below a threshold, si switches
to the low-power mode, which decreases ri for energy saving
(the detail is given in Section 3.2). However, si stops working
if ei < emin

i , where emin
i is the minimum required energy for

si to operate, until si’s battery is recharged.
There is one MC moving in the sensing field (with a

constant speed) to recharge sensors round by round. In each

round, the MC visits a subset of sensors in Ŝ for charging
according to the proposed algorithm. We have to gather the
parameters of each sensor to execute the algorithm, including
its position, residual energy ei, and SR ri. Specifically, the
positions of sensors can be known during the deployment
stage or by using some positioning techniques [33]. On the
other hand, sensors can periodically piggyback on sensing
data to notify the sink of their ei and ri values. Notice that
if the sensing field has obstacles, we can adopt the Dijkstra-
based methods [34], [35] to find the shortest path for the MC
to detour obstacles and reach its target locations.

3.1 Energy Expenditure and Replenishment

According to [36], the amount of energy for a sensor si ∈ Ŝ to
create one packet of sensing data, whose length is λ bits, can
be estimated as follows:

Ẽse(si, λ) = (usei × csei × tsei )× λ. (1)

TABLE 1: Summary of notations.
Notation Definition

Ŝ, ŜA Sets of all sensors and workable sensors

ei Residual energy of a sensor si ∈ Ŝ

emax

i Capacity of si’s battery
emin

i Minimum required energy for si to operate
ri SR of si (high SR: rHi , low SR: rLi , threshold: δ)

use
i

, cse
i

, tse
i

Voltage, current, and time for si to produce a bit
ζtx
i

, ζam
i

Energy for si’s transmitter and amplifier to send a bit
ζrxi Energy for si’s receiver to get a bit
P Moving path (PSH: shortest path to visit all sensors)
vj A visited node in P (v0: MC’s POD)
Ẽmv Energy taken by the MC to move a unit distance
µavg Average EER of workable sensors (threshold: µth)

∆H, ∆L Two thresholds defined in the SNC module (∆H > ∆L)
α, β Two coefficients in Eq. (10) for partially charging

In Eq. (1), usei , csei , and tsei are the amount of voltage, current,
and time for si to produce a bit, respectively. When si sends
the packet to a node sj , si spends an amount of energy:

Ẽtx(si, sj , λ) = [ζtxi + ζami × D̃(si, sj)
2]× λ, (2)

where the transmitter and amplifier of si spend ζtxi and ζami
energy to send a bit, respectively. In Eq. (2), D̃(si, sj) is the
distance between si and sj , which is calculated by

D̃(si, sj) =
√

(xi − xj)2 + (yi − yj)2, (3)

where the coordinates of si and sj are (xi, yi) and (xj , yj),
respectively. On the other hand, let ζrxj denote the amount of
energy required by sj ’s receiver to get one bit. To receive the
packet, sj spends an amount of energy:

Ẽrx(sj , λ) = ζrxj × λ. (4)

For energy replenishment, si’s battery can be recharged
only when ei < emax

i . Moreover, the MC needs to move to
si’s position to charge its battery. The MC’s charging rate is a
constant [37], as denoted by τmc (in J/s).

3.2 Problem Description

The SR of a sensor si ∈ Ŝ depends on its residual energy:

ri =







rHi if ei ≥ δ × emax
i

rLi if emin
i ≤ ei < δ × emax

i

0 otherwise,
(5)

where rHi > rLi (measured in packets/s) and emin
i /emax

i < δ <
1. The MC initially locates in a certain position close to the
sink, known as its point of departure (POD). In each round, the
sink runs the proposed algorithm and notifies the MC of the
execution result. Starting from the POD, the MC moves to visit
sensors based on the execution result and then goes back to
the POD. To make sure that the MC can complete the task in a
round, its energy is set as follows:

emc ≥ Ẽmv × L(PSH) +
∑

∀si∈Ŝ
emax
i , (6)

where Ẽmv is the amount of energy taken by the MC to move a
unit distance, and L(PSH) is the length of the shortest path
PSH to visit all sensors and return to the POD. In Eq. (6),
we assume that the MC visits every sensor and charges the
sensor’s battery from empty to full [38], so it can have enough
energy in the worst case. Besides, when the MC goes back to
the POD, its battery is replaced with a new one. Thus, the MC
can fast perform the task in the next round.
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Algorithm 1: The EPCS Algorithm

