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Abstract—IoT devices are widely deployed and many of them have limited capabilities. CoAP (constrained application protocol) is developed

to integrate such devices into the web environment. Specifically, client devices register their interested data with IoT devices, which will keep

notifying them of the status of sensing data. However, client devices have different demands in terms of minimum and maximum periods to

receive notifications, whereas IoT devices usually offer notifications at regular intervals. Some IoT devices would send many more notifications

than necessary, which wastes bandwidth and energy. To conquer this problem, the paper proposes a group-based message management

(GMM) framework for CoAP proxies to efficiently coordinate the sending of notifications from IoT devices and forward them to client devices.

GMM curtails superfluous notifications by three modules. The scheduling module groups client devices based on their demands and finds an

optimal observation period for each group. The caching module adjusts the Max-Age value to allow a proxy reusing its cached notifications

to answer requests. The merging module combines the notifications originated from different IoT devices queried by the same client device,

so as to save bandwidth. Simulation results show that GMM not only reduces unnecessary notifications but also conserves the energy of

devices.

Index Terms—Caching, CoAP, merging, proxy, scheduling.

✦

1 INTRODUCTION

THANKS to the rapid development of wireless technology
and microelectronic systems, the Internet of Things (IoT)

is ushering in a new era. The aim of IoT is to enable various
devices such as appliances, vehicles, and electronic products
to form a network for sensing their surroundings and trans-
ferring information to one another, which is carried out by
embedding wireless sensors in these devices [1].

Due to the nature of sensors, many IoT devices are regarded
as constrained devices, which means that they possess limited
computing power, memory storage, and energy [2]. In contrast
to powerful devices like laptops and mobile phones, the pop-
ular hypertext transfer protocol (HTTP) would be complicated
and not efficient for constrained devices. Thus, the constrained
application protocol (CoAP) is proposed as a good substitute for
HTTP to help constrained devices handily access the web and
communicate with other devices that use HTTP [3].

CoAP uses a client-server architecture and offers a request-
response interaction model between two application end-
points. Specifically, a client device (e.g., a mobile phone) first
registers with an IoT device (i.e., a server) the data that it has
an interest. The IoT device then keeps sending notifications to
the client device for updating the status of sensing data, until
the client device does not require the data anymore (e.g., by
canceling its registration). To facilitate this procedure, proxies
are placed in the middle of IoT devices and client devices to
relay messages between them, as shown in Fig. 1(a). Moreover,
the extension of CoAP [4] allows client devices specifying their
demands (in minimum and maximum periods, denoted by
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pmin
j and pmax

j , respectively) to get notifications for adding
flexibility.

When multiple client devices request data from one IoT de-
vice, a proxy can establish one single observation relationship
with that IoT device on behalf of these client devices. In this
case, the proxy can ask the IoT device to transmit notifications
in a fixed period (called the observation period), which should
satisfy the demand of every client device. Let us consider two
examples in Fig. 1(b) and (c), where two client devices u1 and
u2 request data from an IoT device s1. Suppose that u1 has a
demand of pmin

1 = 9 and pmax
1 = 13, and u2 has a demand

of pmin
2 = 5 and pmax

2 = 7. Without caching notifications, the
observation period may be set to 2 or 6 seconds, so the proxy
can always forward s1’s notifications to u1 and u2 and satisfy
their demands, as shown in Fig. 1(b) and (c), respectively. In
fact, Fig. 1(c) gives a better solution, since s1 can send fewer
notifications and save its energy accordingly.

As sending and receiving messages are both energy-costly
operations [5], it is critical to reduce the number of messages
exchanged among devices for energy conservation and con-
gestion avoidance in IoT networks. In view of this, the paper
proposes a group-based message management (GMM) framework
by using proxies to regulate the transmission of notifications in
a CoAP-based IoT network, which consists of three modules.
Specifically, the scheduling module divides client devices into
groups and finds an optimal observation period for each
group, such that the IoT device generates the minimum no-
tifications and the number of notifications relayed to client
devices is also reduced. To help a proxy better reuse its cached
notifications for answering client devices, the caching module
computes an adequate Max-Age value for each IoT device.
When a client device queries multiple IoT devices, the merging
module will combine their notifications efficiently. Thus, the
client device need not receive duplicate information such
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Fig. 1: Examples of scheduling the transmission of notifications in a CoAP-
based IoT network.

as identical packet headers, thereby conserving bandwidth.
Through simulations, we validate that GMM can slash the
number of notifications sent in the network. Our contribution
is to develop an efficient framework to save the message cost
for IoT networks using CoAP, which economizes on the energy
of constrained devices and mitigates network congestion.

This paper is organized as follows: Section 2 briefly intro-
duces CoAP. Section 3 surveys related work and Section 4
gives the system model. Then, the GMM framework is pro-
posed in Section 5, followed by the discussion of its issues in
Section 6. After that, the performance evaluation is presented
in Section 7. Lastly, Section 8 concludes this paper.

2 OVERVIEW OF COAP

CoAP is a specialized web transfer protocol used to support
machine-to-machine (M2M) communications in IoT networks.
It is built on the representational state transfer (REST) model so
as to be HTTP-compatible [6]. More concretely, IoT devices
make sensing data available through uniform resource locators
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Fig. 2: An example of the observing mechanism.

(URLs). Then, client devices access these data by using HTTP-
like messages (e.g., GET, PUT, POST, DELETE, and so on). In
CoAP, the observing mechanism makes IoT devices obediently
update client devices on the status of sensing data. Moreover,
CoAP provides proxy and cache mechanisms to add flexibility
to message transmissions. Below, we discuss each mechanism.

2.1 Observing Mechanism

This mechanism is proposed in [7] as an extension of CoAP to
allow client devices monitoring the changes in sensing data.
A client device uj can get a representation of data and keep
this representation updated by an IoT device si over a period
of time. Specifically, uj registers its interested data with si by
sending a GET request with an observe flag. Then, si replies a
notification regarding the current status of sensing data. After
that, whenever something changes in the sensing data, si will
send a notification with the updated status to uj .

Fig. 2 shows an example, where uj queries si about temper-
atures. Specifically, the token helps uj associate its registration
with all notifications replied by si. The code of “2.05 Content”
is similar to “HTTP 200 OK”. The “Observe” field indicates
the sequence of messages. When si receives the registration,
it replies a notification with the current temperature (given in
the payload) to uj . After that, subsequent notifications will be
transmitted by si whenever the temperature changes. In case
that uj no longer has an interest in the sensing data, uj can
send an RST message to si. Then, si removes uj from the list
of observers and stops sending notifications to uj .

2.2 Proxy Mechanism

In CoAP, proxies are used to mediate between client devices
and IoT devices, as shown in Fig. 1(a). To do so, a client device
indicates the appointed proxy in the GET request. Suppose that
a client device uj appoints a proxy ρk as its deputy, whose IP
address and port are “140.117.169.65” and 5683, respectively.
Then, uj sends a GET request to ρk by adding an instruction
of “Proxy-URI: coaps://140.117.169.65:5683/S1,” where URI
means uniform resource identifier. After that, ρk performs the
registration with the queried IoT device on behalf of uj . Thus,
the IoT device sends notifications to ρk for updating the status
of sensing data, which will be further relayed to uj .

Using proxies brings two benefits [8]. First, client devices
simply obtain sensing data from a proxy without knowing the
sensitive information of IoT devices (e.g., their identifications).
Since IoT devices are hidden by the proxy, malicious devices
are thus hard to attack IoT devices. Second, many IoT devices
are resource-constrained, so each of them is capable of serving
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very few client devices. This problem can be solved by using a
proxy to establish one single observation relationship between
many client devices and an IoT device. In view of this, we will
exploit proxies to save the message cost in an IoT network and
improve its performance.

