
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 1

TSSM: Time-Sharing Switch Migration to Balance
Loads of Distributed SDN Controllers

Wei-Kuang Lai, You-Chiun Wang, Yi-Chien Chen, and Zong-Ting Tsai

Abstract—Software-defined networking (SDN) makes network management easier by using a controller to govern all switches, but the

controller may become a performance bottleneck. Distributed SDN control is a promising solution, which lets multiple controllers divide the

work, where each controller manages a part of the network. Switch migration is one common means to the load balance of controllers, which

transfers some switches to different subnets based on the workloads of their controllers. The paper proposes a time-sharing switch migration

(TSSM) scheme to provide more refined load sharing for controllers, which allows two controllers to share a switch’s load sequentially in

the same period. When a controller is overloaded, TSSM finds assistant controllers to share its workload by selecting proper switches for

migration and also deciding the time to perform migration. In this way, the workload of each controller can be kept below a given threshold.

We implement the TSSM scheme on the open network operating system (ONOS) to attest to its feasibility. Experimental results show that

TSSM can reduce 98% of the occurrences of overload for controllers as compared with the original OpenFlow method. Moreover, TSSM can

save about 78% of the migration cost than the churn-triggered migration method.

Index Terms—load balance, ONOS, switch migration, SDN, time-sharing.

✦

1 INTRODUCTION

THE rapid growth of traffic demands and also diversified
network applications bring an extraordinary challenge to

network management. In conventional network architectures,
the control plane (i.e., management and decision making) and
the data plane (i.e., packet processing) are coupled up in every
switch. Consequently, it costs much effort to apply new poli-
cies or algorithms in large networks, because administrators
have to reconfigure involved switches one by one [1].

The software-defined networking (SDN) technique provides
another view of network management by displacing the con-
trol plane from switches to a central entity called the controller.
In this way, administrators can easily wield switches and mon-
itor the network status. In particular, they can write programs
on the controller to apply their policies or algorithms. Then, the
controller sets rules into the switches spontaneously to carry
out the policies or algorithms [2]. The controller can also query
each switch about its state by the OpenFlow protocol, like the
number of packets processed and their types [3]. SDN bears
a variety of applications, for example, identifying malicious
access points [4], managing data centers [5], providing anony-
mous authentication [6], and resisting cyber-attacks [7].

If a switch gets some packets without corresponding rules
to handle, the switch has to ask the controller for the instruc-
tions. It can be expected that the controller of a large network
with many switches will easily become the performance bot-
tleneck. One promising solution is the distributed SDN con-
trol (DSC) [8], which allows multiple controllers cooperating
to coordinate the network. More concretely, each controller
manages a subset of switches in the network, which we call a
“subnet” for short below. In addition, controllers can exchange
information with each other for the purpose of collaboration.

The authors are with the Department of Computer Science and Engineer-
ing, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (e-mail:
wklai@cse.nsysu.edu.tw; ycwang@cse.nsysu.edu.tw; chenyichientw@gmail.com;
e0989369793@gmail.com).

One may allocate the subnet of which each controller takes
charge to fairly distribute the workload to them (also known
as controller placement) [9]. Some dynamical placement methods
are proposed, which regularly check each subnet and reassign
its switches when necessary. The work [10] groups controllers
such that the loads between groups are balanced. In a group, a
master controller copes with the reassignment of switches for
member controllers. In [11], the deep reinforcement learning
technique is applied to controller placement, which considers
flow fluctuation, data latency, and load balance. However,
these methods may substantially change member switches in
a subnet, making the subnet unstable. Besides, its controller
would incur a high message overhead to perform the reas-
signment of switches (referring to Section 2.2 for details). Even
worse, impulse or distributed denial-of-service (DDoS) flows
usually generate numerous packets but last for a short while
[12]. As a result, some controllers are assigned with just a few
switches that handle such short-lasting flows. After the flows
disappear, these controllers would become almost idle, which
causes load imbalance (until switch reassignment is performed
again).

Switch migration supports a more fine-grained adjustment
of subnets with a smaller period and mitigates the above
problem. In each period, a migration method checks if some
controllers become busy and some other controllers can help
share their workloads. If so, the migration method then trans-
fers a switch from the subnet of a busy controller to another
subnet whose controller is at a light load, until there is no
busy controller or no available light-load controller. As will be
discussed later in Section 3, the existing methods of switch
migration regard one single switch as the smallest slice of
migration. After a switch migrates, it stays in the new subnet
until the switch is selected for migration in a subsequent
period.

However, when a flow carries many packets (e.g., elephant
flow [13]), a switch sk that processes the flow brings heavy
loads to its controller ci. After sk migrates to another subnet

2 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

leader

switch

controller

(a) hierarchical

switch

controller

(b) flat

Fig. 1: Two paradigms for the DSC architecture.

managed by a controller cj , sk will drastically increase cj ’s
load. On the other hand, ci’s load is substantially decreased
as sk leaves its subnet. In the next period, cj may ask ci to
take over sk again. Thus, sk repetitively migrates between the
two subnets managed by ci and cj , but either ci or cj is still
overloaded. Such a phenomenon is called the controller ping-
pong difficulty, which brings out the deficiency of the current
switch migration methods. In Section 4.2, we will give an
example to further explain this difficulty.

In this paper, we propose a time-sharing switch migration
(TSSM) scheme, which lets two controllers share the load of a
switch in the same period by splitting the switch’s work with
them sequentially. More concretely, TSSM pairs an overloaded
controller ci (whose workload overtakes the threshold) and an
assistant controller cj (which is capable of sharing the load of
others). Afterward, it chooses a switch sk from ci’s subnet to
migrate. Instead of relocating sk at the beginning of the period
inflexibly, TSSM will find an adequate point in time within the
period to transfer sk to cj ’s subnet. In this way, sk’s work can
be appropriately shared by both ci and cj , thereby conquering
the controller ping-pong difficulty.

Our contributions are threefold. First, unlike previous mi-
gration methods that always ask a controller to take over one
switch for a whole period, this paper proposes another primal
point of view to accomplish switch migration in a time-sharing
manner, which provides far more flexibility. Second, the de-
sign of the TSSM scheme prevents switches from changing
their subnets too frequently. Thus, TSSM’s migration cost is
contained, and controllers need not exchange many messages
with switches to perform the migration. Third, we implement
the TSSM scheme on the open network operating system (ONOS)
[14] to attest to its feasibility. Experimental results show that
TSSM can significantly reduce the occurrences of overload for
controllers, efficiently balance the workloads of all controllers,
and keep a low migration cost.

This paper is organized as follows: Section 2 gives back-
ground knowledge and Section 3 surveys related work. The
system model is discussed in Section 4. After that, Section 5
details the TSSM scheme, followed by performance evaluation
in Section 6. Finally, Section 7 concludes this paper.

2 PRELIMINARY

In this section, we discuss the DSC architecture, the transfer-
ring procedure for switches proposed in OpenFlow, and the
ONOS platform for controller implementation.

2.1 DSC Architecture

There are two common paradigms for the DSC architecture
[8]. In the hierarchical paradigm, a “leader” is responsible for
coordinating all other controllers, as shown in Fig. 1(a). Except

controller ci controller cj
switch sk

transferring request for sk

transferring reply for sk

Role_request(Master)

Role_reply(Master)

Fig. 2: The transferring procedure for switches defined in OpenFlow.

for the leader, each controller directs a subset of switches and
reports its status to the leader. Because the leader has a global
view of the network, it is easy to apply network-wide policies
through the leader. However, once the leader is broken down,
a new leader should be elected [15]. On the other hand, in the
flat paradigm, controllers have their respective authorization
of subnets, as Fig. 1(b) shows. Since each controller has only a
local view of the network, when inter-controller functions are
required, the involved controllers need to carry out message
exchanges of local views in a distributed manner.

In this paper, we adopt the hierarchical paradigm. Specifi-
cally, the leader keeps monitoring the status of each controller.
When some controllers become overloaded, the leader exe-
cutes the TSSM scheme to select assistant controllers to share
their workloads and schedule the duration where a controller
should take over each selected switch. Then, the leader notifies
the involved controllers of the result of switch migration.

2.2 Transferring Procedure for Switches in OpenFlow

To realize the transfer of switches among different subnets,
OpenFlow permits a switch sk establishing relationships with
multiple controllers. Based on sk’s perspective, each associated
controller ci can have one of the following roles:

• OFPCR_ROLE_EQUAL (Equal): This default role lets ci
have full access to sk and be equal to other controllers
in the same role. Specifically, ci can send commands to
sk and also obtain its status report.

• OFPCR_ROLE_SLAVE (Slave): If the role of ci changes to
Slave, the access control of ci on sk is read-only. Thus,
ci can no longer send commands to sk.

• OFPCR_ROLE_MASTER (Master): Similar to the Equal
role, ci also has full access to sk. However, each switch
can have at most one Master controller. In this case, the
roles of other controllers will be switched to Slave.