Input: Set Ŝ of sensors and the POD v0
Output: MC’s moving path P and the charging time

for each sensor on P
1 Find the shortest path PSH to visit sensors in Ŝ and

return to v0;
2 P ← PSH;
3 Estimate the average EER µavg of workable sensors;
4 foreach vj ∈ P \ {v0} do
5 if SNC(vj) = true then
6 Remove vj from P ;
7 else
8 Use the FBC module to calculate the charging

time for the sensor whose identification is vj ;

Then, the P&C problem asks how to decide the MC’s

moving path to visit some sensors in Ŝ and the time to charge
each visited sensor in each round, such that both survivability
and throughput of sensors is maximized. Here, survivability

is defined by the percentage of workable sensors in Ŝ , where
a sensor si is viewed as a workable sensor if the condition
ei ≥ emin

i holds. Throughput is estimated by the amount of
sensing data sent to the sink. Table 1 summarizes notations.

4 THE PROPOSED EPCS ALGORITHM

Algo. 1 shows EPCS’s pseudocode. Given the POD (denoted
by v0), line 1 finds a shortest path PSH = {v0, v1, · · · , vm, v0}
to visit each sensor in Ŝ and go back to v0, where each vj ∈ P
(j 6= 0) denotes the identification of a sensor. This can be done
by using a TSP approximation algorithm (below, we call it a
TSP method) [39]. Then, path P is set to PSH by line 2.

Let ŜA ⊆ Ŝ be the subset of workable sensors. If ŜA is
not empty, we then estimate the average energy expenditure rate
(EER) of workable sensors on generating and sending sensing
data in the next tobs seconds as follows:

µavg =

∑

si∈ŜA
Ẽse(si,Λi) + Ẽtx(si, sj ,Λi)

|ŜA| × tobs
, (7)

Λi = ri × tobs × λ, (8)

where λ is the average number of bits in a packet of sensing
data, and sj is the receiver of si’s data. EER is used to decide
the MC’s charging strategy, as discussed in Section 4.2. Note
that µavg is a predicted value. In other words, EER in Eq. (7)
can be fast calculated, instead of waiting tobs seconds. Thus,
the time lag (caused by the calculation of EER) between the
timing to execute the EPCS algorithm and the timing to charge
sensors can be almost neglected.

Except for v0 (i.e., POD), some nodes may be removed
from P to let the MC serve the sensors in need of energy as
soon as possible. The code is shown in lines 4–8. For each
node vj on P , we employ the skippable node checking (SNC)
module in Section 4.1 to check if it can be removed. If vj is not
skippable, we adopt the floating battery charging (FBC) module
in Section 4.2 to decide its charging time. The above operation
is repeated until every node on P is checked.

Algorithm 2: The SNC Module

Input: Next node vj to be visited on P
Output: True or false

1 if vj 6= vm then
2 if evj

> ∆H × emax
vj

and evj+1
< ∆L × emax

vj+1
then

3 Return true;

4 else
5 if evm

> ∆H × emax
vm

and v1 is skipped and
ev1

< ∆H × emax
v1

+ σ then
6 Return true;

7 Return false;

4.1 Skippable Node Checking (SNC) Module

The TSP method finds the shortest path PSH to visit all sensors

in Ŝ , but it does not guarantee that the MC can charge each
sensor in time. Some sensors may use up energy soon, and
their visiting sequences on PSH are arranged after other sensors
with enough energy. After exhausting energy, such sensors will
cease functioning, until the MC charges them. In this case, the
survivability and throughput of sensors may reduce if the MC
chooses PSH to be its path.