2.3 Cache Mechanism

When a proxy ρk gets a new notification from an IoT device
si, it will be stored in ρk’s cache. In this way, ρk can reuse si’s
prior notifications to satisfy current requests (if feasible), so as
to reduce the response time and save si’s energy. There are
two models proposed for the cache mechanism in CoAP [3]:
freshness and validation.

In the freshness model, when a cached notification has not
expired yet, ρk is allowed to use it for answering subsequent
requests without contacting si. To do so, si can negotiate with
ρk about the expiration time of its sensing data (in seconds)
via the Max-Age option. Once the age of a notification cached
by ρk is greater than that specified in the Max-Age option, it is
considered to be not fresh. In case that the Max-Age option is
not specified, the default value is set to 60 seconds. Therefore,
if si prefers not to use the cache mechanism, it must indicate a
zero-value Max-Age option.

For the validation model, if ρk has some cached notifica-
tions that fit for a request but cannot use any of them (e.g.,
they are not fresh), ρk gives si an opportunity to update its
freshness for these cached notifications. In particular, ρk adds
an ETag option in the request that specifies the entity-tag of the
cached notification. After getting a valid response from si, ρk
updates the cached notification with the new Max-Age option
indicated in the response.

Our work also aims to adaptively adjust the value of Max-
Age for the freshness model, so as to efficiently diminish the
message overhead incurred by IoT devices.

3 RELATED WORK

Since CoAP is one of popular data transfer protocols for IoT
networks, a variety of relevant topics are addressed. Choi and
Koh [9] develop two schemes to support mobility management
for CoAP with the help of Proxy Mobile IPv6. In [10], a CoAP
extension is proposed to support the context-aware discovery
service of smart objects (e.g., TVs and appliances). The study
[11] designs a rate-based congestion control method for CoAP,
so as to improve fairness and also reduce data retransmissions.
The work [12] evaluates the performance of video streaming
applications over CoAP in IoT networks. As can be seen, none
of them considers leveraging the proxy mechanism in CoAP.

Some studies analyze the efficiency of using CoAP proxies.
The work [13] evaluates the effect of arrival rates of requests
and the number of IoT devices on the cache mechanism
(e.g., the hit ratio and response time). With random inter-
observation time, [14] measures both data lifetime and round-
trip time at a proxy by kernel estimation of probability density
distribution. How to use proxies to offer various services is
also discussed. The study [15] facilitates the bootstrapping
process by using a proxy, which helps smart objects join an
IoT network more securely. In [16], a cross-protocol proxy is
developed to broker among HTTP, CoAP, and MQTT (message
queuing telemetry transport). Obviously, they discuss different
issues from ours.

A few studies consider scheduling messages in CoAP-
based IoT networks. In [17], client devices express the priority

TABLE 1: Summary of notations.
notation definition

Ûk
i set of client devices which query IoT device si via proxy ρk

Ŝk
j set of IoT devices that client device uj queries via proxy ρk

pmin

j uj ’s minimum period to get notifications
pmax

j uj ’s maximum period to get notifications

P̃i,a si’s observation period for a group Ĝa ⊆ Ûk
i

Ti data generating interval of si
Ãi Max-Age value assigned to si

with which they want to be notified. Notifications are then
classified according to their expressions. High-priority notifi-
cations (e.g., urgent ones) will be given precedence to be trans-
mitted first. Mingozzi et al. [8] propose a proxy virtualization
framework to provide scalability in a large IoT network, which
is built on a Linux container. The framework also differentiates
between notifications based on their priorities for QoS consid-
eration. However, neither [17] nor [8] permits client devices to
specify their preferred periods for getting notifications.

The work [18] takes account of fairness on message trans-
missions, which asks a proxy to schedule the registrations of
client devices to make their requests possess equal conditions
on timeliness. Thus, IoT devices could have similar depletion
degrees of energy. Considering that there are multiple proxies
in a CoAP-based IoT network, [19] selects the best proxy for
each request such that the amount of energy spent on the steps
of registration and notification can be minimized. Afterward,
a heuristic algorithm is proposed to decrease the average hop
count between client devices and IoT devices. Apparently, both
[18] and [19] aim at different objectives from this paper.

Given a set of client devices that request data from one IoT
device, [20] uses a proxy to build an observation relationship
with the IoT device and receive its periodic notifications (about
sensing data) on behalf of client devices. The proxy then relays
notifications to client devices based on their demands, which
are specified in terms of minimum and maximum periods. The
objective is to find the optimal observation period to minimize
the notifications sent by the IoT device, such that the demand
of each client device is satisfied. However, [20] does not adopt
the cache mechanism to reduce the message overhead. If some
requests have short periods, the IoT device has to send many
notifications, thereby consuming more energy.

As compared with the prior work, our GMM framework
is not only the first to schedule the transmission of notifi-
cations for client devices in a group-based manner for more
flexibility, but also exploits the cache mechanism in CoAP
by adjusting the Max-Age option. Hence, GMM prevents IoT
devices from sending unnecessary notifications and also re-
duces the number of notifications forwarded to client devices.
Moreover, when a client device queries multiple IoT devices,
their notifications can be efficiently merged to save bandwidth
and energy. These designs distinguish GMM from existing
solutions and greatly decrease the message cost in an IoT
network.

4 SYSTEM MODEL

We are given an IoT network which comprises IoT devices,
client devices, and proxies, as shown in Fig. 1(a). Every IoT de-
vice offers sensing data, in which some client devices have an
interest. A client device can also request multiple IoT devices
for their data. A number of proxies sit between IoT devices and
client devices for managing message transmissions. They can
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cache and reuse previous notifications to answer some requests
of client devices without overly disturbing IoT devices, as
discussed in Section 2.3. Recall that in Section 2.2, each client
device needs to specify its appointed proxy in the GET request.

Therefore, let us denote by Ûk
i the set of client devices that

request data from an IoT device si via a proxy ρk. Besides, we

also denote by Ŝkj the set of IoT devices that a client device uj
asks for their data through ρk.

According to the implementation guidance for CoAP [21],
IoT devices can provide periodic resources (i.e., sensing data).
After ρk establishes the observation relationship between one

IoT device si and the client devices in Ûk
i , si keeps sending

notifications in a constant period. By the means of dynamic
resource linking [4], client devices can specify their demands to

obtain notifications. To do so, before a client device uj ∈ Û
k
i

performs registration, uj sends to ρk a PUT message with two
parameters pmin

j and pmax
j , which indicate the minimum and

maximum intervals between two successive notifications that
uj wants to get, respectively. Both pmin

j and pmax
j are measured

in seconds. Fig. 1 presents some examples.
For each IoT device si, given the set Ûk

i of client devices
that query it for data through proxy ρk and their (pmin

j , pmax
j )

demands, our problem asks how to determine the observation
period for si and also the forwarding of notifications to client
devices, such that the overall message cost in the IoT network
is minimized. More concretely, the message cost is defined to
be the summation of notifications passed through each proxy,
which include those sent from IoT devices and those relayed
to client devices. A lower message cost means that IoT devices
save more energy on sending notifications and client devices
also reduce more energy consumption on getting notifications.
Table 1 summarizes the notations used in this paper.