Fig. 2 shows the transferring procedure for switches de-
fined in OpenFlow. Since the Master role is exclusive, this
procedure must be initiated by a Master controller. Suppose
that ci and cj are the Master and target controllers of switch
sk, respectively. In the first place, ci sends to cj the trans-
ferring request for sk. Afterward, cj asks sk to change cj ’s
role to be sk’s Master via a Role_request(Master) mes-
sage, and sk makes a confirmation by answering cj with a
Role_reply(Master) message. Finally, cj notifies ci of the
successful transfer for sk, and ci’s role (in terms of sk) will be
altered to Slave.

Switch migration can be accomplished by employing the
transferring procedure in Fig. 2, which is supported by Open-
Flow with versions 1.2, 1.3, 1.4, and 1.5 (the latest version). The
OpenFlow standard only indicates how to exchange messages
between controllers and switches to alter the roles of involved

TSSM: TIME-SHARING SWITCH MIGRATION TO BALANCE LOADS OF DISTRIBUTED SDN CONTROLLERS 3

provider

protocol

application

provider

protocol

application

provider

protocol

application

provider

protocol

application

southbound core API

distributed core

northbound core API

switch

Fig. 3: The software framework of ONOS.

controllers. However, the selection of target controllers and
switches for transfer is not specified in the standard. That
is why different switch migration methods are proposed (as
discussed in Section 3). Our TSSM scheme finds appropriate
controllers and decides when to perform switch migration by
using the procedure in Fig. 2. Thus, TSSM can function well in
all the above versions of OpenFlow. In this paper, OpenFlow
version 1.5 is adopted to implement TSSM.

2.3 ONOS Platform

ONOS is a popular open-source platform that supports hosts
with the complete SDN functions, including the control plane,
switches, links, and communication services. The kernel, core
services, and applications of ONOS are all written in Java as
bundles to be loaded into the OSGi container, which is a Java
component system that allows function modules to be installed
and run dynamically in a single Java virtual machine. In this
way, ONOS can run on different underlying operating systems.

Fig. 3 gives the software framework of ONOS. Specifically,
the northbound core API provides the network’s information
(e.g., topology and paths) based on the representational state
transfer (REST) style [16]. On the other hand, the distributed
core is responsible for computation, status management, and
notification. The southbound core API helps an ONOS controller
interact with switches. It communicates with switches through
providers, which can use different protocols such as OpenFlow,
P4Runtime, NETCONF, and OVSDB1.

Generally speaking, the TSSM scheme can be implemented
on any SDN controller platform compliant to OpenFlow, such
as ONOS, NOX, Floodlight, and OpenDaylight. Considering
that ONOS provides a useful platform to facilitate program-
mers to develop their SDN applications, we adopt the ONOS
platform to implement TSSM and attest to its feasibility.

3 RELATED WORK

Various issues for DSC have been addressed in the literature.
Chan et al. [17] discuss how to smoothly hand over the work
of an impaired controller to another controller to minimize the
service interruption time. The work [15] picks a controller as
the leader to coordinate other controllers. Once the leader fails,
a controller whose load is low and throughput is high will
be the new leader. Lu et al. [9] survey the existing solutions
to the controller placement problem, whose objective is to
keep fairness between controllers in terms of workloads. A

1. API: application program interface, REST: representational state trans-
fer, NETCONF: network configuration protocol, OVSDB: open vSwitch
database.

reliable deployment approach for controllers is proposed in
[18] to improve network stability and reduce packet loss. Kim
et al. [19] increase the throughput of distributed datastore in
an OpenDaylight controller cluster by evenly distributing the
shard leaders to cluster members. In [20], when some switches
become busy, controllers cooperate to reroute their traffic flows
to mitigate congestion. The work [21] proposes a software-
defined cyber foraging framework, which is a hybrid controller
including a control plane for local networks and cloudlets. In
[22], layer-2 controllers predict the network’s load, and layer-3
controllers perform device migration based on the prediction.

Except for the dynamical controller placement methods
[10], [11] discussed in Section 1, a number of studies aim to
balance loads of distributed SDN controllers, which can be
classified into three categories.

Switch migration: These methods make a busy controller
transfer the control of some switches to low-load controllers to
reduce its workload. The study [23] performs switch migration
when the CPU and memory utilization of a controller exceeds
the threshold, but how to choose target controllers for switch
migration is not addressed. The work [24] employs Q-learning
to relocate switches, which minimizes the standard deviation
of the workloads of controllers. Cui et al. [25] execute switch
migration based on the response time of each controller. They
pick the controller with the longest response time and transfer
its switch with the largest load to a controller with the shortest
response time. In [26], the criteria to select the target controller
for switch migration include its memory size, CPU utiliza-
tion, bandwidth, and hop count. Hu et al. [27] discuss the
cost of switch migration, and propose a simulated-annealing
algorithm to select target controllers to reduce the migration
cost.

Flow migration: Instead of transferring a whole switch,
these methods carry out the migration at the granularity of the
flows. In [28], one super controller takes charge of monitoring
the status of every controller and adjusting the flow requests
handled by them. The work [29] allows switches to detect the
workload of each controller and choose their target controllers
for flow management. A migration method based on the
game theory is proposed to improve network performance.
However, to let a switch select its favored controller, custom
rules for the control plane must be installed in its memory, but
this feature is not supported by OpenFlow.

Flow splitting: In this category of methods, a switch
is supervised by more than one controller simultaneously.
Gorkemli et al. [30] use a virtual overlay on the data plane
for switches to negotiate with their controllers to realize flow
splitting. The study [31] maps each switch to multiple con-
trollers for sharing the requests of flow setup, which saves the
time for the switch to handle the flows. A convex quadratic
programming problem is defined in [32] to model the mapping
between switches and controllers, which attempts to balance
the loads of controllers and also reduce new switch-controller
assignments. However, if multiple controllers have full access
to a switch, we have to guarantee the synchronization among
these controllers in terms of the switch (for example, two
controllers cannot install rules into the switch at the same
time). This issue would complicate the design of a flow-
splitting method.

Table 1 gives a comparison between the prior load-
balancing methods and our TSSM scheme. As discussed in Sec-
tion 2.2, OpenFlow supports the transfer of a switch’s control
from a controller to another. Dynamical controller placement

4 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

TABLE 1: Comparison between the prior load-balancing methods and our
TSSM scheme.

OpenFlow time controller
method category⋆ compliant sharing implementation

work [10] DCP
√

n/a
work [11] DCP

√
n/a

work [23] SM
√

n/a
work [24] SM

√
NOX

work [25] SM
√

Floodlight
work [26] SM

√
Floodlight

work [27] SM
√

OpenDaylight
work [28] FM n/a
work [29] FM n/a
work [30] FS n/a
work [31] FS n/a
work [32] FS n/a

TSSM SM
√ √

ONOS
⋆DCP: dynamical controller placement, SM: switch migration,
FM: flow migration, FS: flow splitting

methods and switch migration methods (including TSSM) are
therefore OpenFlow-compliant. Among all studies mentioned
in Table 1, only those methods proposed in [24], [25], [26],
[27] and our TSSM scheme are implemented on real controller
platforms. TSSM is peculiarly implemented on ONOS to show
its practicability. To the best of our knowledge, TSSM is the
first work to carry out switch migration in a time-sharing
manner, which provides more refined and flexible load sharing
for controllers.

4 SYSTEM MODEL

This section presents the network model, gives an example to
show the controller ping-pong difficulty, and then formulates
the switch migration problem.

4.1 Network Model

Let us consider an SDN-based network composed of a set Ŝ of

switches and a set Ĉ of controllers. For each controller ci ∈ Ĉ,
any switch in Ŝ is administrable, which means that ci is capable
of acting as the switch’s Master controller. On the other hand,

each switch sk ∈ Ŝ has one Master controller, which would
change due to migration. Let Ŝi ⊆ Ŝ be the set of switches

managed by ci. Then, we have
⋃

ci∈Ĉ
Ŝi = Ŝ and Ŝi ∩ Ŝj = ∅

for any two controllers ci and cj in Ĉ.
Many studies [23]–[26] point out that processing the

Packet In messages (PIMs) sent from switches accounts for most
of a controller’s workload. Because of this, we adopt the
number of PIMs to evaluate the load generated by a switch.
Specifically, the time axis is divided into fixed-length periods.

Let ζk,t be the number of PIMs produced by a switch sk ∈ Ŝ
in period t. Since sk may migrate to the subnet of a different

controller at any time in a period, we denote by ζ
(i)
k,t the number

of PIMs that sk submits to its Master controller ci in period t.

Therefore, we have
∑

∀ci∈Ĉ
ζ
(i)
k,t = ζk,t. The capacity Γi of a

controller ci is defined by the maximum number of PIMs that
it can process in a period. Furthermore, let Li,t be the amount
of workload of controller ci in period t (below, we call it “ci’s
workload” for short), which is calculated by

Li,t =
∑

∀sk∈Ŝi

ζ
(i)
k,t. (1)

Thence, the workload of ci is the sum of PIMs that each switch
in ci’s subnet sends to ci during period t.