Thus, the SNC module “prunes” path PSH by removing
some nodes with enough energy, so the MC can fast move to
charge the sensors about to running out of energy. Given the
next node vj to be visited on P (which is initially set to PSH
by line 2 in Algo. 1), Algo. 2 shows SNC’s pseudocode. If vj
is not the last node on PSH (i.e., vm), SNC uses two conditions
(in line 2) to determine whether vj can be skipped. First, vj
has enough energy (i.e., evj

> ∆H × emax
vj

). Thus, even if the
MC does not charge vj , vj can still have energy for operation.
Second, vj+1 (i.e., the node whose sequence is immediately
after vj) has little energy (i.e., evj+1

< ∆L× emax
vj+1

). In this case,
the MC should replenish energy for vj+1 as soon as possible.
When both conditions are satisfied, the SNC module returns
true and vj will be removed from P . Here, ∆H and ∆L are
percentages, where min

∀si∈Ŝ

{

emin
i /emax

i

}

< ∆L < ∆H < 1.
If the node to be visited is vm (i.e., the last node on PSH),

we check if vm can be skipped based on three conditions: (1)
evm

> ∆H × emax
vm

, (2) v1 has been skipped in this round, and
(3) ev1

< ∆H × emax
v1

+ σ, where σ is a small value. Conditions
(2) and (3) imply that the first node v1 on PSH is skipped by
SNC but v1’s energy is only slightly above the threshold (i.e.,
∆H×e

max
v1

). To compensate v1 (for the fairness concern), vm will
be skipped if condition (1) also holds, so the MC can quickly
move to charge v1 in the next round.

When SNC removes a node vj , the segment “vj−1 → vj →
vj+1” in P is replaced by a segment “vj−1 → vj+1”, instead of
recalculating the shortest path to visit the residual sensors by
the TSP method again. With the triangle inequality, we derive
that D̃(vj−1, vj+1) < D̃(vj−1, vj) + D̃(vj , vj+1). Thus, P is
shorter than PSH, so the MC can visit those sensors in urgent
need of energy earlier and charge them faster. Theorem 1 gives
the time complexity of recreating an alternative path (i.e., P)
by the SNC module.

Theorem 1. Recreating an alternative path P (from PSH) by the

SNC module takes O(n) time, where |Ŝ| = n.

Proof: P is initially set to PSH, so it contains all sensors

in Ŝ and the POD v0. Except for v0, for each node vj on P ,
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Algorithm 3: The FBC Module

Input: Sensor si to be charged
Output: Charging time for si

1 if |ŜA| > γ|Ŝ| and
∑

∀sj∈ŜA
ej/|ŜA| > eth and

µavg < µth then
2 Calculate eCHi by the fully charging strategy;
3 else
4 Calculate eCHi by the partially charging strategy;

5 Return eCHi /τmc;

SNC checks only the energy of that node and the following
node (i.e., evj

and evj+1
). Thus, it takes O(1) time to do a

check. Since there are at most n sensors on P , the time for
SNC to check the whole path is n × O(1) = O(n). Moreover,
when SNC decides to remove a node vj , it replaces segment
“vj−1 → vj → vj+1” with segment “vj−1 → vj+1” in P .
Evidently, doing the segment replacement requires merely a
constant time. Since no more than n nodes can be removed
from P , it takes O(n) time to replace segments in the worst
case. Therefore, the time complexity of the SNC module to
recreate path P from PSH is O(n) +O(n) = O(n).

4.2 Floating Battery Charging (FBC) Module

Owing to adaptive SRs, sensors generate different amount of
sensing data and have different speeds of energy consumption.
Thus, the FBC module takes a floating charging policy, and
Algo. 3 gives its pseudocode. Let eCHi be the amount of energy
that the MC will charge a sensor si on P . Depending on the
network status, FBC has two charging strategies.

Fully charging strategy: FBC adopts this strategy when three

conditions obtain: (1) |ŜA| > γ|Ŝ|, where 0.8 ≤ γ < 1, (2)
∑

∀sj∈ŜA
ej/|ŜA| > eth, where eth is an energy threshold,

and (3) µavg < µth, where µth is a threshold on EER. Here,
conditions (1) and (2) mean that more than 80% of sensors
in the WSN are workable, and most of them are energy-
rich. Condition (3) implies that these sensors consume energy
slowly. In this case, the MC can take a relatively short time to
fully charge each sensor. Thus, we set eCHi by

eCHi = emax
i − ei. (9)

Partially charging strategy: If any condition violates, the MC
takes much time to charge sensors, as many sensors need to
be charged, or they have little energy. To avoid some low-
energy sensors waiting too long, the MC dynamically adjusts
the charging amount. If ei ≥ (1− α)emax

i , eCHi is set by Eq. (9).
Otherwise, we set eCHi as follows:

eCHi = αemax
i + β(|ŜA|/|Ŝ|)̺. (10)

where 0 < α, β < 1 and ̺ = (1−α)emax
i −ei. In Eq. (10), sensor

si is given a basic charging amount αemax
i . If si’s battery still

has room to charge, the MC gives it an extra charging amount

β(|ŜA|/|Ŝ|)̺, which depends on the ratio of workable sensors
to total sensors. Here, when there are fewer dead sensors
needed to be recharged (i.e., |ŜA|/|Ŝ| is larger), the MC can give
more extra charging amount to si for improving its throughput
(referring to the SR in Eq. (5)).

