
INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS 1

Efficient and Low-cost Defense against Distributed
Denial-of-service Attacks in SDN-based Networks

You-Chiun Wang and Yi-Chuan Wang

Abstract—Distributed denial-of-service (DDoS) attacks are common threats in many networks, where attackers attempt to make victim

servers unavailable to other users by flooding them with worthless requests. These attacks cannot be easily stopped by firewalls, since they

forge lots of connections to victims with various IP addresses. The paper aims to exploit the software-defined networking (SDN) technique

to defend against DDoS attacks. However, the controller has to handle lots of connections launched by DDoS attacks, which burdens it with

a heavy load and degrades SDN’s performance. Therefore, the paper proposes an efficient and low-cost DDoS defense (ELD) mechanism

for SDN. It adopts a nested reverse-exponential data storage scheme to help the controller efficiently record the information of packets in

the limited memory. Once there are many packets with high IP variability sent to a certain server, and this situation lasts for a while, then a

DDoS attack is likely happening. In this case, the controller asks switches to block malicious connections by installing flow rules. Experimental

results verify that the ELD mechanism rapidly recognizes protocol-based DDoS attacks and stops them in time, including TCP SYN flood,

UDP flood, and ICMP flood, and also greatly reduces the overhead for the controller to defend against attacks. Moreover, ELD can distinguish

DDoS flows from legitimate ones with similar features such as elephant flows and impulse flows, thereby eliminating false alarms.

Index Terms—DDoS attack, elephant flow, impulse flow, IP variability, SDN technique.

✦

1 INTRODUCTION

D ISTRIBUTED denial-of-service (DDoS) attacks have been a
growing problem in the Internet. Attackers target some

servers (also known as victims) and overwhelm them with a
mass of requests, which prevents normal use of their services.
This can be easily done by a botnet, which contains compro-
mised devices such as computers, smart phones, or IoT (Inter-
net of Things) devices whose security has been breached [1].
These devices are remotely controlled by attackers to overly
ask a victim for connections, resulting in poor performance or
even no service available.

In the past, firewalls are usually viewed as the first-line
defense against DDoS attacks. A firewall checks every packet
routed in and out of a network based on predefined filtering
rules like certain IP (Internet protocol) addresses or ports.
However, DDoS attacks will flood a firewall with redundant
packets, making it busily perform useless work and substan-
tially degrading its performance [2]. Even worse, an attacker
can also fabricate IP addresses and ports of packets to make a
fool of the firewall.

The emerging software-defined networking (SDN) technique
facilitates network management by using a controller to cen-
tralize control over each switch [3]. Therefore, the controller
can manage data transmissions by installing flow rules in
switches to tell them how to process packets. With the help
of the controller, it becomes much easier for users to monitor
the network status and command switches. Thanks to its flex-
ibility, a variety of SDN applications have been proposed, for
example, load-balancing control [4], anonymous communica-
tions [5], rogue Wi-Fi access point detection [6], and redundant
message elimination [7].

In this paper, we investigate how to exploit SDN to fast
detect and stop DDoS attacks. Nevertheless, DDoS attacks also

The authors are with the Department of Computer Science and Engineer-
ing, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan. E-mail:
ycwang@cse.nsysu.edu.tw; m053040075@student.nsysu.edu.tw

affect the performance of SDN. Specifically, lots of connection
requests are launched when a DDoS attack occurs. In this case,
switches have no idea to process these requests and ask the
controller for instructions [8]. Unavoidably, the controller will
be busy coping with DDoS flows, resulting in low performance
or even paralysis of the SDN network. Therefore, it is a
challenge to reduce the workload of the controller (in both
computation and rule installation) to defend against DDoS
attacks.

Another critical issue is to avoid blocking legitimate con-
nections when defending against DDoS attacks. Certain con-
nections such as impulse flows [4] and elephant flows [9]
possess some features similar to DDoS attacks, where they
also produce a great deal of packets to be sent to a server,
but they are not malicious. When these connections have the
same destination with a DDoS attack, a switch may treat their
packets to be parts of the attack, thereby dropping the packets
and blocking them accordingly. This is a side effect of DDoS
defense (i.e., false alarms) but does attain the aim of DDoS
attacks (i.e., preventing legitimate use of the victim’s service).