If Li,t > δi, ci is viewed as overloaded in period t, where
δi ≤ Γi is a threshold. In particular, we adopt δi instead of

times3 s3 s3

s1

cj

Lj,t = 30 Lj,t+1 = 60 Lj,t+2 = 30

| | | | | | | | | | | | | |(30) (30) (30)

(30)

!

s2 s2 s2

ci

Li,t = 70 Li,t+1 = 40 Li,t+2 = 70

|||||||||||||||||||| (40) |||||||||||||||||||| (40) ||||||||||||||||||||

| |

| | | | | | | | | | | | | |

s1

| | | | | | | | | | | | | |(30)

! !

s1

| | | | | | | | | | | | | |(30)

(40)

period t period t+1 period t+2

(a) controller ping-pong difficulty

times3 s3 s3

s1

cj

Lj,t = 30 Lj,t+1 = 50 Lj,t+2 = 50

| | | | | | | | | | | | | |(30) (30) (30)

(20)

s2 s2 s2

ci

Li,t = 70 Li,t+1 = 50 Li,t+2 = 50

|||||||||||||||||||| (40) |||||||||||||||||||| (40) ||||||||||||||||||||

| |

| | | | | | | | |

s1

| | | | | | | | | | | | | |(30)

!

s1

| | | | |(10)

(40)

s1

| | | | | (10)

s1

(20)| | | | | | | | |

period t period t+1 period t+2

(b) TSSM solution

Fig. 4: An example to illustrate the controller ping-pong difficulty and how
TSSM solves this difficulty.

Γi due to two reasons. First, doing so provides flexibility, as
δi can be adjusted based on the application demand. Second,
each controller can reserve a (small) portion of its processing
power to cope with additional PIMs (e.g., abruptly generated
by switches within a period).

Similar to the existing solutions, parameters ζk,t and Li,t

are given. Since the hierarchical paradigm of DSC architecture
is adopted (as mentioned in Section 2.1), there exists a leader
controller to collect these parameters from all other controllers
in each period. Then, the leader directs the decision result of
switch migration (based on the proposed scheme) to them.

4.2 Controller Ping-Pong Difficulty

We use an example in Fig. 4 to explain the controller ping-pong

difficulty. Suppose that there are two controllers, Ĉ = {ci, cj},
and three switches, Ŝ = {s1, s2, s3} in a network, where δi =
δj = 50PIMs. Moreover, s1, s2, and s3 produce 30, 40, and 30
PIMs per period, respectively. In period t, ci manages s1 and s2
(i.e., Ŝi = {s1, s2}) and cj takes charge of s3 (i.e., Ŝj = {s3}).
Because Li,t = ζ1,t + ζ2,t = 30 + 40 > δi, ci is overloaded and
thus switch migration is necessary.

In the current switch migration methods, a busy controller
will request another controller to take over some of its switches
for a whole period, as shown in Fig. 4(a). More concretely, ci
lets s1 migrate to cj ’s subnet in period t + 1. Since Lj,t+1 =
ζ1,t+1 + ζ3,t+1 = 30 + 30 > δj , cj will be overloaded. Thus, cj
asks ci to take over s1 again in period t+ 2, so the situation is
the same as that in period t, which causes a ping-pong effect.
As can be seen, no matter how switches are transferred, either
ci or cj will be overloaded. This is called the controller ping-
pong difficulty.

On the other hand, TSSM performs switch migration in a
time-sharing manner, which splits the workload from the same
switch between two controllers within a period, as Fig. 4(b)

TSSM: TIME-SHARING SWITCH MIGRATION TO BALANCE LOADS OF DISTRIBUTED SDN CONTROLLERS 5

shows. In period t + 1, ci handles the first 10 PIMs of s1 and
leaves s1’s residual 20 PIMs to cj (by migration). Therefore,

ci’s workload is Li,t+1 = ζ
(i)
1,t+1 + ζ2,t+1 = 10 + 40 ≤ δi and

cj ’s workload is Lj,t+1 = ζ
(j)
1,t+1 + ζ3,t+1 = 20 + 30 ≤ δj , so

both controllers are not overloaded in period t+1. Similarly, in
period t+2, cj first processes 20 PIMs of s1 and lets s1 migrate
to ci’s subnet for the residual work. Thus, the workloads of
both controllers are below their thresholds. In this way, TSSM
can efficiently conquer the controller ping-pong difficulty.

4.3 Switch Migration Problem

Suppose that the network operation time is divided into N
periods. Given sets Ĉ and Ŝ , the switch migration problem asks

how to transfer some switches in Ŝ among different subnets to

balance workloads of controllers in Ĉ in each period, such that
the number of occurrences of overload for controllers in these
N periods is minimized. In particular, let f(ci, t) denote an
indicator to reveal the occurrence of overload for a controller
ci ∈ Ĉ in period t, where f(ci, t) = 1 if Li,t > δi or f(ci, t) = 0
otherwise. Then, the objective function can be expressed by

minimize
∑N

t=1

∑

∀ci∈Ĉ
f(ci, t), (2)

Definition 1 restates the switch migration problem as a deci-
sion problem, and Theorem 1 shows that it is NP-hard. Table 2
summarizes our notations.

Definition 1. Given the set Ŝi ⊆ Ŝ of switches (i.e., subnet)
managed by a controller ci during period t, the switch
migration decision (SMD) problem asks whether Li,t can be

equal to δi for every controller in Ĉ by transferring some
switches among different subnets.

Theorem 1. The SMD problem is NP-hard.

Proof: To prove this theorem, we reduce an NP-complete
problem, the subset sum problem [33], to the SMD problem.

Given a set X̂ = {x1, x2, · · · , xm} of integers and one target
sum λ, the subset sum problem determines whether any subset

of the integers in X̂ will sum to λ. For the reduction, let us
construct an instance of the SMD problem as follows: Suppose
that there are two controllers ci and cj , where δi = λ and

δj =
∑

∀xk∈X̂
xk − λ. Moreover, let Ŝ = {s1, s2, · · · , sm},

where every switch sk produces xk PIMs in period t (i.e.,
ζk,t = xk, for k = 1, 2, · · · ,m). Then, we show that if there
exists a solution to the subset sum problem, there must also
exist a solution to the SMD instance problem, and vice versa.

Assume that the solution of the subset sum problem is Ŷ ⊆
X̂ . In this case, we can exchange some switches between Ŝi
and Ŝj such that Ŝi contains each switch sk whose load ζk,t
is equal to xk ∈ Ŷ and Ŝj includes all residual switches in Ŝ .
Thus, a solution is found for the SMD instance problem.

On the other hand, suppose that the solution to the SMD

instance problem is {Ŝi, Ŝj}, where Ŝi∪Ŝj = Ŝ and Ŝi∩Ŝj = ∅.
Then, for each switch sk in Ŝi, we choose the integer xk (= ζk,t)
from X̂ and add it to Ŷ . Since

∑

∀sk∈Ŝi
ζk,t = δi = λ, Ŷ must

be a solution to the subset sum problem.

Apparently, the above reduction takes polynomial time, so
the SMD problem is NP-hard.

TABLE 2: Summary of notations.
notation definition

Ĉ, Ŝ the sets of all controllers and all switches in the network

ĈO, ĈA the subsets of overloaded and assistant controllers in Ĉ
Ŝi the set of switches managed by a controller ci ∈ Ĉ
ζ
(i)
k,t

PIMs that a switch sk ∈ Ŝi sends to ci in period t

ζk,t total PIMs produced by sk in period t
Γi the capacity of ci
Li,t the workload of ci in period t
δi If Li,t > δi, ci is an overloaded controller. (δi ≤ Γi)
ϕ If Li,t < ϕ× δi, ci is an assistant controller. (0 < ϕ < 1)
f(ci, t) an indicator to reveal whether ci is overloaded in period t
τ the amount of time after which sk will migrate
q the number of sk’s PIMs that the new controller will handle
∆ a load threshold used in Algo. 3

Algorithm 1: TSSM Scheme

1 ĈO ← ∅ and ĈA ← ∅;

2 foreach ci ∈ Ĉ do
3 Li,t ← 0;

4 foreach sk ∈ Ŝi do

5 Li,t ← Li,t + ζ
(i)
k,t;

6 if Li,t > δi then

7 ĈO ← ĈO ∪ {ci};
8 else if Li,t < ϕ× δi then

9 ĈA ← ĈA ∪ {ci};

10 if ĈO 6= ∅ and ĈA 6= ∅ then

11 Use Algo. 2 to balance loads between ĈO and ĈA;

5 THE PROPOSED TSSM SCHEME

In the beginning, each switch sk ∈ Ŝ chooses one controller
to be its Master controller, which can be done by the manual
configuration or using any controller placement method [9]. In

this way, the initial subnet Ŝi of each controller ci ∈ Ĉ can be
obtained. As discussed in Section 3, the previous solutions of
controller placement and switch migration change the subnets
of which switches belong merely at the beginning of a period,
so the connections between switches and controllers are static
in a whole period. Unlike the previous solutions, the TSSM
scheme allows switches to migrate in a time-sharing manner.
Thus, the switches can dynamically change their connections
with controllers within a period (i.e., from busy controllers to
light-load controllers). Consequently, TSSM not only performs
switch migration more flexibly but also conquers the controller
ping-pong difficulty (as mentioned in Section 4.2).