Since the MC’s charging rate τmc is fixed, the charging time
for si is eCHi /τmc. Theorem 2 shows the correctness of the FBC
module, and Theorem 3 analyzes its time complexity.

Theorem 2. The MC will never overcharge a sensor’s battery
by using the FBC module.

Proof: For each sensor si ∈ Ŝ , emax
i is the capacity of its

battery and ei is the current residual energy, where ei ≤ emax
i .

Evidently, the MC can charge up to an amount (emax
i − ei) of

energy for si, so it will not overcharge si’s battery by using

Eq. (9). In Eq. (10), since β < 1 and ŜA ⊆ Ŝ , we derive that

αemax
i + β(|ŜA|/|Ŝ|)((1− α)emax

i − ei)

< αemax
i + 1× 1× ((1− α)emax

i − ei) = emax
i − ei.

Therefore, the MC will not overcharge si’s battery by using
Eq. (10), thereby proving this theorem.

Theorem 3. Given n sensors in Ŝ , the worst-case time complex-
ity of the FBC module is O(n).

Proof: FBC chooses between the fully or partially charg-
ing strategies by checking three conditions, and the check
is performed once. It takes O(1) time to check conditions
(1) and (3) and O(n) time to check condition (2). Since FBC
finds charging time for only the sensors on path P , the worst

case occurs when all sensors in Ŝ are on P . The calculation
in Eqs. (9) and (10) requires O(1) time. Thus, FBC has time

complexity of O(1) +O(n) + |Ŝ| ×O(1) = O(n).

4.3 Discussion

Let us discuss the rationale of EPCS. It uses a TSP method to
find the shortest path PSH to visit all sensors in Ŝ , and then
recreates an alternative path P by removing some nodes from
PSH. Doing so has two benefits. First, when the network is

small (i.e., Ŝ has fewer sensors or the sensing field is small),
P is almost the optimal moving path for the MC to charge
sensors, as only few nodes would be removed from PSH to
create P . Second, by skipping some energy-rich nodes, the MC
can charge the sensors thirsty for energy faster, which helps
improve the survivability of sensors in a large WSN.

EPCS contains the SNC and FBC modules, whose designs
consider adaptive SRs. As sensors have different SRs and their
SRs can dynamically change, their energy expenditure would
be of big difference. Thus, SNC differentiates between energy-
rich sensors (with small SRs) and energy-poor sensors (with
large SRs). If the visiting sequences of energy-poor sensors are
behind those of energy-rich sensors on PSH, SNC lets the MC
skip these energy-rich sensors to charge energy-poor sensors as
soon as possible. Moreover, FBC chooses the partially charging
strategy if EER µavg exceeds a threshold, where the calculation
of EER in Eq. (7) consults sensors’ SRs. Specifically, when more
sensors have larger SRs, µavg rises accordingly. Thus, the MC
partially charges most sensors to increase their survivability.
On the contrary, if most sensors have smaller SRs, µavg re-
duces, so the MC can fully charge sensors. In this case, the SR
ri of a sensor si can be set to rHi by Eq. (5), thereby improving
its throughput. The above designs let our EPCS algorithm be
suitable for sensors with adaptive SRs.