5 THE PROPOSED GMM FRAMEWORK

When a client device uj submits its request, the responsible
proxy, say, ρk first screens the request to filter out improper
ones, for example, requesting some type of sensing data not
supported by any IoT device or unreasonable demands (e.g.,
pmin
j > pmax

j or pmax
j ≤ 0). If the request is passed by the

screening process, it will be forwarded to the corresponding
IoT device, say si. Afterward, si sends a notification to ρk
if it accepts uj ’s request, as discussed in Section 2.1. In case
that uj ’s request is screened out or rejected by si, ρk replies
a rejection message (i.e., 4.00 Bad Request) to si. Then, ρk
removes uj from the set Ûk

i .
After that, ρk calculates not only the length of observation

period (denoted by P̃i) but also the value of Max-Age option
(denoted by Ãi) for each queried IoT device si, and notifies si
accordingly. To consider the demands of client devices as well
as the freshness of sensing data, si should send its notifications
to ρk in an interval of max{P̃i, Ãi}. Whenever ρk receives a
notification from si, ρk keeps a backup of the notification in its
cache and replaces the old one if necessary. Then, for each

client device uj in Ûk
i , ρk will forward si’s notification1 to

uj when P̃i is due and uj ’s minimum period (i.e., pmin
j ) has

already elapsed since the last received notification.
To efficiently save the message cost, each proxy ρk applies

the GMM framework to carry out the above work, which is
made up of three modules. Based on the (pmin

j , pmax
j ) demands

of client devices in Ûk
i , the scheduling module clusters them

1. The notification will be the cached one when P̃i > Ãi.

Algorithm 1: Observation Period Selection (OPS)

Data: Demand (pmin
j , pmax

j ) of each uj in Ûk
i

Result: Observation period P̃i for IoT device si
1 P̃i ← min∀uj∈Ûk

i
{pmax

j };

2 while ∃ux ∈ Û
k
i such that ⌈pmin

x /P̃i⌉P̃i > pmax
x do

3 P̃i ← min∀uj∈Ûk
i

{⌊

pmax

j

⌈pmin

j /P̃i⌉

⌋}

;

into groups and computes a maximum observation period for
each group, such that IoT device si can send the minimum
notifications and the number of notifications relayed to client

devices in Ûk
i is also reduced. Then, the caching module finds

an adequate Max-Age value for each IoT device, so as to help
a proxy exploit its cached notifications for answering client

devices. If a client device uj queries a set Ŝkj of IoT devices,
the merging module well combines the notifications originated

from Ŝkj into one single notification. In this way, the amount
of data sent to uj could decrease. Below, we elaborate on each
module, followed by the design rationale of GMM.

5.1 The Scheduling Module

In [20], an observation period selection (OPS) algorithm is pro-
posed to minimize the number of notifications replied from an

IoT device si based on demands of all client devices in Ûk
i . Its

objective is to find the maximum observation period P̃i for si
such that the following condition is fulfilled:

pmax
j ≥ pmin

j + P̃i, ∀uj ∈ Û
k
i . (1)

In other words, after pmin
j expires, si should send at least one

notification to proxy ρk before pmax
j is due, so ρk can forward

a timely notification to each client device uj ∈ Û
k
i and satisfy

its demand. By doing some algebra, we can derive that

pmax
j ≥ (pmin

j /P̃i + 1)P̃i ≥ ⌈p
min
j /P̃i⌉P̃i, ∀uj ∈ Û

k
i (2)

⇒ P̃i ≤
pmax
j

⌈pmin
j /P̃i⌉

, ∀uj ∈ Û
k
i (3)

Algo. 1 presents the pseudocode of OPS. Because the so-
lution to satisfy Eq. (1) cannot be larger than the maximum

demand of any uj in Ûk
i , the initial value of P̃i is set to the

minimum pmax
j value (i.e., the upper bound on the solution)

in line 1. Then, the while-loop checks if there exist some client

devices in Ûk
i which violate the condition of Eq. (2). If so, we

update the value of P̃i based on Eq. (3), as shown in line 3.
Let us consider the example in Fig. 1(c). By line 1, P̃1 is set

to min{13, 7} = 7. Since ⌈9/7⌉ × 7 = 14 > pmax
2 = 13, P̃1

is updated to min {⌊13/(⌈9/7⌉)⌋, ⌊7/(⌈5/7⌉)⌋} = 6 by line 3.
Thus, the solution is 6 seconds. Theorem 1 proves that OPS can
minimize the number of notifications that si sends to ρk.

Theorem 1. OPS in Algo. 1 finds an optimal observation period to
let IoT device si send the minimum notifications to proxy ρk such
that ρk can always forward a timely notification to each client device

in Ûk
i to meet its demand.

Proof: Please refer to Theorem 1 in [20].
Although OPS minimizes the number of notifications sent

by an IoT device, it may not reduce the number of notifications
that client devices have to receive. Two examples are given in
Fig. 1(c) and (d), where the total time is 45 seconds. Observing
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Algorithm 2: The Scheduling Module

Data: Demand (pmin
j , pmax

j ) of each uj in Ûk
i

Result: Disjoint groups Ĝ1, Ĝ2, · · · , Ĝm and their obser-

vation periods P̃i,1, P̃i,2, · · · , P̃i,m, where Ĝ1 ∪
Ĝ2 ∪ · · · ∪ Ĝm = Ûk

i

1 Sort all devices in Ûk
i increasingly by the pmax

j value;

2 foreach uj ∈ Û
k
i do

3 Create a new group Ĝa = {uj};

4 Ûk
i ← Û

k
i \ {uj};

5 foreach ux ∈ Û
k
i do

6 Ĝtmp ← Ĝa ∪ {ux} and P̃tmp ← OPS(Ĝtmp);
7 canAdd← true;

8 while ∃uy ∈ Ĝtmp such that RCF(uy, P̃tmp) =
false do

9 canAdd← false;
10 break;

11 if canAdd = true then

12 Ĝa ← Ĝa ∪ {ux} and Ûk
i ← Û

k
i \ {ux};

13 P̃i,a ← OPS(Ĝa);

from Fig. 1(c), u1 gets notifications in the 12th, 24th, and 36th

seconds. Suppose that a client device u3 is added to Ûk
1 , whose

demand is (pmin
3 , pmax

3 ) = (2, 3). By Algo. 1, the new value
of P̃1 is 3. Thus, proxy ρk sends notifications to u1 in the
9th, 18th, 27th, 36th, and 45th seconds (since pmin

1 = 9), as
shown in Fig. 1(d). Evidently, u1 is compelled to receive more
notifications when u3 is added, even though its demand does
not change.

To address this issue, our scheduling module partitions Ûk
i

into disjointed groups. In this way, long-period client devices
(e.g., u1) need not humor short-period ones (e.g., u3) and will
not receive too many notifications due to following the same
observation period. For convenience, we define a notification
accepted interval (NAI) of client device uj as the time interval
since uj begins its pmin

j period (to get notifications) until the
pmax
j period is due. Fig. 1(b) presents an example, where u1

has three NAIs: 9th–13th, 19th–23rd, and 29th–33rd seconds.
Note that NAIs of a client device may not be fixed but depend
on the observation period. This argument can be validated
by three examples in Fig. 1(b)–(d), where u1 has different
NAIs when the observation period changes. Then, the aim
of our scheduling module is to find out as few groups of

client devices in Ûk
i as possible (along with their observation

periods), such that for each group Ĝa ⊆ Û
k
i , IoT device si will

send exactly one notification during every NAI of each client

device in Ĝa based on the observation period P̃i,a. Fig. 1(c)
shows an example, where s1 sends just one notification within
each NAI of both u1 and u2 when the observation period is
set to 6. Thus, u1 and u2 can be put in the same group with
P̃i,a = 6.