Algo. 1 presents the pseudocode of TSSM, which first finds

out overloaded and assistant controllers from Ĉ, whose sets are
denoted by ĈO and ĈA, respectively. According to Eq. (1),
the code in lines 3–5 calculates the workload Li,t of every

controller ci ∈ Ĉ by summing up the loads of all switches

in its subnet Ŝi. Then, we check if Li,t overtakes the threshold

δi. If so, ci is overloaded and thus it is added to ĈO by lines
6–7. On the other hand, ci is categorized as an assistant when
its workload Li,t is below ϕ×δi, where ϕ is a coefficient whose
value is less than but close to one (for example, we can set ϕ
to 0.95), as shown in lines 8–9. The reason for using coefficient
ϕ is to exclude those non-overloaded controllers that almost
use up their resources (that is, Li,t < δi and Li,t ≈ δi). Such
controllers in the end have no extra resources to help partake

6 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

Algorithm 2: Load-Balanced Migrating Module

1 SORT(ĈO, Li,t − δi);

2 SORT(ĈA, δj − Lj,t);

3 foreach ci ∈ ĈO do

4 SORT(Ŝi, ζ
(i)
k,t);

5 while Li,t > δi do

6 if ĈA = ∅ then
7 Terminate this module;

8 Pick the first controller cj from ĈA;
9 (sk, τ, q)← Algo. 3(ci, cj);

10 Transfer sk to cj ’s subnet after τ units of time;
11 Li,t ← Li,t − q;
12 Lj,t ← Lj,t + q;
13 if Lj,t ≥ ϕ× δj then

14 ĈA ← ĈA \ {cj};
15 else

16 SORT(ĈA, δj − Lj,t);

the workloads of other controllers, so they will not be included

in ĈA to avoid unnecessary calculations and shifts.

Switch migration will be carried out only when both ĈO
and ĈA are non-empty, and this condition is checked in line 10.
If so, TSSM uses the load-balanced migrating module in Algo. 2

to let the controllers in ĈA take over some switches managed

by the controllers in ĈO (i.e., sharing their workloads). Then,
Lemma 1 analyzes the time complexity of Algo. 1.

Lemma 1. Given ξC controllers in Ĉ and ξS switches in Ŝ , the
time complexity of Algo. 1 is O(ξC + ξS) + T2, where T2 is
the computation time of Algo. 2.

Proof: In Algo. 1, line 1 takes a constant time to initialize

both ĈO and ĈA. Then, the outer for-loop in lines 2–9 has ξC
iterations, where lines 3, 6, 7, 8, and 9 all require O(1) time.

As mentioned in Section 4.1, since
⋃

∀ci∈Ĉ
Ŝi is equal to Ŝ ,

the inner for-loop in lines 4–5 (along with the outer for-loop)

checks every switch in Ŝi. Therefore, the outer for-loop takes
time of ξC × O(1) + O(ξS) = O(ξC + ξS). After that, line 11
executes Algo. 2 and consumes T2 time. To sum up, the time
complexity of Algo. 1 is O(ξC + ξS) + T2.

5.1 Load-Balanced Migrating Module

Given overloaded controllers in ĈO and assistant controllers in
ĈA, this module iteratively finds a pair of controllers (ci, cj),
where ci ∈ ĈO and cj ∈ ĈA, and then requests one switch of

ci migrating to cj ’s subnet to reduce ci’s workload, until ĈO
or ĈA becomes empty. Algo. 2 shows the pseudocode of the
load-balanced migrating module.

Let SORT(X̂ , ǫ) denote a function which sorts the elements
in a set X̂ according to the measure ǫ in decreasing order. In

line 1, ĈO is sorted decreasingly by the amount of overload of
controllers (i.e., Li,t − δi), so the controller with the maximum
overload will be served first. On the other hand, line 2 sorts
ĈA decreasingly based on the amount of remaining capacity of
controllers (i.e., δj − Lj,t). Thus, the controller that has the
most remaining capacity will be considered first to share the
workload of an overloaded controller.

The for-loop in lines 3–16 handles each controller ci ∈ ĈO
in turn (from the most overloaded one to the least overloaded
one). Specifically, line 4 sorts the set Ŝi of switches managed

by ci based on their PIMs sending to ci (i.e., ζ
(i)
k,t) decreasingly.

The while-loop in lines 5–16 keeps diminishing ci’s workload
by switch migration, until Li,t is below threshold δi. However,

if ĈA is empty (i.e., there is no assistant controller to help),
Algo. 2 terminates, as shown in lines 6–7. Otherwise, we pick

the first controller cj from ĈA to share ci’s workload. Since ĈA
has been already sorted by line 2, cj is the (assistant) controller
with the most remaining capacity in the network and the one
who can most share the burden of other controllers.

Then, we execute the time-to-migration calculating module in
Algo. 3 with parameters ci and cj . It returns a three-tuple result
(sk, τ, q), where sk is the selected switch (originally managed
by ci) for migration, τ is the amount of time after which sk will
migrate, and q is the number of sk’s PIMs that cj expects to
process (i.e., the amount of ci’s workload that cj will handle).
Afterward, the code in lines 10–12 performs switch migration
and updates the workloads of ci and cj (i.e., Li,t and Lj,t).
If cj almost uses up its remaining capacity due to the above
migration (i.e., Lj,t ≥ ϕ × δj , as indicated in line 13), cj is

removed from ĈA. Otherwise, ĈA should be sorted again since
cj ’s workload changes, as shown in line 16.

Theorem 2 proves the convergence of Algo. 2 and Lemma 2
analyzes its time complexity.

Theorem 2. Given a finite number of controllers in Ĉ, Algo. 2
must converge.

Proof: Because ĈO and ĈA are subsets of Ĉ, the numbers

of overloaded controllers (in ĈO) and assistant controllers (in
ĈA) are finite. Moreover, since ĈO and ĈA are disjoint, there

will be no controller in Ĉ that is an overloaded controller and
also an assistant controller at the same time. By the code in

lines 8–12, an overloaded controller ci ∈ ĈO must transfer
a part of its workload to an assistant controller cj ∈ ĈA. In
this way, ci’s workload Li,t will always decrease, while cj ’s
workload Lj,t will only increase. According to lines 13 and 14,

cj is removed from ĈA when its workload overtakes ϕ × δj ,

which implies that ĈA can only shrink. Because ĈA contains a

finite number of controllers, ĈA will eventually become empty,
which forces Algo. 2 to terminate by lines 6–7. On the other
hand, since Li,t will only reduce, the while-loop in lines 5–16
must be eventually terminated because of Li,t ≤ δi (line 5) or

ĈA = ∅ (line 6). Since ĈO has a finite number of controllers,
the for-loop in lines 3–16 will never run forever. Consequently,
Algo. 2 must converge, which proves this theorem.

Lemma 2. Let |ĈA| = ξA and |Ŝ| = ξS . Algo. 2 takes time of
ξS(T3 +O(ξA + log2 ξS)) in the worst case, where T3 is the
computation time of Algo. 3.

Proof: In Algo. 2, lines 1 and 2 require O(ξO log2 ξO)
and O(ξA log2 ξA) time to sort sets ĈO and ĈA, respectively,

where ξO = |ĈO|. In the for-loop, we choose an overloaded
controller ci (i.e., line 3), select an assistant controller cj (i.e.,
line 8), and transfer the load of a switch sk from ci to cj (i.e.,

lines 9–12). The worst case occurs when all switches in Ŝ are
initially managed by the controllers in ĈO. In this case, the for-
loop together with the while-loop will repeat at most ξS times

(i.e., checking every switch in Ŝ). Then, let us take a look at
the for-loop. Except for lines 4, 9, and 16, each of the residual
statements inside the for-loop consumes O(1) time. Then, line

TSSM: TIME-SHARING SWITCH MIGRATION TO BALANCE LOADS OF DISTRIBUTED SDN CONTROLLERS 7

Algorithm 3: Time-to-migration Calculating Module

1 ∆← min{Li,t − δi, δj − Lj,t};

2 Ŝαi ← ∅ and Ŝβi ← ∅;

3 foreach sk ∈ Ŝi do

4 if ζ
(i)
k,t ≥ ∆ then

5 Ŝαi ← Ŝ
α
i ∪ {sk};

6 else

7 Ŝβi ← Ŝ
β
i ∪ {sk};

8 if Ŝαi 6= ∅ then

9 sk ← the last switch of Ŝαi ;

10 τ ← [(ζ
(i)
k,t −∆)/ζ

(i)
k,t]× P and q ← ∆;

11 else

12 sk ← the first switch of Ŝβi ;

13 τ ← 0 and q ← ζ
(i)
k,t;

14 ζ
(i)
k,t ← ζ

(i)
k,t − q and ζ

(j)
k,t ← q;

15 return (sk, τ, q);

4 takes O(|Ŝi| log2 |Ŝi|) time to sort Ŝi. Line 9 finds a switch
and the time for migration by Algo. 3, which requires T3 time.