Theorem 4 analyzes the time complexity of EPCS. Exclud-
ing the time used to find the shortest path PSH by a TSP
method, the residual part of EPCS spends just O(n) time. In
fact, EPCS adopts the TSP method only in the first round.
Then, we can remove line 1 from Algo. 1 in other rounds. Thus,
EPCS incurs less overhead in computation. Theorem 5 proves
that the MC can complete the charging task assigned by EPCS,
subject to its energy budget emc.
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TABLE 2: Parameters used in the simulation.
Parameter Value

Sensor-related parameters:
Communication range 150 m
Packet length 500 bytes
Battery emin

i : 1 J, emax

i : 6480 J
Coefficients for energy use

i
: 1.5 V, cse

i
: 25 mA, tse

i
: 0.25 ms

expenditure defined in ζtx
i

: 40 nJ/bit, ζam
i

: 80 pJ/bit (per m2)
Section 3.1 ζrxj : 40 nJ/bit

SR (unit: packets/s) 34 sensors: 1/36 → 1/144
# of sensors: rHi → rLi 33 sensors: 1/48 → 1/192
Threshold δ: 0.2 33 sensors: 1/72 → 1/288

MC-related parameters:

Movement Velocity: 3 m/s, energy expense (Ẽmv): 4 J/m
Charging rate (τmc) 5 J/s

Theorem 4. Given n sensors in Ŝ , EPCS’s time complexity is
f(n) + O(n), where f(n) is the time required by a TSP
method to find the shortest path PSH.

Proof: In Algo. 1, line 1 spends f(n) time to build PSH.
Line 3 finds EER µavg by Eq. (7), which takes O(n) time in the

worst case (i.e., when ŜA = Ŝ). According to Theorems 1 and
3, the for-loop in lines 4–8 consumes O(n) time. Thus, the time
complexity of EPCS is f(n) +O(n).

Theorem 5. The MC must have enough energy to complete the
charging task assigned by EPCS in each round.

Proof: As discussed in Section 4.1, the path P recreated
by the SNC module is no longer than the shortest path PSH
found by the TSP method, so we obtain that L(P) ≤ L(PSH).
For each sensor si on P , the MC charges it with an amount eCHi
of energy, where eCHi ≤ emax

i by Theorem 2. Thus, the amount
of energy required by the MC to complete its task is Ẽmv ×
L(P) +

∑

∀si∈P
eCHi ≤ Ẽmv × L(PSH) +

∑

∀si∈Ŝ
emax
i , which is

below its energy budget emc defined in Eq. (6).

5 PERFORMANCE EVALUATION

We develop a simulator in C++ for performance evaluation,
and Table 2 gives its parameters. The sensing field is a K ×K
square, where K is set to 600, 800, and 1000 meters. There
are 100 sensors randomly deployed in the sensing field. They
route packets by using the LEACH-C (low-energy adaptive clus-
tering hierarchy–centralized) protocol [40], which picks energy-
rich sensors as cluster heads for the routing purpose. When a
sensor acts as the cluster head, it consumes energy faster than
other sensors [41]. Besides, we choose the simulated annealing
algorithm [42] to be the TSP method (below, it is called “TSP-
SA” for short). Except for TSP-SA, we compare our EPCS
algorithm with the FCFS [28], NJNP [29], EDF [30], and TADP
[31] methods discussed in Section 2.

Each round begins at the time when the MC departs from
the POD and ends at the time as it goes back to the POD.

Since different methods choose varied subsets of sensors in Ŝ
to be charged and find different moving paths for the MC to
visit them, the period of a round will not be equal in different
methods. Even if a method finds a fixed moving path for the
MC (e.g., TSP-SA), its round period is not constant, because
sensors have varied residual energy (and their charging time
change accordingly) in different rounds. Thus, it is difficult
and unfair to compare the survivability and throughput of
sensors by different methods in a per-round fashion. Instead,
we evaluate the system performance every 10,000 seconds, and
the total simulation time is set to 1,000,000 seconds.

Our EPCS algorithm includes some parameters. Since the
minimum required energy emin

i for a sensor si to operate is
1 J, we set ∆L = 0.1% and ∆H = 3% in the SNC mod-
ule. In this case, si will use up energy soon when ei <
∆L × emax

i = 0.1% × 6480 J = 6.48 J. On the other hand,
if ei > ∆H × emax

i = 3% × 6480 J = 194.4 J, si has enough
energy for operation. For the FBC module, we set γ = 0.85, eth
= 5500 J, and µth = 0.6 J/s. In other words, when (1) more than
85% of sensors in Ŝ are workable, (2) the workable sensors
have at least (5500/6480 ≈ 85%) of energy left, and (3) the
average EER is below 0.6 J/s, the MC adopts the fully charging
strategy. Otherwise, it employs the partially charging strategy.
Here, when si’s EER is fixed to 0.6 J/s, it can keep operating
for three hours. That is why we set µth to 0.6 J/s. In Eq. (10),
both α and β are set to 0.2. In Section 5.4, we will investigate
their effect on EPCS’s performance.