Algo. 2 gives the pseudocode of the scheduling module.
Observing from OPS, the observation period P̃i will be bound
by the smallest pmax

j value (referring to line 1 of Algo. 1). In

view of this, all client devices in Ûk
i are sorted in ascending

order of their pmax
j values. After that, we create a new group Ĝa

and move the first client device (which has the minimum pmax
j

value) from Ûk
i to Ĝa, as shown in lines 3 and 4. When Ûk

i is not

Algorithm 3: Redundancy Checking Function (RCF)

Data: Client device ux and observation period P̃
Result: True (i.e., passed) or false (i.e., not passed)

1 if MOD(pmin
x , P̃) = 0 then

2 if P̃ > pmax
x − pmin

x then
3 return true;

4 else

5 if P̃ > (pmax
x − pmin

x + MOD(pmin
x , P̃))/2 then

6 return true;

7 return false;

empty, we iteratively check if each client device ux in Ûk
i can be

added to Ĝa, on the premise that the objective of the scheduling
module is still satisfied. The code is presented in lines 5–12.
Specifically, we compute the observation period (denoted by

P̃tmp) for a temporary group Ĝtmp = Ĝa ∪ {ux} by OPS, and
check if there will be no more than one notification sent from
si during each NAI of every client device in Ĝtmp. This can
be done by using the redundancy checking function (RCF). If the
above check is passed (i.e., the Boolean variable “canAdd” is

still true), it is feasible to add ux to Ĝa. After adding all possible

client devices to group Ĝa, we decide its observation period
P̃i,a by OPS in line 13.

Algo. 3 then exhibits the pseudocode of RCF. In line 1,
MOD(pmin

x , P̃) takes the remainder after dividing pmin
x by P̃.

Theorem 2 proves the correctness of Algo. 3 (and also gives
the rationale of RCF).

Theorem 2. If RCF in Algo. 3 returns true, IoT device si must send
exact one notification during each NAI of client device ux based on
the observation period P̃.

Proof: Algo. 3 considers two cases: pmin
x is dividable by P̃

(i.e., line 1) and otherwise (i.e., line 4). Suppose that ux gets the
last notification (denoted by NLR) at time t, which is within the
last NAI. Thus, the current NAI of ux starts at time t+pmin

x and
ends at time t + pmax

x . In Fig. 3, we also denote by NCR, NLS,
and NNS the notification received by ux in the current NAI,
the last notification sent by IoT device si before the current
NAI, and the next notification sent by si after the current NAI,
respectively.

Fig. 3(a) shows the first case, where NCR must be received
by ux at time t + pmin

x (i.e., the beginning of ux’s current NAI
since MOD(pmin

x , P̃) = 0). To ensure that si will not send NNS

within the current NAI (or two notifications, NCR and NNS,
are sent in this NAI, which breaches the goal of the scheduling
module), the following condition should be satisfied:

t+ pmin
x + P̃ > t+ pmax

x ⇒ P̃ > pmax
x − pmin

x . (4)

Eq. (4) is identical to the checking condition in line 2, so the
first part is verified.

Fig. 3(b) gives another case. Specifically, NNS will be sent
at time t+ pmin

x − tS + 2P̃. To prevent si from sending NNS in
ux’s current NAI, we have to guarantee that

t+ pmin
x − tS + 2P̃ > t+ pmax

x

⇒ P̃ > (pmax
x − pmin

x + tS)/2. (5)
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Fig. 3: Two cases checked in Algo. 3.

Suppose that si sends α notifications between NLR and NCR

(excluding NLR and NCR). Then, we can derive that

αP̃ + tS = pmin
x , α ∈ N

0. (6)

Evidently, Eq. (6) implies that tS will be the remainder after
dividing pmin

x by P̃. In other words, we have

tS = MOD(pmin
x , P̃). (7)

By combining Eqs. (5) and (7), we can obtain the checking
condition in line 5, so the other part is also proven.

Let us review the example in Fig. 1(d), where client de-
vices u1, u2, and u3 have demands of (9, 13), (5, 7), and
(2, 3), respectively. Based on Algo. 2, we sort them and get

Ûk
1 = {u3, u2, u1}. In the beginning, we create a new group

Ĝ1 = {u3} and have Ûk
1 = {u2, u1}. By using OPS, we get

P̃tmp = 3 for group Ĝtmp = Ĝ1 ∪ {u2}. Then, we check if u2
can be added to Ĝ1. By Algo. 3, we do the check as follows:

For u3: Since MOD(pmin
3 , P̃tmp) = MOD(2, 3) = 2, we then do

the check by line 5. As (pmax
3 − pmin

3 + MOD(pmin
3 , P̃tmp))/2 =

(3− 2 + 2)/2 = 1.5 < P̃tmp = 3, u3 passes the check.

For u2: Since MOD(pmin
2 , P̃tmp) = MOD(5, 3) = 2, we then do

the check by line 5. As (pmax
2 − pmin

2 + MOD(pmin
2 , P̃tmp))/2 =

(7− 5 + 2)/2 = 2 < P̃tmp = 3, u2 passes the check.

Thus, it is safe to add u2 to Ĝ1, so we have Ĝ1 = {u3, u2}
and Ûk

1 = {u1}. Next, we check if u1 can be added to Ĝ1.
Again, we obtain that P̃tmp = 3 for group Ĝtmp = Ĝ1 ∪ {u1}
by OPS. Since u3 and u2 have been checked for the case of
P̃tmp = 3, we only check u1 below:

For u1: Since MOD(pmin
1 , P̃tmp) = MOD(9, 3) = 0, we do the

check by line 2. However, as P̃tmp = 3 < pmax
1 − pmin

1 = 4, u1
cannot be added to Ĝ1.

After that, we create another group Ĝ2 which contains only

u1. In summary, two groups Ĝ1 = {u2, u3} and Ĝ2 = {u1} are
found by the scheduling module, whose observation periods
are P̃1,1 = 3 and P̃1,2 = 13, respectively.

We then analyze some properties of the scheduling module.
Theorem 3 shows that every group found by the scheduling

module in a set Ûk
i of client devices must have an observation

period no shorter than that found by the OPS algorithm for Ûk
i .

Theorem 4 proves that by dividing Ûk
i into multiple groups,

the scheduling module can reduce the number of notifications

received by the client devices in Ûk
i , as compared with OPS.

Algorithm 4: The Caching Module

Data: Data generating interval Ti of IoT device si and

each group Ĝa found in Ûk
i by Algo. 2

Result: Max-Age value Ãi for si
1 Ãi ← min∀Ĝa⊆Ûk

i
{P̃i,a};

2 if Ãi < Ti then

3 Ãi ← Ti;

4 else
5 Proxy ρk asks si to send only the last notification in

each Ãi period;

Theorem 3. Let P̃i be the observation period found by OPS for

a set Ûk
i of client devices. For each group Ĝa ⊆ Û

k
i found by the

scheduling module in Algo. 2, it is guaranteed that P̃i,a ≥ P̃i.

Proof: We prove this theorem by contradiction. Suppose

that Algo. 2 finds a group Ĝb from Ûk
i such that P̃i,b < P̃i. In

line 13 of Algo. 2, OPS in Algo. 1 is directly used to calculate
P̃i,b. According to Eq. (2), there must exist a client device, say,

ux in Ĝb that meets the following two conditions:

pmax
x < ⌈pmin

x /P̃i⌉P̃i, (8)

pmax
x ≥ ⌈pmin

x /P̃i,b⌉P̃i,b, (9)

Since ux belongs to Ûk
i , based on lines 2 and 3 in Algo. 1,

OPS must find an observation period smaller than or equal to

P̃i,b for Ûk
i to satisfy the conditions in Eqs. (8) and (9). This

obviously causes a contradiction, so the theorem is proven.