In line 16, we specifically add cj to ĈA which has been sorted
by line 2. This can be done by using the insertion sort, whose
time complexity is O(ξA). Thus, the overall time complexity
is O(ξO log2 ξO) + O(ξA log2 ξA) + ξS(O(1) + T3 + O(ξA)) +
∑

∀ci∈ĈO
O(|Ŝi| log2 |Ŝi|). Here, the last term is the total time

taken by line 4 in the for-loop, which can be simplified to
O(ξS log2 ξS). Since there are more switches than controllers
(i.e., max{ξO, ξA} < ξS), by doing some algebra, the above
complexity can be simplified to ξS(T3 +O(ξA + log2 ξS)).

5.2 Time-to-migration Calculating Module

Given two controllers ci and cj , where ci is overloaded and
cj is an assistant, this module performs three tasks: 1) select a

target switch sk from ci’s subnet Ŝi, 2) decide the time τ when
sk should migrate, and 3) estimate the number q of sk’s PIMs
that cj will process. Algo. 3 gives its pseudocode. Let ∆ be the
minimum of ci’s overload (i.e., Li,t − δi) and cj ’s remaining

capacity (i.e., δj −Lj,t), as shown in line 1. Then, Ŝi is divided

into two subsets Ŝαi and Ŝβi , where Ŝαi contains those switches

whose loads are no less than ∆ and Ŝβi includes the residuary

switches in Ŝi. The corresponding code is given in lines 2–7.

Since Ŝi has been sorted decreasingly based on the load ζ
(i)
k,t

of each switch (by line 4 in Algo. 2), both Ŝαi and Ŝβi are thus
sorted accordingly.

To reduce the frequency of switch migration, we choose a

switch sk to migrate such that ζ
(i)
k,t ≥ ∆ and ζ

(i)
k,t is as close to

∆ as possible. Because Ŝαi is a sorted set, one good choice for

sk is patently the last switch in Ŝαi . The corresponding code
is presented in lines 8–9. Then, line 10 decides the migrating

time τ and the transferred load q. Since ζ
(i)
k,t ≥ ∆, we set q

to ∆, which means that ci and cj process (ζ
(i)
k,t − ∆) and ∆

PIMs of sk, respectively. Supposing that sk produces PIMs at a
constant rate, the migrating time can be estimated as follows:

τ = [(ζ
(i)
k,t −∆)/ζ

(i)
k,t]× P, (3)

where P is the period length. This part realizes the substance
of time-sharing migration for switches.

However, if Ŝαi is empty, we will choose a switch from Ŝβi
whose load is the closest to ∆, where the code is presented

in lines 11–12. Similarly, since Ŝβi has been sorted, the best

candidate for sk must be the first switch in Ŝβi . Because ζ
(i)
k,t <

∆, we can adopt the traditional migration, where cj completely
takes over sk. Thus, line 13 sets τ = 0 (i.e., switch migration

occurs at the beginning of the period) and q = ζ
(i)
k,t (i.e., cj

should handle all of sk’s PIMs).

After that, line 14 updates ζ
(i)
k,t by ζ

(i)
k,t − q and ζ

(j)
k,t by q. In

other words, ci first handles (ζ
(i)
k,t − q) PIMs generated by sk.

After τ units of time, cj will process q PIMs of sk. Finally, line
15 returns the result (sk, τ, q) to Algo. 2. Lemma 3 analyzes the
time complexity of this module.

Lemma 3. Given ξS switches in Ŝ , Algo. 3 requires O(ξS) time
in the worst case.

Proof: In Algo. 3, the first two lines take a constant time

to do the initialization. Because Ŝi ⊆ Ŝ , the for-loop in lines
3–7 repeats at most ξS times, in which every statement spends
O(1) time. Evidently, each statement in lines 8–15 takes O(1)
time. To sum up, the time complexity of Algo. 3 is O(1)+ ξS ×
O(1) +O(1) = O(ξS).

5.3 Discussion

Let us discuss the essence of TSSM. Algo. 1 first picks out

overloaded controllers (i.e., ĈO) and assistant controllers (i.e.,
ĈA) from Ĉ. Note that those controllers whose workloads meet
the condition of ϕ × δi ≤ Li,t ≤ δi are skipped, because they
have just enough resources to handle their current works (i.e.,
not overloaded) but their unexpended capacities (i.e., δi−Li,t)
are too small to help other controllers. In this way, we can
reduce unnecessary calculations and excess migrations.

Since the amount of total overloads may exceed the amount
of available spare capacities (in other words,

∑

∀ci∈ĈO
Li,t −

δi >
∑

∀cj∈ĈA
δj − Lj,t), the load-balanced migrating module

in Algo. 2 gives a top priority to the controller ci in ĈO with
the most overload to serve. Moreover, it selects the controller
cj in ĈA that has the most remaining capacity to share ci’s
workload. Then, the time-to-migration calculating module in
Algo. 3 takes the best-fit policy to find an appropriate switch

sk managed by ci to migrate such that its load ζ
(i)
k,t is as close

to ∆ as possible, where ∆ considers not only the amount of
ci’s overload but also the amount of cj ’s remaining capacity. If

ζ
(i)
k,t > ∆, the time-sharing migration is applied to let both ci

and cj co-process sk’s PIMs in sequential order. Otherwise, we
adopt the traditional migration by asking cj to take over sk at
the beginning of the period.

Through the time-sharing migration, multiple controllers
are able to share the load of a switch in the same period.
However, the migration cost, which is defined by the number of
times to perform switch migration, may increase when more
controllers share the switch’s load, as shown in Theorem 3.
Hence, in TSSM, we restrict at most two controllers to partici-
pate in the time-sharing migration for a switch to save the cost.
Theorem 4 gives an analysis on TSSM’s time complexity.

Theorem 3. Let ŜO be the set of switches managed by the

overloaded controllers in ĈO. Suppose that at most m con-
trollers can share the load of a switch in the same period.
In the worst case for both the time-sharing migration and
the traditional migration, the time-sharing migration adds

[(m − 2)|ŜO| + |ĈO|] of migration cost than the traditional

8 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

switch

S

M

L

load PIM generation

small

medium

large

15,000~16,000 PIMs/s

31,000~32,000 PIMs/s

47,000~48,000 PIMs/s

(a) switches and their loads

c1 c2 c3 c4

S MS SS S S S S S M M S S M M

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

c0

leader

(b) topology at time 0

c1 c2 c3 c4

LS MS SS S S S S M M M

s1 s2 s3 s4 s5 s6 s7 s8 s� s10 s11 s12 s13 s14 s15 s16

c0

leader

LLL

(c) topology at the 11th second

Fig. 5: Network topology used in the ONOS implementation.

migration in a period. This is the comparison of the worst
case for both migration manners.

Proof: In the traditional migration, a controller ci ∈ ĈO
shifts at most (|Ŝi| − 1) switches in a period, as ci should keep
at least one switch in its subnet. Therefore, its maximum cost is
∑

ci∈ĈO

∑

sk∈Ŝi
(|Ŝi|−1) = |ŜO|−|ĈO|. On the other hand, the

time-sharing migration allows m controllers to share a switch’s
load, which implies that a switch will migrate at most (m −
1) times in a period. The maximum cost of the time-sharing

migration will be (m − 1)|ŜO|. Thus, the difference between

their maximum costs is (m − 1)|ŜO| − (|ŜO| − |ĈO|) = (m −
2)|ŜO|+ |ĈO|, thereby proving this theorem.

Corollary 1. By restricting at most two controllers to partici-
pate in the time-sharing migration for a switch, in the worst
case for both TSSM and the traditional migration, TSSM has

no more than |ĈO| of migration cost than the traditional
migration in a period.

Theorem 4. The time complexity of TSSM is O(ξ2S), where ξS is
the number of switches in the network.

Proof: Based on Lemmas 1, 2, and 3, the time complexity
of TSSM is O(ξC + ξS) + ξS(O(ξS) +O(ξA + log2 ξS)), where
ξC and ξA are the numbers of total and assistant controllers,
respectively. Because ξS > ξC ≥ ξA, the above complexity can
be simplified to O(ξ2S).

6 PERFORMANCE EVALUATION

The TSSM scheme is implemented on the ONOS platform [14]
to attest to its feasibility and evaluate performance, which
employs OpenFlow as the southbound protocol. Fig. 5 shows
the network topology in our implementation, where there are

5 controllers (i.e., Ĉ = {c0, c1, · · · , c4}) and 16 switches (i.e,
Ŝ = {s1, s2, · · · , s16}) in the network. The simulation time is
260 seconds, which is divided into 52 periods (in other words,
the period length is 5 seconds). As mentioned in Section 2.1,
we adopt the hierarchical paradigm of DSC architecture, so a
controller (namely, c0) serves as the leader to coordinate all
other controllers. In particular, c0 monitors the workload of

every controller in Ĉ \{c0} and decides how to perform switch
migration (based on the migration method) in each period. It
does not partake in switch management. Except for c0, each
controller has the capacity (i.e., Γi) of 106 PIMs per period and
the threshold δi is set to 0.6Γi [34]. Thus, if a controller has to
handle more than 600,000 PIMs in a period, it will be denoted
as “overloaded” in that period.