In view of the above motivations, this paper develops an
efficient and low-cost DDoS defense (ELD) mechanism for SDN
with three objectives: 1) quickly recognize DDoS attacks, 2)
reduce the controller’s overhead, and 3) avoid false alarms.
We aim at protocol-based DDoS attacks, including TCP (trans-
mission control protocol) SYN (synchronization) flood, UDP
(user datagram protocol) flood, and ICMP (Internet control
message protocol) flood. To facilitate identification of DDoS
attacks, the controller refers to three signatures of traffic flows,
including flow size, IP variability, and duration. To do so, it
needs to keep recording the related information of packets.
Since the memory space is limited, we also propose a nested
reverse-exponential storage (NRES) scheme in ELD to help the
controller record more recent packets and also keep a few old
packets for reference.

The contributions of this paper are threefold. First, unlike

2 INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS

some SDN-based approaches that look over many signatures
of packets (which burdens the controller with a heavy load),
we propose a lightweight defense mechanism against DDoS
attacks by checking only flow size, IP variability, and dura-
tion. It thus can greatly reduce the computational cost of the
controller. Second, we develop the NRES scheme to help the
controller efficiently store the necessary information of packets
in its limited memory. NRES records more recent packets while
keeping some ancient packets for a long history, so it can
provide a broad and high-resolution view of attacks. Third,
our ELD mechanism can differentiate between DDoS flows
and legitimate flows that share similar features (in particular,
elephant flows and impulse flows). Therefore, the packets
of these legitimate flows will not be erroneously discarded.
Through simulations by Mininet, we validate that ELD blocks
more DDoS packets, eliminates false alarms, and significantly
lowers the controller’s overhead on computation and rule
installation, as compared with other SDN-based approaches.

This paper is organized as follows: Section 2 gives back-
ground knowledge and Section 3 surveys related work. We
discuss the system model in Section 4, propose the ELD
mechanism in Section 5, and present performance evaluation
in Section 6. Finally, a conclusion is drawn in Section 7.

2 BACKGROUND KNOWLEDGE

2.1 Protocol-based DDoS Attacks

There are three typical types of protocol-based DDoS at-
tacks. A TCP SYN flood attack spoils the three-way handshake
mechanism in TCP [10]. When two hosts want to set up a
TCP connection, the source first sends an SYN packet and
the destination then replies an SYN-ACK (acknowledgement)
packet. Afterward, the source sends an ACK packet to finish
the handshake procedure. However, an attacker can send lots
of SYN packets to a victim with spoofed IP addresses. In this
case, the victim replies many SYN-ACK packets and uses a
TCP port for each connection. Expectably, there will be no ACK
packets sent from these sources, as they may be fabricated or
those compromised devices that are not aware of generating
the attack. However, the victim has to keep its TCP ports
open until timeout. Since the victim is busy replying SYN-
ACK packets and may use up its TCP ports, its service will be
eventually disrupted.

In a UDP flood attack, numerous UDP requests (possibly
with spoofed IP addresses) are forwarded to a victim [11]. The
UDP ports of these requests could be random or dedicated.
When the victim gets a UDP request, it checks whether the
corresponding UDP port is open (i.e., the victim provides
the UDP service). If not, the victim replies an ICMP packet
to notify the source. Inevitably, the victim has to do lots
of computation to handle UDP requests, and its link to the
network will be congested with many ICMP packets.

An ICMP flood attack is usually accomplished by the ping
service [12]. The attacker transmits lots of ping requests to
other devices in the network whose source addresses are the
victim’s IP address. In this case, these devices return a great
deal of ping replies to the victim and exhaust its bandwidth
accordingly. Alternatively, the attacker keeps sending many
ping requests with spoofed IP addresses to the victim. Thus,
the victim will be fully occupied answering ping replies. Such
attacks can be also realized by other ICMP services such as
echo.

2.2 Elephant Flows and Impulse Flows

Generally speaking, elephant flows carry volumes of data and
last for a long time. They are usually produced for bulk data
transfer, for example, migration of virtual machines or system
backup [9]. Elephant flows are popular in some networks such
as data center networks. In fact, Lin et al. [13] point out that
nearly 90% of data bytes in these networks are contributed
by elephant flows, but they account for just 1% of total flows.
Thus, the sources of elephant flows are concentrated (i.e., there
are fewer sources to generate such flows). On the other hand,
impulse flows also possess many data but last for a short time
[4]. They could be generated when many users provisionally
query resources from servers, such as watching video chips
or downloading files. Unlike elephant flows, the sources of
impulse flows may be more diverse.

Both elephant flows and impulse flows will produce lots of
packets (in different time spans) and substantially consume
a server’s bandwidth, making them behave similarly with
DDoS attacks [14]. However, they are completely legitimate
and normal flows. Consequently, we should distinguish these
flows from DDoS ones to avoid blocking them when stopping
DDoS attacks.