5.1 Comparison on Survivability

First, we measure the survivability of sensors, as shown in
Fig. 1, which is defined as the percentage of workable sensors

(i.e., ŜA) in the WSN. Evidently, higher survivability implies
that there exist more workable sensors to maintain the network
operations (e.g., collecting data and routing packets). On the
whole, the survivability in each method drops drastically in
the first 100,000 seconds and then keeps stable (with some
oscillations) afterward. This phenomenon points out the MC’s
limitation on charging sensors. Specifically, even though the
MC has sufficient energy to charge every sensor in each round,
it cannot keep all sensors workable due to some physical con-
straints (e.g., constant moving speed and charging rate). This
also reveals why it is important to find an efficient solution for
the P&C problem.

In Fig. 1(a), FCFS results in the lowest survivability, as it
does not care about the MC’s moving distance. By consid-
ering the residual energy of sensors, both EDF and TADP
have higher survivability than NJNP. Since TSP-SA finds the
shortest path PSH for the MC to visit sensors, its moving
distance greatly reduces. In this case, the MC has more time
to charge sensors, thereby raising their survivability. EPCS not
only shorten PSH by removing some energy-rich nodes, but
also lets the MC charge sensors in a floating fashion. Thus, our
EPCS algorithm always has the highest survivability.

From Fig. 1(b) and (c), when the size of the sensing field
increases (i.e., K ≥ 800), except for EPCS, all other methods
have very low survivability after 100,000 seconds, because the
MC’s moving distance substantially increases. Specifically, the
survivability of TSP-SA, FCFS, NJNP, EDF, and TADP is below
14% and 10% after 100,000 seconds when K is 800 and 1000,
respectively. On the contrary, the survivability of our EPCS
algorithm is always higher than 30%. This result shows the
high efficiency of EPCS in terms of survivability, especially in
a large sensing field.

5.2 Comparison on Throughput

Next, we evaluate the aggregate number of packets (ANP) of
sensing data successfully sent to the sink, as shown in Fig. 2.
When there exist more workable sensors in the WSN, and most
of them have sufficient energy to support high SRs rHi (i.e.,
ei ≥ δ× emax

i ), they can send more sensing data to the sink. In
this case, network throughput will rise accordingly.

In a small sensing field (i.e., K = 600), the MC can visit

more sensors in Ŝ . Thus, the ANP of sensing data rises as
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Fig. 1: Comparison on the survivability of sensors by different methods.
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Fig. 2: Comparison on the ANP of sensing data sent to the sink by different methods.

TABLE 3: Improvement ratio of the ANP of sensing data by EPCS.
K TSP-SA FCFS NJNP EDF TADP

600 2.7% 337.0% 28.5% 45.5% 14.7%
800 16.3% 609.2% 255.2% 100.7% 31.9%
1000 225.4% 571.3% 623.4% 680.7% 440.9%

time goes by. FCFS is the only exception, as it has very low
survivability (i.e., most sensors are not workable). Both TSP-
SA and EPCS find the shortest moving path for the MC to
charge sensors, so they result in the largest ANP of sensing
data. When K is set to 800, the MC takes more time to visit
sensors. Many sensors could not be charged in time, thereby
reducing the ANP of sensing data. EPCS outperforms other
methods, and the performance gap between EPCS and TSP-
SA also increases, as shown in Fig. 2(b).

In a large sensing field (i.e., K = 1000), except EPCS, the
ANP of sensing data in other methods stops growing after
400,000 seconds. The reason can be found in Fig. 1(c), where
very few sensors are workable. Therefore, the network almost
collapses, since the LEACH-C protocol cannot select enough
sensors to be cluster heads. Thanks to both SNC and FBC
modules, our EPCS algorithm keeps more than 30% of sensors
workable and avoids this predicament. Table 3 summarizes
the improvement ratio of the ANP of sensing data by EPCS
as compared with other methods. As can be seen, our EPCS
algorithm can significantly improve the ANP of sensing data,
especially in a large sensing field.