In addition, we use the cbench tool [35], a popular con-
troller benchmark for OpenFlow, to imitate the generation of
PIMs by switches. Based on their loads, three types of switches
are considered, as shown in Fig. 5(a):

• Small load (SL): Each SL switch sends 15,000 to 16,000
PIMs per second. Let Q denote the controller affordable
load (CAL), which is defined as the maximum number
of PIMs that all controllers in Ĉ \ {c0} can handle in a
period (without overloading them). CAL is estimated

by Q =
∑4

i=1 δi = 2.4 × 106. When all switches in Ŝ
are SL switches, the expected number of PIMs (ENP) sent
by them per period is

∑16
i=1 15, 500 × 5 < 0.52Q. In

other words, the total loads caused by all SL switches
are below 52% of CAL, so their loads are small.

• Medium load (ML): An ML switch produces 31,000 to

32,000 PIMs every second. If all switches in Ŝ are ML
switches, the ENP per period will be

∑16
i=1 31, 500×5 =

1.05Q. It means that the total loads produced by all
ML switches are close to CAL. As compared with SL
switches, loads of ML switches are relatively medium.

• Large load (LL): An LL switch will generate 47,000

to 48,000 PIMs per second. Suppose that Ŝ con-
tains only LL switches. Then, the ENP per period is
∑16

i=1 47, 500 × 5 > 1.58Q. In this case, no matter how
the switch migration is performed, some controllers
must be overloaded. Evidently, loads of LL switches
are large.

At time 0, the subnet of each controller (except the leader c0)

is set as follows: Ŝ1 = {s1, s2, s3, s4}, Ŝ2 = {s5, s6, s7, s8},
Ŝ3 = {s9, s10, s11, s12}, Ŝ4 = {s13, s14, s15, s16}. Switches s7,
s11, s12, s15, and s16 are ML switches. All other switches are SL
switches, as Fig. 5(b) shows. After 10 seconds, s10, s12, s13, and
s14 become LL switches, which may trigger switch migration,
as illustrated in Fig. 5(c).

We also implement the following four methods on ONOS
for comparison:

• OpenFlow: As mentioned in Section 2.2, OpenFlow pro-
vides the transferring procedure for switches (in Fig. 2).
However, its standard does not specify how to choose
target controllers and switches for migration. Thus,
there is no switch migration in this method and the
connections between controllers and switches are kept
static in the 52 periods. The OpenFlow method is used
as a baseline for performance evaluation. By comparing
with OpenFlow, we can show the advantages of adap-
tively adjusting the connections between controllers

TSSM: TIME-SHARING SWITCH MIGRATION TO BALANCE LOADS OF DISTRIBUTED SDN CONTROLLERS 9

0

20

40

60

80

100

c� c� c� c� total
c�������	�

N

O��
����

G���

CTM (0.1)

CTM (0.3)

BFM

TSSM

Fig. 6: Comparison on the NOO for controllers.

TABLE 3: The reduction ratio of NOO in each method.
method GDCP CTM (0.1) CTM (0.3) BFM TSSM

ratio 67% 37% 89% 93% 98%

and switches by dynamical controller placement and
switch migration.

• Group-based dynamical controller placement (GDCP) [10]:
As mentioned in Section 1, GDCP checks each subnet
in each period and reassigns its switches if necessary.
To do so, GDCP groups controllers such that the work-
load of each group is as balanced as possible. The
GDCP method is used to compare system performance
between dynamical controller placement and switch
migration.

• Churn-triggered migration (CTM) [30]: Let ci and cj be
an overloaded controller and a target controller, re-
spectively. CTM allows the switch in ci’s subnet that
has the maximum PIMs migrating to cj ’s subnet if the
following condition obtains:

Lj,t ≤ (1− ε)× Li,t, (4)

where ε is set to 0.1 (for a small churn value) and 0.3 (for
a large churn value). The CTM method has the same
objective as our work (that is, balance the workloads of
controllers), so we compare CTM with TSSM.

• Best-fit migration (BFM): This method is almost the same
as TSSM, except that it does not adopt the time-sharing
migration, but only uses the traditional migration in-
stead. To implement BFM, we replace line 10 with
line 13 in Algo. 3. The BFM method is used to assess
the effect of the time-sharing migration on our TSSM
scheme.

In both BFM and TSSM, the parameter ϕ is set to 0.95.

6.1 Occurrences of Overload

We measure the number of occurrences of overload (below, it
is called “NOO” for short) for controllers in the total 52
periods. As mentioned in Section 4.3, the NOO for a controller
ci is calculated by

∑52
t=1 f(ci, t), where ci ∈ {c1, c2, c3, c4}.

According to Eq. (2), the objective is to minimize the sum of
NOO of all controllers, that is, prevent controllers from being
overloaded as much as possible.

Fig. 6 gives the experimental result. The OpenFlow method
does not perform switch migration. Because only the switches

in subnet Ŝ3 and Ŝ4 are changed to high-load switches after
10 seconds, the NOO for controllers c1 and c2 are zero (that is,

they are not overloaded). However, both controllers c3 and
c4 are always overloaded from the 3rd period to the 52nd
period. This leads OpenFlow to have the highest NOO among
all methods (in terms of all controllers), which manifests the
necessity of switch migration.

The GDCP method checks if the workload of each group of
controllers is balanced in every period. If not, some subnets are
rearranged accordingly. In this way, GDCP can greatly reduce
NOO as compared with OpenFlow. However, some high-load

switches repeatedly migrate between subnets Ŝ2 and Ŝ3. Thus,
the NOO of controllers c2 and c3 in GDCP are higher than
those in most of the other methods. This means that GDCP
suffers from the controller ping-pong difficulty, which will be
further explained in Section 6.2.

For the CTM method, the churn ε has a significant impact
on its performance. Specifically, if the churn is set too small
(i.e., ε = 0.1), there will be more candidate controllers to be
chosen for switch migration. However, some of them may not
have enough remaining capacity to help take over high-load
switches (from overloaded controllers). Thus, the occurrence of
controller ping-pong effect becomes more frequent, especially
for controllers c1 and c4. The above problem can be mitigated
by selecting a larger churn value (e.g., ε = 0.3). In this case,
the NOO of total controllers in CTM will decrease from 63 to
11.

The BFM method adopts Algo. 3 (without the time-sharing
migration) to find an appropriate switch sk of an overloaded
controller ci to migrate to the subnet of an assistant controller
cj , where sk’s load is as close to ∆ as possible. Since ∆ is
the minimum of ci’s overload and cj ’s remaining capacity, cj
would be capable of attending to sk. In this way, BFM can
substantially reduce the NOO of total controllers.

Our TSSM scheme not only selects the most suitable switch
for migration but also applies the time-sharing migration to let
two controllers co-process the PIMs of a high-load switch in
the same period. Thus, TSSM can further decrease the NOO
of total controllers, as compared with BFM. Table 3 gives the
reduction ratio of NOO in each method, where we take the
OpenFlow method as the baseline. In particular, let ROpenFlow

and Rχ be the NOO of total controllers in OpenFlow and a
method χ, respectively. Then, the reduction ratio of method χ
is defined by

ROpenFlow −Rχ

ROpenFlow
× 100%. (5)

As can be seen, the TSSM scheme has the highest reduction
ratio of NOO, which demonstrates its high efficiency in terms
of preventing controllers from being overloaded.

6.2 Workloads of Controllers

Next, let us evaluate the number of PIMs processed by each
controller (i.e., its workload) every second. Since a controller
can process at most 600,000 PIMs per period (otherwise, it is
treated as one overloaded controller) and the period length is
5 seconds, if the controller’s workload exceeds 120,000 PIMs in
a second, there is a good possibility that the controller will be
overloaded. Thus, we put a threshold line (on 120,000 PIMs)
for reference in the experimental results in Fig. 7.