Theorem 4. Let MOPS and MSM be the number of notifications

received by all client devices of Ûk
i in OPS and the scheduling module

during a constant time T , respectively. The condition of MSM ≤
MOPS must hold.

Proof: Observing from Fig. 3(b), the interval between the
reception of two successive notifications by a client device uj
(i.e., NLR and NCR) is ⌈pmin

j /P̃⌉×P̃, where P̃ is the observation

period. Since OPS computes one single observation period P̃i

for a set Ûk
i of client devices, we can derive that

MOPS =
∑

uj∈Ûk
i

⌊

T

⌈pmin
j /P̃i⌉ × P̃i

⌋

. (10)

The scheduling module partitions Ûk
i into disjoint groups and

then assigns each group Ĝa an observation period P̃i,a. Thus,
we can calculate that

MSM =
∑

Ĝa⊆Ûk
i

∑

uj∈Ĝa

⌊

T

⌈pmin
j /P̃i,a⌉ × P̃i,a

⌋

. (11)

According to Theorem 3, each group in Ûk
i must satisfy P̃i,a ≥

P̃i. In other words, the following condition will be met:

⌊

T

⌈pmin
j /P̃i,a⌉ × P̃i,a

⌋

≤

⌊

T

⌈pmin
j /P̃i⌉ × P̃i

⌋

. (12)

By combining Eqs. (10), (11), and (12), we derive that MSM ≤
MOPS, thereby validating this proof.
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Fig. 4: Two cases considered in Algo. 4.

5.2 The Caching Module

The OPS algorithm asks a proxy to always forward “non-
cached” notifications to client devices (referring to the exam-
ples in Fig. 1), which may force IoT devices to frequently send
notifications to the proxy, thereby consuming more energy. In
fact, CoAP permits proxies to cache notifications for cutting
down the energy expense of IoT devices. This can be realized
by adopting the Max-Age option, as mentioned in Section 2.3.
Therefore, the objective of our caching module is to calculate
an adequate Max-Age value Ãi for each IoT device si.

Let Ti be the data generating interval of si, which is the time
interval between two successive sensing data produced by si.
It is worth noting that Ti genuinely reflects the heterogeneity
of IoT devices. More concretely, different types of IoT devices
would generate sensing data at different speeds, which results
in different Ti values. Furthermore, IoT devices could change
their Ti values in different situations. For example, they may
accelerate the generation of sensing data due to event detection
[22], thereby shortening Ti. On the other hand, IoT devices
could slow down the speed to produce data when they go to
longer sleeping cycles [23]. In this case, their Ti values will
increase accordingly. Therefore, we should take account of this
heterogeneity by introducing Ti to our caching module.

Algo. 4 gives the pseudocode of the caching module. To
prevent some client devices from getting notifications with
stale sensing data, proxy ρk expects to obtain a fresh enough
notification (sent from si) to satisfy the demand of each client

device in Ûk
i . That is why Ãi is initially set to the minimum

observation period of each group in Ûk
i by line 1.

Then, we check if Ãi can be enlarged (so si can send fewer
notifications to save more energy) by considering the effect of
Ti. There are two cases to be addressed, as shown in Fig. 4.
For the case of Ãi < Ti in Fig. 4(a), if ρk asks si to send
notifications following the Ãi period set in line 1, the value
of sensing data in notification Nc+1 must be identical with
that in notification Nc, because si will update its sensing data
only after time Ti (e.g., notification Nc+2). Apparently, Nc+1

is redundant, so we change Ãi to a larger Ti value to remove
unnecessary notifications. The code is given in lines 2 and 3.

For the case of Ãi ≥ Ti in Fig. 4(b), since Ãi set by line 1

meets the demand of each client device in Ûk
i and si must up-

date its sensing data during every Ãi period, any notification
sent by si within Ãi will not be overdue from the viewpoint

of client devices in Ûk
i . Thus, there is no need to change the

value of Ãi. However, si may send multiple notifications to ρk
in each Ãi period. In fact, si can send just the last notification
within Ãi (i.e., Nc+1) with the latest updated sensing data to
ρk, so as to save its energy. The code is presented in lines 4
and 5. Theorem 5 proves that the caching module can reduce
notifications sent from IoT devices, as compared with OPS.

Theorem 5. By using Algo. 4, any IoT device si will not send
notifications to proxy ρk more than that using OPS.

Algorithm 5: The Merging Module

Data: Period P̃i(j) and notification Ni of each IoT device

si ∈ Ŝ
k
j (queried by client device uj)

Result: Notifications Nb that proxy ρk sends to uj
1 while Ŝkj 6= ∅ do

2 sx ← argmin∀si∈Ŝk
j
{P̃i(j)};

3 Create a basic notification Nb initially set to Nx;

4 Ŝkj ← Ŝ
k
j \ {sx};

5 foreach sy ∈ Ŝ
k
j do

6 if P̃y(j) = P̃x(j) or Ãy ≥ P̃x(j) then
7 Nb ← Nb ‖ Ny ;

8 Ŝkj ← Ŝ
k
j \ {sy};

Proof: In line 1 of Algo. 4, Ãi is set to the minimum

observation period of every group in Ûk
i . According to Theo-

rem 3, Ãi ≥ P̃i must hold, where P̃i is the observation period
computed by OPS for si. Let us review the two cases in Fig. 4.
When Ãi < Ti, since the Max-Age value is set to Ti in line
3, which is larger than P̃i found in OPS, we guarantee that
si must elongate the interval to send notifications by using
Algo. 4, thereby saving more notifications than OPS. If Ãi ≥ Ti,
the Max-Age value is set to the minimum observation period,
which is no smaller than P̃i by applying Algo. 4. Thus, si
sends at most the same number of notifications with OPS.
Consequently, the above two cases verify this proof.

5.3 The Merging Module

A client device uj could request data from a set Ŝkj of IoT
devices in practice. If proxy ρk simply forwards notifications
to uj , uj will receive one notification originated from every

device in Ŝkj , where each notification has the identical header
and some similar content (e.g., “2.05 Content, Token: XXX”,
as shown in Fig. 2). Apparently, sending these duplicate data
wastes both bandwidth and energy. In view of this, our merg-
ing module helps each proxy integrate multiple notifications,
so it can relay as few notifications as possible to client devices.

Algo. 5 gives the pseudocode of the merging module. Let

P̃i(j) be the observation period for each IoT device si ∈ Ŝ
k
j

to meet the demand of uj (found by Algo. 2) and Ni be its
notification. In lines 2 and 3, we first pick the notification of

an IoT device, say, sx from Ŝkj with the minimum observation
period to be the base (denoted by Nb), so other notifications can
be combined with Nb. The reason is that the notification of sx
is the most urgent one, so ρk should deal with it first. Then, sx
is removed from Ŝkj by line 4.

In lines 5–8, we check if any notification of residual devices

in Ŝkj can be combined with Nb. Line 6 gives two checking

conditions. First, if a device sy ∈ Ŝ
k
j has the same observation

period with sx (i.e., P̃y(j) = P̃x(j)), their notifications can be
merged. Second, if the Max-Age value of sy is no smaller than

the observation period of sx (i.e., Ãy ≥ P̃x(j)), which means
that ρk has a non-overdue cached notification for sy , ρk can
also consolidate this cached notification with Nb. In line 7, the
notation ‘‖’ indicates the operation of merging notifications. If

so, sy is removed from Ŝkj . The above procedure is repeated

until Ŝkj becomes empty (i.e., each notification given to uj is
either combined with others or sent alone).
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Recall in Section 2.2, with the proxy mechanism in CoAP,
client devices usually get data from a proxy without knowing
the identifications of IoT devices for safety reasons. Therefore,
we can merge notifications from multiple IoT devices by just
combining their payloads. There are two cases to be discussed.