Then, we measure the average throughput of workable

sensors (i.e., ŜA), which can be viewed as the throughput of
each communication in the WSN. To do so, we divide the
simulation time into 100 periods, where the period length
is set to 10,000 seconds. Periods 30, 60, and 90 are selected
as the sampling periods, which fall within the early, middle,
and late stages in the simulation, respectively. Fig. 3 gives the
experimental result. As time goes by, there are fewer workable
sensors and some of them may not be charged with enough

energy. Thus, the average throughput reduces accordingly.
In a small sensing field (i.e., K = 600), except for FCFS,
all other methods have relatively high throughput. EPCS has
the highest throughput, followed by TSP-SA, TADP, EDF, and
NJNP. The similar phenomenon also happens when K = 800.
On the other hand, in a large sensing field (i.e., K = 1000),
only TSP-SA and EPCS still have non-zero throughput1 in
every sampling period, where EPCS has higher throughput
than TSP-SA. This result shows the efficiency of our EPCS
algorithm on improving sensors’ throughput.

5.3 Energy Distribution and Connectivity of Sensors

Then, we study the energy distribution of sensors. To do so, we

divide the workable sensors (i.e., ŜA) into seven groups based
on their residual energy, as shown in Fig. 4, and measure the
number of sensors in each group. As discussed in Sections 5.1
and 5.2, TSP-SA outperforms all other methods (except EPCS).
Besides, the EPCS algorithm uses TSP-SA to find the shortest
path PSH. Thus, we compare the energy distribution of sensors
only in TSP-SA and EPCS.

As discussed in Section 4.3, the alternative path P recreated
by EPCS would be similar to the shortest path PSH found by
TSP-SA in a small sensing field (i.e., K = 600). As the visiting
sequences of sensors for the MC in both EPCS and TSP-SA
are similar, they have similar energy distributions. In addition,
some sensors can be fully charged, so they have more residual
energy (i.e., ei > 4000 J).

When K ≥ 800, the MC spends more time on movement,
so more sensors may exhaust their energy before the MC
charges them. As TSP-SA takes the fully charging strategy,
the energy distribution of sensors becomes unbalanced. Few
sensors have nearly full energy (i.e., ei ≥ 5000 J), but many

1. In other methods, although there exist workable sensors, these sensors
cannot form a connected network. In this case, they cannot send data to
the sink, so the average throughput falls to zero.
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Fig. 3: Comparison on the average throughput of workable sensors by different methods.
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Fig. 4: Comparison on the energy distribution of sensors by TSP-SA and EPCS.

sensors cannot be charged. On the other hand, EPCS flexibly
adjusts the amount of energy charged to sensors by Eq. (10).
Thus, the MC can charge more sensors, each with energy
enough to maintain its operations (i.e., ei < 3000 J). In this way,
EPCS can evenly distribute energy among sensors, thereby
improving their survivability and throughput.
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Fig. 5: Locations of workable sensors in TSP-SA and EPCS.

Afterward, we study the connectivity of the network in
TSP-SA and EPCS. Fig. 5 shows the locations of workable

sensors by setting K to 800 and 1000, where the sink and
POD are in the center of the sensing field. Dots (•) signify the
sensors that can form a connected network to send data to the
sink, while crosses (×) denote the sensors that are workable
but isolated. As can be seen, EPCS makes many more sensors
workable as compared with TSP-SA. That is because EPCS lets
the MC charge each sensor with enough energy for operation,
so as to charge more sensors and improve their survivability.
Besides, EPCS skips only energy-rich sensors, so the network
connectivity is still maintained. From Fig. 5, there are only 8
and 5 workable sensors forming connected networks in TSP-
SA when K is 800 and 1000, respectively. On the other hand,
35 and 31 workable sensors can be connected in EPCS when K
is 800 and 1000, respectively. This result shows the superiority
of EPCS over TSP-SA.

5.4 Effect of Parameters
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Fig. 6: Effect of parameters α and β on EPCS’s performance.

In the partially charging strategy, the MC finds the amount
of energy charging to a sensor by Eq. (10), which is controlled
by parameters α and β. In this section, we study their effect
on EPCS’s performance, where K = 1000. Fig. 6(a) shows
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Fig. 7: Comparison on the ANP of sensing data sent to the sink in the scenario of constant SRs.