Fig. 7(a) shows the workloads of controllers in the Open-
Flow method, where the connections between the 4 controllers
and the 16 switches are static. Since the types of the switches in

subnets Ŝ1 and Ŝ2 do not change, the workloads of controllers

10 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160 180 200 220 240 260

n
�
�
�
�
�
�
�
�
�	

��

�
�
�
�

t��� ��������

c��������� c c��������� c!

c��������� c" c��������� c#

�$��%$��&

(a) OpenFlow

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160 180 200 220 240 260

'
(
)
*
+
,
-
.
/
01
2
34
5
6
6
6
7

89:; <=;>?@AB

CDEFGDHHIG CJ CDEFGDHHIG CK

CDEFGDHHIG CL CDEFGDHHIG CM

FNGIONDHP

(b) GDCP

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160 180 200 220 240 260

Q
R
S
T
U
V
W
X
Y
Z[
\
]^
_
`
`
`
a

bdef ghfijklm

opqrspuuvs ow opqrspuuvs ox

opqrspuuvs oy opqrspuuvs oz

r{sv|{pu}

(c) CTM (ε = 0.1)

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160 180 200 220 240 260

~
�
�
�
�
�
�
�
�
��
�
��
�
�
�
�
�

���� ��������

�������� � �¡ �������� � �¢

�������� � �£ �������� � �¤

�¥� ¦¥��§

(d) CTM (ε = 0.3)

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160 180 200 220 240 260

¨
©
ª
«
¬
­
®
¯
°
±²
³
´µ
¶
·
·
·
¸

¹º»¼ ½¾¼¿ÀÁÂÃ

ÄÅÆÇÈÅÉÉÊÈ ÄË ÄÅÆÇÈÅÉÉÊÈ ÄÌ

ÄÅÆÇÈÅÉÉÊÈ ÄÍ ÄÅÆÇÈÅÉÉÊÈ ÄÎ

ÇÏÈÊÐÏÅÉÑ

(e) BFM

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160 180 200 220 240 260

Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
ÛÜ
Ý
Þß
à
á
á
á
â

ãäåæ çèæéêëìí

îïðñòïóóôò îõ îïðñòïóóôò îö

îïðñòïóóôò î÷ îïðñòïóóôò îø

ñùòôúùïóû

(f) TSSM

Fig. 7: Comparison on the workload of each controller.

c1 and c2 keep steady with just small fluctuations. On the other

hand, after 10 seconds, some switches in subnets Ŝ3 and Ŝ4
become high-load switches, which burden controllers c3 and
c4 with heavy loads. Therefore, both c3 and c4 have to process
many more than 120,000 PIMs per second. In other words,
they are seriously overloaded. This experimental result shows
the drawback of keeping static connections between controllers
and switches.

Fig. 7(b) gives the workloads of controllers in the GDCP
method. Interestingly, the workloads of controllers c2 and c3
swing significantly in a periodic manner. If c2’s workload rises,
c3’s workload drops, and vice versa. This phenomenon implies

that some switches are repeatedly moved between subnets Ŝ2
and Ŝ3, which causes c2 and c3 to overload in some periods. In
other words, the controller ping-pong effect occurs. That also
explains why GDCP has higher NOO (in terms of controllers
c2 and c3) than other methods in Fig. 6.

Fig. 7(c) and (d) show the workloads of controllers in the
CTM method by setting ε to 0.1 and 0.3, respectively. Since
CTM selects a candidate controller to share the workload of an
overloaded controller by Eq. (4), a smaller ε value implies that
there will be more candidates for selection. However, not every
candidate controller is appropriate to share the workload,
as they may not have enough remaining capacity. In this
case, some switches would be frequently transferred among
different subnets and make their controllers overloaded. From
Fig. 7(c), we can observe that CTM encounters the controller
ping-pong effect when ε = 0.1. On the other hand, by setting
a larger ε value (i.e., ε = 0.3), the workloads of controllers can
be more close to the threshold (i.e., 120,000 PIMs), as compared
with the case of ε = 0.1.

Fig. 7(e) gives the workloads of controllers in the BFM
method. Unlike the CTM method to choose the switch with the
maximum PIMs for migration, BFM adopts Algo. 3 (without

TSSM: TIME-SHARING SWITCH MIGRATION TO BALANCE LOADS OF DISTRIBUTED SDN CONTROLLERS 11

0

40

80

120

160

200

240

G��� CTM (0.1) CTM (0.3) BFM TSSM

m
��
��
��
�
	

�
�
�

Fig. 8: Comparison on the migration cost.

the time-sharing migration) to find a switch whose load is close
to ∆ to realize the best-fit policy. In this way, the workload of
each controller is kept below the threshold after 33 seconds.

Fig. 7(f) presents the workloads of controllers in our TSSM
scheme. As compared with BFM, the time when the workloads
of controllers drop below the threshold is earlier (specifically,
after 15 seconds). Thanks to the time-sharing migration, TSSM
allows two controllers to co-process the PIMs of a high-load
switch, thereby further balancing their workloads. In particu-
lar, the workload of each controller is pretty close to each other
after 40 seconds. This experimental result ensures that TSSM
can achieve load balance among all controllers.

6.3 Migration Cost

Fig. 8 compares the migration cost of each method, which is
defined by the aggregate number of times to transfer switches
among different subnets. Since the OpenFlow method does not
perform switch migration, its cost is not presented in Fig. 8.

GDCP groups controllers and reassigns their switches such
that loads of groups are as balanced as possible. According
to the topology in Fig. 5(c), controllers are divided into two
groups {c1, c4} and {c2, c3}, where each group manages 4 SL
switches, 2 ML switches, and 2 LL switches. To achieve load
balance, a controller is expected to manage 2 SL switches, 1
ML switch, and 1 LL switch. Thus, GDCP performs 4 times
of switch migration for group {c1, c4} (in particular, two SL
switches are moved from c1’s subnet to c4’s subnet, and 1 ML
switch and 1 LL switch are moved from c4’s subnet to c1’s
subnet) and 2 times of switch migration for group {c2, c3} (in
particular, 1 SL switch is moved from c2’s subnet to c3’s subnet,
and 1 LL switch is moved from c3’s subnet to c2’s subnet) at
the 4th period. Moreover, since the PIMs generated by a switch
will fluctuate, it may make loads of the two controllers in a
group unbalanced. This phenomenon occurs in group {c2, c3},
as shown in Fig. 7(b). Thus, GDCP picks one switch to migrate
between the subnets of c2 and c3 around every two periods
after the 5th period. In this case, the migration cost of GDCP is
4 + 2 + ⌈(52− 5)/2⌉+ 2 (as two extra switches are reassigned
in some periods) = 32.

CTM lets a switch sk managed by an overloaded controller
ci that has the maximum PIMs migrate to the subnet of another
controller cj if the condition in Eq. (4) holds. Let ζk,t be the
number of PIMs produced by sk. There is a good possibility
that cj will transfer sk back to ci in the next period when
the following two conditions are both met. First, cj becomes

overloaded after taking over sk, that is,

Lj,t + ζk,t > δj . (6)

Second, Eq. (4) holds for cj (after taking over sk), that is,

Li,t − ζk,t ≤ (1− ε)× (Lj,t + ζk,t). (7)

By combining Eqs. (6) and (7) and doing some algebras, we
can derive that

ζk,t > max

{

Li,t − (1− ε)Lj,t

2− ε
, δj − Lj,t

}

. (8)

In Eq. (8), ζk,t may become smaller when the churn ε is smaller.
Thus, sk need not have a large load ζk,t to satisfy the condition
in Eq. (8). In this case, sk would repeatedly migrate between
the subnets of ci and cj , thereby causing the controller ping-
pong difficulty. In fact, we can observe that this difficulty does
occur in Fig. 7(c) and (d). Moreover, CTM makes multiple
switches migrate in each period, which increases its migration
cost. The above dilemma can be mitigated by using a larger
churn. In particular, the migration cost of CTM will decrease
from 216 to 132 when ε is changed from 0.1 to 0.3.

BFM is similar to TSSM, except that it employs only the
traditional migration. Based on Algo. 2 and Algo. 3, BFM
picks a switch sk whose load is close to ∆ to migrate, where
∆ is the minimum between ci’s overload (i.e., Li,t − δi) and
cj ’s remaining capacity (i.e., δj − Lj,t). In this way, after ci
transfers sk to cj , cj would not let sk migrate soon, as cj
has enough capacity to serve sk. Thus, BFM also chooses
one switch for migration every two periods. Unlink GDCP
that drastically changes some subnets at the 4th period, BFM
gradually transfers one switch of an overloaded controller.
This will increase BFM’s migration cost, as compared with
GDCP. In particular, the migration cost of BFM is 34, which
is slightly higher than that of GDCP.

Like BFM, TSSM picks switches whose loads are close to ∆
for migration, but it allows two controllers to share their loads
in the same period (i.e., time-sharing migration). As mentioned

in Corollary 1, TSSM has no more than |ĈO| of migration cost

than the traditional migration in a period, where ĈO is the set
of overloaded controllers. The result in Fig. 8 also validates
Corollary 1, where the migration cost of TSSM is 36, which is
slightly higher than that of BFM.

We remark that the migration cost of each method will
rise by increasing the numbers of controllers and switches. In
essence, there will be more overloaded controllers needed to
be handled, and more switches have to migrate to help reduce
their workloads. However, the behavior of each method will
not significantly change when the numbers of controllers and
switches increase. Thus, the trend of migration costs of these
methods will be similar to the result in Fig. 8, where CTM still
encounters the controller ping-pong difficulty and thereby has
a much higher migration cost than GDCP, BFM, and TSSM,
especially when ε = 0.1.

7 CONCLUSION AND FUTURE WORK

DSC overcomes the performance bottleneck problem in an
SDN-based network with one single controller, where switch
migration is widely used to balance the workloads of multiple
controllers. This paper proposes the TSSM scheme to let two
controllers co-process the PIMs of a switch through the time-
sharing migration, which holds the workload of each controller
below a predefined threshold. For each overloaded controller,

12 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

TSSM finds assistant controllers for help, selects switches to
migrate, and decides the time to transfer each selected switch.
We implement the TSSM scheme on the ONOS platform to
verify its feasibility, where the experimental results show that
TSSM can have smaller NOO and make the workload of each
controller more balanced, as compared with the OpenFlow,
GDCP, CTM, and BFM methods. Moreover, TSSM has a similar
migration cost with both GDCP and BFM, which is much lower
than CTM.