[Case 1] All devices in Ŝkj are homogeneous: Since these
IoT devices produce the same type of sensing data, we can thus
apply some data aggregation or compression schemes [24] to
merge and condense their data. The merged data will be put
in the payload of a notification (i.e., Nb).

[Case 2] Devices in Ŝkj are heterogeneous: In this case, we
will concatenate their sensing data in the payload. Since the
payload’s size is fixed but the length of sensing data produced

by each device in Ŝkj could be different, our objective is to
use the minimum notifications to pack all data. Interestingly,
the bin packing problem, where items of different volumes must
be packed into identical bins in a way that minimizes the
number of bins used, is reducible to our problem. By simple
substitutions, the problem becomes data (items) of different
sizes (volumes) must be loaded (packed) into payloads of the
same size (identical bins) in a way that minimizes the number
of payloads (bins) used. It is an NP-hard problem, and we
can employ some approximation algorithms [25] to solve the
problem. An alternative solution is to further partition devices

in Ŝkj into several subgroups with homogeneous devices. Then,
for devices within each subgroup, we merge their data into
one payload as in Case 1. This approach is peculiarly suited

for devices in Ŝkj consisting of limited types.

5.4 Design Rationale

Given an IoT device si and a set Ûk
i of client devices that ask

for its data via proxy ρk, the OPS algorithm in [20] finds the
optimal observation period to minimize notifications that si
will send to ρk, as mentioned earlier in Theorem 1. However,
OPS has three deficiencies. Thus, our GMM framework adopts
three modules to conquer each of them. First, since OPS uses

a common period for every client device in Ûk
i , long-period

devices unavoidably accommodate themselves to short-period
devices, which forces them to get more notifications than they
need. To overcome this problem, the scheduling module (i.e.,

Algo. 2) divides Ûk
i into groups and finds an optimal period

for each group, so as to reduce the number of notifications
received by client devices. Second, OPS minimizes the number
of notifications that si will send on the premise that ρk always
forwards its notifications to every client device immediately.
In fact, CoAP proxies are allowed to cache notifications and
reuse them according to RFC 7252 [3]. To exploit this mecha-
nism, the caching module in Algo. 4 calculates an appropriate
value of Max-Age for each IoT device based on its minimum
observation period and data generating interval. Thus, GMM
further diminishes notifications transmitted from IoT devices
to proxies. Third, OPS considers only the relationship between
one single IoT device (i.e., si) and multiple client devices (i.e.,

Ûk
i ). In addition to this relationship, GMM also addresses

the practical case where each client device uj queries data

from a set Ŝkj of IoT devices. The merging module in Algo. 5

combines the notifications originated from IoT devices in Ŝkj ,
so ρk can send as few notifications to uj as possible to save
both energy and bandwidth. The above designs distinguish
our GMM framework from the OPS solution and help greatly
save the message cost in a CoAP-based IoT network.

Broker

si

uj

Pub/sub

clients

Pub/sub

API

Publish

Subscribe

Notifications

Fig. 5: CoAP pub/sub architecture.

TABLE 2: Comparison between our GMM framework and the CoAP
pub/sub extension.

item GMM framework pub/sub extension
architecture Fig. 1(a) Fig. 5

model request-response publish-subscribe
application real-time or short sleeping limited reachability

intermediary proxy broker
association observe flag topic

user demand (pmin

j , pmax

j ) not support

6 DISCUSSION

6.1 CoAP Publish/Subscribe Extension

In [26], a publish/subscribe (abbreviated to pub/sub) extension
for CoAP is proposed to support those devices with long
breaks in connectivity (e.g., due to deep sleep). Fig. 5 gives
its architecture, where pub/sub clients interact with a special
node called broker via the CoAP pub/sub REST application
program interface (API) hosted by the broker. The state in-
formation is updated between clients and the broker by a
store-and-forward method. As shown in Fig. 5, some devices
(e.g., uj) subscribe to the sensing data which are published by
other devices (e.g., si). Afterward, the broker forwards data
(by notifications) to the subscribing clients.

The pub/sub extension can reduce the number of messages
sent by IoT devices, which need not depend on the behavior
of client devices. Nevertheless, this extension and our GMM
framework have different objectives and application domains.
Table 2 presents a comparison between them. First, the GMM
framework adopts the common CoAP architecture defined in
RFC 7252 [3], so it could perform well on most of CoAP-
based devices. On the contrary, the pub/sub extension does
not conform to the client-server architecture specified in CoAP
and just views all devices as clients, which may have backward
compatibility problems with old devices.

Second, GMM and the pub/sub extension implement dif-
ferent communication models. More concretely, GMM uses the
popular request-response model, where client devices make
requests to IoT devices if they are interested in sensing data.
After that, IoT devices actively reply notifications to update
the status of their sensing data. In the pub/sub extension,
IoT devices occasionally publish their sensing data to a broker,
regardless of whether other devices have interest in these data.
Thus, the GMM framework can be applied to more general
scenarios, where client devices can ask for real-time or fresh
data from IoT devices, or IoT devices can also doze off to save
energy when situations allow. On the other hand, the pub/sub
extension is suitable for a special scenario where IoT devices
have very limited reachability because they spend most of the
time in a sleeping state with almost no network connectivity.

Third, proxies serve as “coordinators” in the GMM frame-
work, where they help regulate the observation period for IoT
devices to send out notifications and forward the notifications
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to client devices to satisfy their demands. By contrast, brokers
function more like “containers” to store the sensing data of IoT
devices beforehand, and then give these data to subscribing
client devices later in the pub/sub extension. This difference
lets GMM and the pub/sub extension take different strategies
to make associations with the messages of devices. As dis-
cussed in Section 2.1, GMM uses the observing mechanism
in CoAP by associating the notifications of IoT devices with
the requests of client devices through observe flags. On the
other hand, the pub/sub extension employs topics to establish
the association relationship, which are unique identifiers for
particular items being published and subscribed to.

Lastly, the GMM framework adds flexibility to client de-
vices by allowing them to indicate minimum and maximum
periods that they desire to receive notifications (i.e., pmin

j and
pmax
j ). Based on the demands, GMM not only finds optimal

observation periods for IoT devices to transmit notifications
but also makes good use of both cache and proxy mechanisms
provided by CoAP to save the message cost and reduce the
energy consumption of devices. Although very useful, this
feature is not supported by the pub/sub extension.

6.2 Heterogeneous IoT Networks

Our GMM framework can work well in heterogeneous IoT
networks, and this section explains how GMM accommodates
itself to these networks. In particular, a heterogeneous IoT
network may be composed of heterogeneous client devices
or heterogeneous IoT devices. According to [4], the profiles
of (heterogeneous) client devices can be reflected by their
demands. For example, high-priority client devices are set with
smaller pmin

j and pmax
j values (i.e., short-period demands) for

the preferential reception of notifications, while low-priority
ones are assigned with larger pmin

j and pmax
j values (i.e., long-

period demands) to save bandwidth2. Even for an individual
client device, it can differentiate between the importance of
different sensing data from different IoT devices by giving
different demands of pmin

j and pmax
j . Based on Theorems 1

and 2, we show that the demand of each client device must
be satisfied (i.e., it will get notifications during the interval
between pmin

j and pmax
j ) in GMM. This implies that GMM can

cope with the heterogeneity in client devices.
On the other hand, depending on the monitoring missions

or their functions, different characteristics could be exhibited
on IoT devices, such as battery consumption, the quantity of
data being sensed, and specific properties of the acquired data.
This heterogeneity can be taken on by their data generating in-
tervals (i.e., Ti). Specifically, if an IoT device wants to conserve
more energy (e.g., by sleeping for a longer time), it would has a
larger Ti value. Moreover, the data generating interval decides
the amount of data being sensed. The shorter the interval is,
the more data will be sensed, and vice versa. Furthermore, IoT
devices equipped with different types of sensing devices may
have different Ti values due to hardware designs or properties
of the data [27], [28]. By taking account of the effect of Ti
values in Algo. 4, the caching module can help GMM deal with
heterogeneous IoT devices. In addition, the merging module
in Algo. 5 handles the case where the lengths of sensing data
produced by IoT devices may be different. This also addresses
the heterogeneity in IoT devices.