α’s effect, where β = 0.2. Since the basic charging amount
is αemax

i , changing the value of α has a great impact on the
performance. The survivability reduces when α rises, since
the MC spends more time on charging each visited sensor.
Besides, some sensors are charged with more energy, so they
can generate more data (based on Eq. (5)). Thus, the ANP of
sensing data increases by raising α. However, when α is larger
than 0.2, the ANP of sensing data decreases instead due to low
survivability of sensors. From Fig. 6(a), a good value for α is
0.2, as we can keep higher survivability and ANP of sensing
data.

Fig. 6(b) shows the effect of β, which decides the ratio
of extra charging amount, where α = 0.2. Since each visited
sensor is given a basic charging amount, β’s effect is less than
α’s effect. That is why the trend in Fig. 6(b) resembles the
trend in Fig. 6(a), but the scale of the x-axis in Fig. 6(b) (i.e.,
β = 0.1∼0.8) is larger than that in Fig. 6(a) (i.e., α = 0.1∼0.3).
Based on Fig. 6(b), we suggest setting β to 0.2 to get high
survivability and ANP of sensing data.

5.5 Scenario of Constant SRs

Afterward, let us consider the scenario where sensors have the
same and constant SRs. Specifically, the SRs of all sensors are
fixed to 1/72, 1/48, and 1/36 packets/s, and we evaluate the
ANP of sensing data sent to the sink after 1,000,000 seconds.
Fig. 7 shows the experimental result. Since sensors will not
adjust SRs by Eq. (5), their energy expenditure may keep
constant, even if they have less residual energy. In this case,
sensors take a short time to use up energy, especially when the
SR is set to 1/36 packets/s. In fact, sensors have much larger
EERs in this scenario, as compared with the original scenario
of adaptive SRs in Table 2. That is why the ANP of sensing
data in Fig. 7 is lower than that in Fig. 2.

As discussed in Section 5.2, the ANP of sensing data
reduces if K increases. When the SR rises, sensors generate
packets of sensing data more frequently, which increases the
ANP of sensing data. On the other hand, since sensors have
large EERs, their survivability decreases accordingly. There-
fore, there will exist fewer workable sensors to generate pack-
ets, thereby decreasing the ANP of sensing data. Based on the
above two reasons, the ANP of sensing data in each method
may not necessarily increase (or decrease) as the SR increases.
As compared with TSP-SA, FCFS, NJNP, EDF, and TADP,
our EPCS algorithm always results in the highest ANP of
sensing data, which demonstrates that EPCS also has the best
performance among all methods when sensors have constant
SRs and large EERs.

6 CONCLUSION AND FUTURE WORK

In many WSN applications, sensors equipped with small bat-
teries have to work for a long time. This paper uses an MC to
charge sensors with adaptive SRs, and proposes the EPCS algo-
rithm to arrange the MC’s path and charging time to improve
the survivability and throughput of sensors. With the SNC
module, the MC flexibly skips some energy-rich sensors on
the shortest path found by the TSP method, thereby charging
those sensors in urgent need of energy as soon as possible.
Besides, the FBC module offers a floating charging mechanism
based on the network status. Simulation results show that our
EPCS algorithm not only keeps more sensors workable but
also increases their throughput, as compared with the TSP-SA,
FCFS, NJNP, EDF, and TADP methods. Moreover, EPCS can
evenly distribute energy among sensors and maintain network
connectivity.

Finally, we give some future directions. First, the SNC mod-
ule provides a low-complexity way to recreate an alternative
path from PSH, but the path may not necessarily be optimal.
As future work, we expect to develop a more sophisticated
method to improve the SNC module. Second, it deserves fur-
ther investigation on how to well dispatch MCs to extend the
lifetime of a WSN composed of multi-attribute sensors [43] and
heterogeneous sensors [44]. In this case, we have to consider
multiple factors when selecting sensors to be charged, includ-
ing the residual energy, position, importance, and capability of
each sensor. Third, some protocols dedicated to IoT devices,
such as the constrained application protocol (CoAP), affect both
sensing and reporting rates of sensors [45]. In view of this, we
will consider developing efficient scheduling algorithms for
MCs to charge sensors that adopt these protocols.
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