2.3 SDN and OpenFlow

The traditional network architecture makes both control and
data planes be tightly coupled in every switch. Therefore,
switches decide how to process and route packets on their
own. Nevertheless, this design complicates network manage-
ment, because administrators have to configure switches one
by one when new policies are applied to the network. SDN
simplifies network management by decoupling the two planes,
where the control plane is put in a central controller, whereas
the data plane is distributed among switches. In this way, the
whole network is in the grasp of the controller, and adminis-
trators can write programs in the controller to easily configure
and command switches [15].

The OpenFlow protocol is a popular SDN implementation,
which is regulated by the open networking foundation (ONF).
OpenFlow provides an application program interface for com-
munications between the controller and switches. In particular,
each switch maintains flow tables composed of flow entries. A
flow entry has match fields to tell the switch whether a packet
meets certain conditions. If so, the switch follows the entry’s
instructions to process that packet. The controller can set up
a TLS (transport layer security) connection with each switch,
and install new entries in its flow table or remove old ones.
Thus, the switch’s behavior will be changed accordingly.

3 RELATED WORK

There have been a number of approaches proposed to defend
against DDoS attacks. Below, we discuss the approaches used
in traditional networks, followed by SDN-based approaches.

3.1 Traditional Approaches

Intrusion detection systems are widely used to discover
anomalous activities and policy violations in a network [16].
They can be placed on the entrance to a subnet where firewalls
are located to analyze inbound and outbound traffics, so as to
check whether the behavior of some flows match with known
attacks. For example, Pengfule et al. [17] regularly measure the

EFFICIENT AND LOW-COST DEFENSE AGAINST DISTRIBUTED DENIAL-OF-SERVICE ATTACKS IN SDN-BASED NETWORKS 3

number of SYN packets and the statistics of flows. If there are
too many SYN packets (as compared with total flows), it is
viewed as a TCP SYN flood attack, so subsequent SYN packets
are blocked by the firewall. However, this approach incurs a
high false-alarm ratio when there exist elephant flows, because
they occupy most of the network bandwidth, making the ratio
of SYN packets to total flows exceed the threshold.

IP traceback is one popular mechanism to find out the
sources of DDoS and IP spoofing attacks [18]. There are three
common approaches to carry out IP traceback: link testing,
logging, and ICMP traceback. Beginning from the victim, the
link testing approach [19] traces packets link by link upstream,
which can eventually reach the source of an attack. Neverthe-
less, it involves the cooperation of multiple Internet service
providers to support link testing. The logging approach [20]
asks each router to store information of passing packets (e.g.,
IP addresses and packet counts). In case of attacks, the victim
can use this information for investigation. However, routers
spend much memory space to store packet information and
also large computational power to process packets for logging.
In the ICMP traceback approach [21], each router sends ICMP
packets to its previous-hop and next-hop routers with a prob-
ability to verify IP addresses of passing packets. Thus, it helps
the victim identify the path of a DDoS attack. However, more
ICMP packets will be produced when the path becomes longer,
which consumes more bandwidth and congests the network.

To overcome TCP SYN flood attacks, one past solution is to
shorten the timeout of SYN packets [22]. It enables the victim
to fast discard those semi-connections generated by an attack.
Another solution is to associate each connection with one SYN
cookie [23]. If the victim gets multiple SYN packets from the
same source in a short time, they are treated as parts of an
attack and dropped accordingly. However, these two solutions
will fail when the attacker sends lots of SYN packets with
different IP addresses (e.g., generating random IP addresses
by SOCK RAW).

Checking IP validness of packets also helps defend against
UDP flood attacks. One representative is unicast reverse-path
forwarding [24]. When a router receives one packet, it checks
whether there exists a reverse path back to the source by
consulting the routing table. If not, the packet may be forged
by an attacker, and the packet will be dropped accordingly.
By considering the discontinuity of IP addresses, Xu et al. [25]
propose a negative selection algorithm based on the concept
of eigenvalue set to find out fake IP addresses. However, the
above approaches rely on routers to verify every packet, which
inevitably burdens them with heavy loads.

3.2 SDN-based Approaches

Rengaraju et al. [26] implement an intrusion prevention system
(IPS) on software-defined clouds (e.g., IBM SmartCloud [27])
to conquer TCP SYN and ICMP flood attacks. Each switch
uses the IPS module to monitor traffic flows and reports to
the controller. Then, the firewall installed in the controller
checks the signatures of every flow, including flow size, packet
length, and TCP flags, for recognizing attacks. However, large-
sized elephant flows are not considered, which may increase
the incidence of false alarms. Besides, some signatures like
packet length can be easily falsified by an attacker, resulting
in misjudgement.