2. In this way, IoT devices and proxies can decrease their frequencies
of sending/forwarding notifications to these low-priority client devices,
thereby saving bandwidth.

TABLE 3: Mean and standard deviation of data generating intervals of IoT
devices contacted by each proxy.

proxy mean standard deviation
ρA 10 seconds 2 seconds
ρB 30 seconds 6 seconds
ρC 50 seconds 10 seconds

TABLE 4: Four simulation scenarios applied to a single proxy.
parameter I II III IV

client devices 10–50 50 10 50
LPP Lmax 50 10–50 50 50

total requests 50 50 10–50 50
IoT devices 10 10 10 10–50

7 PERFORMANCE EVALUATION

We adopt the Californium simulator [29] to imitate a CoAP-
based IoT network and implement our GMM framework on it
for performance evaluation. The OPS method [20] is used for
comparison. Because OPS asks each proxy to directly forward
notifications generated by an IoT device to each client device,
we apply our caching and merging modules in Algos. 4 and
5 to OPS, so as to let it use the cache mechanism in CoAP
and also combine notifications from multiple IoT devices. This
method is named as enhanced OPS (E-OPS). By comparing E-
OPS with GMM, we can measure the amount of performance
improvement gained by our scheduling module in Algo. 2.

In our simulations, there are three proxies ρA, ρB , and ρC .
Each of them builds observation relationships with some IoT
devices on behalf of a number of client devices and relays their
notifications to client devices. Let us consider a heterogeneous
IoT network composed of three types of IoT devices, where the
devices of the same type have similar data generating intervals
(i.e., Ti). To observe the effect of heterogeneous IoT devices,
each proxy contacts with only one type of IoT devices. More
concretely, the Ti values of the IoT devices contacted by each
proxy obey a uniform distribution whose mean and standard
deviation are given in Table 3, where the standard deviation is
taken as 20% of the mean. Based on the above setting, proxies
ρA, ρB , and ρC will relay the notifications of IoT devices that
generate sensing data across a wide range of frequencies.

For each proxy, we consider the four scenarios in Table 4.
The minimum period pmin

j of a client device is picked from
the range of [1, Lmax] (arbitrarily by the uniform distribution),
where Lmax is the longest possible period (LPP). Then, its maxi-
mum period pmax

j is selected between pmin
j and Lmax. In each

scenario, only one parameter is adjusted (while others are kept
constant) to observe its effect:

I. Every proxy serves 10 to 50 client devices (i.e., there
are 30 to 150 client devices totally) and contacts 10
IoT devices (i.e., there are 30 IoT devices in total). A
proxy gets 50 requests from its served client devices
(i.e., there are 150 requests in all). The LPP (i.e., Lmax)
is set to 50 seconds.

II. We increase Lmax from 10 to 50 seconds. A proxy
serves 50 client devices and contacts 10 IoT devices.
There are 50 requests sent to each proxy. This scenario
considers the heterogeneity in client devices.

III. There are 10 to 50 requests sent to a proxy. Each
proxy serves 10 client devices and also contacts 10 IoT
devices. The Lmax value is set to 50 seconds.

IV. Each proxy contacts 10 to 50 IoT devices. It also serves
50 client devices, which generate 50 requests. The LPP
is kept to 50 seconds.
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Fig. 6: Performance evaluation in scenario I by varying the number of client devices: (a) the overall message cost, (b) the number of notifications sent by
IoT devices and their energy consumption, and (c) the number of notifications forwarded to client devices and their energy consumption.

We measure the message cost, which is defined by the total
number of notifications sent in the network. This cost includes
the notifications sent from IoT devices and those forwarded to
client devices by proxies. Moreover, we evaluate the amount of
energy consumed by devices in the IoT network. In particular,
suppose that a sensor si transmits a notification with l bits
to a proxy ρk, and their Euclidean distance is denoted by
D(si, ρk). Then, the amount of energy that si spends on data
transmission can be estimated as follows [30]:

ETx(si, ρk) = (ψ1 + ψ2[D(si, ρk)]
ε)× l, (13)

where ψ1 and ψ2 indicate the amount of power taken by si’s
transmitter and amplifier circuits to deliver a bit, respectively,
and ε is an exponent used to model path loss. On the other
hand, a client device uj also depletes some energy to receive a
notification relayed from ρk, which is measured by

ERx(uj , ρk) = ψ3 × l, (14)

where ψ3 gives the amount of power required by uj ’s receiver
circuit to get one bit. Based on [30], we set ψ1 = 50nJ/bit,
ψ2 = 100 pJ/bit per m2, ψ3 = 50nJ/bit, and ε = 2. The
distance D(si, ρk) is set to 150 meters. Besides, we consider
using ZigBee as the underlying protocol, so the length of a
notification will be 128 bytes. The total simulation time is set
to 3600 seconds (i.e., one hour).

7.1 Scenario I: Varying Client Devices

In scenario I, the number of total client devices is increased
from 30 to 150. Fig. 6(a) compares the overall message cost
of each method. As can be seen, increasing client devices has
little effect on the message cost, because the number of requests
does not change and LPP Lmax of client devices is also fixed.
By applying the caching and merging modules, the E-OPS
method significantly diminishes the message cost compared to
the original OPS method. Our GMM framework always keeps
the lowest message cost among all methods. On average, GMM
can save 63.5% and 31.8% of the message cost, as compared
with OPS and E-OPS, respectively.

Fig. 6(b) presents the number of notifications sent by IoT
devices and their energy consumption. Since proxies cannot
cache notifications in OPS, IoT devices have to send notifica-
tions more frequently. That is why OPS has distinctly more
notifications than others. By comparing E-OPS with OPS, we
show that the caching module in Algo. 4 helps lower 88.7% of
notifications and energy consumption of IoT devices in OPS,
which verifies its high efficiency. Since GMM also uses the
same caching module, its result is similar to that of E-OPS.

Despite this, the scheduling module in Algo. 2 still helps GMM
further save 5.6% of notifications and energy consumption of
IoT devices, as compared with E-OPS.

Then, Fig. 6(c) gives the number of notifications forwarded
to client devices and their energy consumption. By applying
the merging module in Algo. 5 to OPS, the E-OPS method
can decrease notifications forwarded to client devices, but the
reduction is not large (in particular, less than 5.2%). The reason
is that E-OPS finds the same observation period with OPS
for all client devices served by each proxy. Thanks to the
scheduling module, GMM can flexibly group client devices
and assign an optimal period for each group. In this way,
there is a good possibility for the merging module to combine
more notifications. To sum up, GMM reduces 38.5% and 35.2%
of notifications forwarded to client devices (and their energy
consumption), as compared with OPS and E-OPS, respectively.

7.2 Scenario II: Varying The Longest Possible Period

We raise LPP Lmax from 10 to 50 in this scenario to observe
the effect of the heterogeneity in client devices. Specifically, a
larger Lmax value implies that most client devices would have
larger pmin

j and pmax
j periods. In this situation, the number of

notifications that client devices expect to receive will decrease
when Lmax increases. That is why the overall message cost of
each method decreases as Lmax grows in Fig. 7(a). Since the
E-OPS method uses the cache mechanism in CoAP, it results
in a lower message cost than OPS. As compared with OPS and
E-OPS, our GMM framework can averagely reduce 54.5% and
17.5% of the message cost, respectively.