In TSSM, we assume that at most two controllers partake
in the time-sharing migration for one single switch to save the
migration cost. Although relaxing this assumption adds more
flexibility to the time-sharing migration, the cost may increase
significantly, as shown in Theorem 3. Therefore, we will study
how to let more than two controllers participate in the time-
sharing migration without overgrowing the migration cost.
In addition, the protocol family in the SDN architecture with
OpenFlow may be large. Thus, the P4 method is proposed as
an integrated way of solution. It deserves further investigation
on the switch migration problem when using the P4 method.
Finally, the extensive cost-benefit analysis of different migra-
tion methods (e.g., whether there are any statistical bounds on
their migration costs) will be desired in future work.

REFERENCES

[1] N. Anerousis, P. Chemouil, A.A. Lazar, N. Mihai, and S.B. Weinstein,
“The origin and evolution of open programmable networks and
SDN,” IEEE Comm. Surveys & Tutorials, vol. 23, no. 3, pp. 1956–1971,
2021.

[2] Y.C. Wang and H. Hu, “An adaptive broadcast and multicast traffic
cutting framework to improve Ethernet efficiency by SDN,” J. Infor-
mation Science and Engineering, vol. 35, no. 2, pp. 375–392, 2019.

[3] M. Alsaeedi, M.M. Mohamad, and A.A. Al-Roubaiey, “Toward adap-
tive and scalable OpenFlow-SDN flow control: A survey,” IEEE
Access, vol. 7, pp. 107,346–107,379, 2019.

[4] J.H. Cox, R. Clark, and H. Owen, “Leveraging SDN and WebRTC
for rogue access point security,” IEEE Trans. Network and Service
Management, vol. 14, no. 3, pp. 756–770, 2017.

[5] Y.C. Wang and S.Y. You, “An efficient route management framework
for load balance and overhead reduction in SDN-based data center
networks,” IEEE Trans. Network and Service Management, vol. 15, no.
4, pp. 1422–1434, 2018.

[6] W. Iqbal, H. Abbas, P. Deng, J. Wan, B. Rauf, Y. Abbas, and I.
Rashid, “ALAM: Anonymous lightweight authentication mechanism
for SDN-enabled smart homes,” IEEE Internet of Things J., vol. 8, no.
12, pp. 9622–9633, 2021.

[7] Y.C. Wang and R.X. Ye, “Credibility-based countermeasure against
slow HTTP DoS attacks by using SDN,” Proc. IEEE Annual Computing
and Comm. Workshop and Conf., 2021, pp. 890–895.

[8] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN control:
Survey, taxonomy, and challenges,” IEEE Comm. Surveys & Tutorials,
vol. 20, no. 1, pp. 333–354, 2018.

[9] J. Lu, Z. Zhang, T. Hu, P. Yi, and J. Lan, “A survey of controller
placement problem in software-defined networking,” IEEE Access,
vol. 7, pp. 24290–24307, 2019.

[10] H. Sufiev, Y. Haddad, L. Barenboim, and J. Soler, “Dynamic SDN
controller load balancing,” Future Internet, vol. 11, no. 3, pp. 1–21,
2019.

[11] Y. Wu, S. Zhou, Y. Wei, and S. Leng, “Deep reinforcement learning
for controller placement in software defined network,” Proc. IEEE
INFOCOM Workshop, 2020, pp. 1254–1259.

[12] Y.C. Wang and Y.C. Wang, “Efficient and low-cost defense against
distributed denial-of-service attacks in SDN-based networks,” Int’l J.
Comm. Systems, vol. 33, no. 14, pp. 1–24, 2020.

[13] F. Tang, H. Zhang, L.T. Yang, and L. Chen, “Elephant flow detection
and load-balanced routing with efficient sampling and classification,”
IEEE Trans. Cloud Computing, vol. 9, no. 3, pp. 1022–1036, 2021.

[14] ONOS. [Online]. Available: https://opennetworking.org/onos/
[15] W.H.F. Aly, “Controller adaptive load balancing for SDN networks,”

Proc. Int’l Conf. Ubiquitous and Future Networks, 2019, pp. 514–519.
[16] L. Richardson and S. Ruby, RESTful Web Services. Sebastopol: O’Reilly,

2007.

[17] Y.C. Chan, K. Wang, and Y.H. Hsu, “Fast controller failover for multi-
domain software-defined networks,” Proc. European Conf. Networks
and Comm., 2015, pp. 370–374.

[18] T. Hu, J. Zhang, L. Cao, and J. Gao, “A reliable controller deployment
strategy based on network condition evaluation in SDN,” Proc. IEEE
Int’l Conf. Software Engineering and Service Science, 2017, pp. 367–370.

[19] T. Kim, J. Myung, and S.E. Yoo, “Load balancing of distributed
datastore in OpenDaylight controller cluster,” IEEE Trans. Network
and Service Management, vol. 16, no. 1, pp. 72–83, 2019.

[20] Y.C. Wang and E.J. Chang, “Cooperative flow management in multi-
domain SDN-based networks with multiple controllers,” Proc. IEEE
Int’l Conf. Smart Communities: Improving Quality of Life Using ICT, IoT
and AI, 2020, pp. 82–86.

[21] S. Nithya, M. Sangeetha, K.N.A. Prethi, K.S. Sahoo, S.K. Panda, and
A.H. Gandomi, “SDCF: A software-defined cyber foraging frame-
work for cloudlet environment,” IEEE Trans. Network and Service
Management, vol. 17, no. 4, pp. 2423–2435, 2020.

[22] K.S. Sahoo, P. Mishra, M. Tiwary, S. Ramasubbareddy, B. Balusamy,
and A.H. Gandomi, “Improving end-users utility in software-defined
wide area network systems,” IEEE Trans. Network and Service Manage-
ment, vol. 17, no. 2, pp. 696–707, 2020.

[23] A. Dixit, F. Hao, S. Mukherjee, T.V. Lakshman, and R. Kompella,
“Towards an elastic distributed SDN controller,” ACM SIGCOMM
Computer Comm. Review, vol. 43, no. 4, pp. 7–12, 2013.

[24] Z. Min, Q. Hua, and Z. Jihong, “Dynamic switch migration algorithm
with Q-learning towards scalable SDN control plane,” Proc. Int’l Conf.
Wireless Comm. and Signal Processing, 2017, pp. 1–4.

[25] J. Cui, Q. Lu, H. Zhong, M. Tian, and L. Liu, “SMCLBRT: A novel
load-balancing strategy of multiple SDN controllers based on re-
sponse time,” Proc. IEEE Int’l Conf. High Performance Computing and
Comm., 2018, pp. 541–546.

[26] K.S. Sahoo, D. Puthal, M. Tiwary, M. Usman, B. Sahoo, Z. Wen, B.P.S.
Sahoo, and R. Ranjan, “ESMLB: Efficient switch migration-based load
balancing for multicontroller SDN in IoT,” IEEE Internet of Things J.,
vol. 7, no. 7, pp. 5852–5860, 2020.

[27] T. Hu, J. Lan, J. Zhang, and W. Zhao, “EASM: Efficiency-aware
switch migration for balancing controller loads in software-defined
networking,” Peer-to-Peer Networking and Applications, vol. 12, pp.
452–464, 2019.

[28] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “BalanceFlow:
Controller load balancing for OpenFlow networks,” Proc. IEEE Int’l
Conf. Cloud Computing and Intelligence Systems, 2012, pp. 780–785.

[29] W. Lan, F. Li, X. Liu, and Y. Qiu, “A dynamic load balancing mech-
anism for distributed controllers in software-defined networking,”
Proc. Int’l Conf. Measuring Technology and Mechatronics Automation,
2018, pp. 259–262.

[30] B. Gorkemli, S. Tatlcolu, A.M. Tekalp, S. Civanlar, and E. Lokman,
“Dynamic control plane for SDN at scale,” IEEE J. Selected Areas in
Comm., vol. 36, no. 12, pp. 2688–2701, 2018.

[31] V. Sridharan, M. Gurusamy, and T. Truong-Huu, “On multiple con-
troller mapping in software defined networks with resilience con-
straints,” IEEE Comm. Letters, vol. 21, no. 8, pp. 1763–1766, 2017.

[32] F. Al-Tam and N. Correia, “Fractional switch migration in multi-
controller software-defined networking,” Computer Networks, vol. 157,
pp. 1–10, 2019.

[33] J. Kleinberg and E. Tardos, Algorithm Design. Boston: Addison-Wesley,
2006.

[34] Y. Xu, M. Cello, I.C. Wang, A. Walid, G. Wilfong, C.H.P. Wen, M.
Marchese, and H.J. Chao, “Dynamic switch migration in distributed
software-defined networks to achieve controller load balance,” IEEE
J. Selected Areas in Comm., vol. 37, no. 3, pp. 515–529, 2019.

[35] cbench. [Online]. Available: https://github.com/trema/cbench