Let us analyze the numbers of notifications sent from IoT
devices and forwarded to client devices, as shown in Fig. 7(b)
and (c), respectively. These two figures also give the amount of
energy consumption of devices. As can be seen, the caching
module helps the E-OPS method reduce more notifications
and energy consumption than OPS (referring to Fig. 7(b))
whereas the merging module does not (referring to Fig. 7(c)).
There are two reasons. First, client devices are many more
than IoT devices (i.e., there are 150 client devices but only
30 IoT devices). Since the number of requests is equal to the
number of client devices, a client device may seldom request
multiple IoT devices. Second, the E-OPS method has the same
observation period as OPS for client devices. In this case, the
merging module is not easy to aggregate notifications in E-
OPS. By properly grouping client devices, GMM can conquer
the above difficulty, so the merging module performs better in
GMM to combine notifications.
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Fig. 7: Performance evaluation in scenario II by varying LPP Lmax: (a) the overall message cost, (b) the number of notifications sent by IoT devices and
their energy consumption, and (c) the number of notifications forwarded to client devices and their energy consumption.
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Fig. 8: Performance evaluation in scenario III by varying the number of total requests: (a) the overall message cost, (b) the number of notifications sent
by IoT devices and their energy consumption, and (c) the number of notifications forwarded to client devices and their energy consumption.

Based on Fig. 7(b), GMM reduces 91.8% and 2.7% of notifi-
cations and energy consumption of IoT devices, as compared
with OPS and E-OPS, respectively. Furthermore, GMM saves
18.7% and 17.3% of notifications and energy consumption of
client devices than OPS and E-OPS, respectively, in Fig. 7(c).
These experimental results validate the effectiveness of GMM
under different demands of client devices in scenario II.

7.3 Scenario III: Varying Total Requests

Then, we evaluate the effect of different numbers of requests
on the overall message cost, as shown in Fig. 8(a). Plainly,
the message cost increases as there are more requests. Such a
phenomenon is more obvious in OPS. On average, our GMM
framework can decrease 60.9% and 19.0% of the message cost
as compared with OPS and E-OPS, respectively.

Fig. 8(b) shows both notifications and energy consumption
of IoT devices. Without considering the cache mechanism, IoT
devices need to send more notifications when there are more
requests in OPS, which forces them to consume more energy.
Thanks to the caching module, the growth in both notifications
and energy consumption for E-OPS and GMM is pretty small.
To sum up, the GMM framework saves 79.3% and 2.4% of
notifications and energy consumption of IoT devices over OPS
and E-OPS, respectively.

The number of notifications sent to client devices and their
energy consumption is presented in Fig. 8(c). Similar to the
trend in Fig. 8(a), more notifications will be forwarded to client
devices when more requests are generated. Through efficiently
combining notifications in Algo. 5, GMM can curtail 42.6%
and 23.7% of notifications forwarded to client devices and also
their energy consumption, as compared with OPS and E-OPS,
respectively.

7.4 Scenario IV: Varying IoT Devices

In this scenario, we vary the number of IoT devices. Since
client devices and requests are constant, increasing IoT devices
implies that the requests of client devices can be distributed
among more IoT devices. This causes an effect of “grouping”
client devices. Thus, the overall message cost of each method
decreases when the number of IoT devices increases, as shown
in Fig. 9(a). Even in this case, our GMM framework can still
cut down 27.9% and 16.9% of the message cost over OPS and
E-OPS, respectively, which shows its adaptability.

Fig. 9(b) compares notifications and energy consumption
of IoT devices. For OPS, there will be fewer notifications by
increasing IoT devices. On the other hand, since the constant
requests are processed by more IoT devices, the efficiency of
the cache mechanism may decline. That is why E-OPS and
GMM have slightly more notifications when the number of IoT
devices increases. On average, GMM performs as good as E-
OPS and saves 56.4% of notifications and energy consumption
of IoT devices than OPS.

In Fig. 9(c), we compare the number of notifications relayed
to client devices and their energy consumption. Interestingly,
OPS and E-OPS have almost equal notifications and energy
consumption. This means that the merging module can hardly
work in E-OPS. Since the number of requests is equal to the
number of client devices, each client device almost requests
just one IoT device. Besides, the observation periods found
by both OPS and E-OPS are the same. Thus, the merging
module cannot find notifications to be amalgamated. Thanks
to the scheduling module, GMM can group client devices
based on their demands and reduce the number of notifications
sent to them. In particular, GMM saves 23.9% of notifications
forwarded to client devices and also their energy consumption,
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Fig. 9: Performance evaluation in scenario IV by varying the number of IoT devices: (a) the overall message cost, (b) the number of notifications sent by
IoT devices and their energy consumption, and (c) the number of notifications forwarded to client devices and their energy consumption.
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Fig. 10: Comparison on the number of notifications and the amount of energy consumption of IoT devices contacted by each proxy in scenario I.

as compared with OPS and E-OPS.

7.5 Effect of Heterogeneous IoT Devices

Finally, we study the effect of heterogeneous IoT devices in
terms of data generating intervals (i.e., Ti). Since the effects of
different parameters have been discussed in previous sections
and Ti is used in the caching module for a proxy to reuse its
cached notifications to answer requests, we pick scenario I as
a representative and evaluate the number of notifications sent
by IoT devices and their energy consumption.

Fig. 10 compares notifications and energy consumption of
IoT devices contacted by proxies ρA, ρB , and ρC . Recall that
each proxy contacts with one type of IoT devices whose Ti
values follow a uniform distribution. According to Table 3,
the sets of IoT devices contacted by ρA, ρB , and ρC would
produce sensing data in a relatively high, medium, and low
frequency, respectively. This heterogeneity of IoT devices de-
cides the number of notifications sent by IoT devices and also
their energy consumption. For OPS, although it does not use
the cache mechanism in CoAP, OPS still has to ensure that
client devices can always get the freshest notifications from IoT
devices. Thus, when IoT devices update the status of sensing
data more frequently (e.g., the case of proxy ρA in Fig. 10(a)),
there will be more notifications sent from them in OPS. On the
other hand, both E-OPS and GMM adopt the caching module
in Algo. 4, which takes account of both Ti and the observation
period in deciding the Max-Age value. Thus, when IoT devices
produce sensing data more slowly (e.g., the cases of proxy
ρB in Fig. 10(b) and most notably proxy ρC in Fig. 10(c)),
each proxy is allowed to reuse more cached notifications for
answering requests from client devices. Therefore, IoT devices
can send fewer notifications and save more energy accordingly.

8 CONCLUSION

CoAP helps constrained IoT devices sensibly access the web
and uses proxies to mediate between them and client devices.
In practice, client devices possess different demands on getting
notifications, but each IoT device may generate notifications in
a fixed period. It is a challenge to manage the generation and
forwarding of notifications to reduce the message cost in the
network. Thus, we propose the GMM framework containing
three modules. The scheduling module groups client devices
by their demands and computes an optimal observation period
for every group. To help proxies better reuse notifications, the
caching module finds an appropriate Max-Age value for each
IoT device. When a client device queries multiple IoT devices,
the merging module combines notifications generated by these
IoT devices, so a proxy can forward fewer notifications to the
client device. By considering the four scenarios in simulations,
we show that GMM greatly saves the message cost and energy
of devices, as compared with OPS and its enhanced version.
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