SLICOTS [28] is a lightweight countermeasure for TCP SYN
flood attacks based on SDN. Once detecting potential attacks,

the controller adds a flow entry to each corresponding switch
to drop malicious SYN packets, whose Short Hard TimeOut
field is set to T seconds (e.g., T = 3). In other words, this
flow entry will be removed by the switch after T seconds. The
advantage of SLICOTS is that the controller need not take care
of the removal of flow entries. However, if the duration of an
attack is much longer than T seconds, the controller has to
repeatedly detect the attack and install the same flow entries,
which wastes its computational resources.

For UDP flood attacks, one feature is that the number of
UDP responses will be much larger than that of UDP requests
[29]. Based on this observation, Mutu et al. [30] use the SDN
controller to measure the ratio of UDP packets sent to a target
server to total packets. If the ratio exceeds a threshold, an
attack may be happening. However, how to block the packets
generated by attacks to stop them is not addressed. In the
work [31], the controller periodically queries each switch for
the number of UDP packets passing through its ports. If a
port has more received packets than transmitted packets, it
infers that the destinations of some transmitted packets do not
exist in the network. In this case, the controller asks the switch
discarding these packets. However, an elephant flow usually
has many received packets but just few transmitted packets.
Such normal flows will be also blocked by this approach.

Yu et al. [32] develop an SDN-based DDoS detection and
response platform for vehicular networks. The proposed plat-
form estimates the frequency of sending Packet In messages
to the controller. Once the frequency overtakes the predefined
threshold, a feature extraction strategy is used to analyze
the entropy of flow tables, IP addresses, and flow counts to
determine whether a DDoS attack is happening. Nevertheless,
they do not consider the impact of elephant flows and impulse
flows. In addition, how to efficiently store the information of
flows for feature extraction is not discussed.

In SDNScore [33], each switch adopts eight tables to
record packet signatures: source IP address, destination IP
address, source port, destination port, protocol type, packet
size, time-to-live value, and TCP flags. To establish the rela-
tionship between any two signatures, the controller maintains

Ĉ(8, 2) = 28 tables, where Ĉ(·, ·) denotes the function of
combinations. When attacks occur, the controller grades each
packet (by the 28 tables) to decide whether to send or drop the
packet. Although SDNScore provides a sophisticated defense
method against DDoS attacks, the controller and switches have
to spend much memory space to keep the above tables. Be-
sides, the controller will be unavoidably busy grading packets
during the occurrence of an attack.

As compared with the prior work, our paper aims to
provide a low-cost defense solution against DDoS attacks
with fewer false alarms when there exist elephant flows and
impulse flows in the network. Furthermore, we also propose
an efficient data storage scheme to help the controller store
necessary packet information in its limited memory. These
designs distinguish our paper from the prior work.

4 SYSTEM MODEL

Fig. 1 presents a schematic diagram for DDoS attacks and their
defenses by SDN. Specifically, let us consider a target network
composed of hosts and OpenFlow switches. A controller takes
charge of managing the target network. Each OpenFlow switch
notifies the controller of its status (e.g., the amount of data
passed through its ports) by using Packet In messages. On

4 INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS

...
Victim

...

...

...
...Target network

10.0.0.0/24

Exterior network

11.0.0.0/24

Exterior network

12.0.0.0/24

Exterior network

13.0.0.0/24

Legend

Controller

OpenFlow

switch

OpenFlow

message

Normal

host

Botnet

member

Fig. 1: Schematic diagram for DDoS attacks and their defenses by SDN.

TABLE 1: Summary of notations.
Notations Definitions
Φ The set of all ports of the switches in the target network
favg Average flow size
ri The record to store information of a packet pi
n The number of records that can be stored in the memory
t The current time
Rx The set of records for a port ϕx ∈ Φ

Gi Group of records in Rx whose source IP addresses are ai
Vx IP variability of the records in Rx

δ Threshold on Vx to check if the IP variability is high
c A counter used in the impulse flow checking module
β The initial value of counter c

the other hand, the controller can give instructions to an
OpenFlow switch by sending it a Packet Out message that
contains flow entries to be installed (or removed).

An attacker will pick some hosts in the target network
as victims and manipulate a botnet to send lots of DDoS
packets to the selected victims at any time. Each member of
the botnet is a host that has been compromised by the attacker,
possibly through computer viruses or Trojan horses. These
botnet members may reside in exterior networks or could be
even hosts in the target network, as illustrated in Fig. 1.

Some interior hosts (i.e., in the target network) and exterior
hosts (i.e., outside the target network) would produce normal
and legitimate flows whose destinations are also the victims,
including ordinary flows, elephant flows, and impulse flows.
Since the members of the botnet may be unknown and could
dynamically change, our problem asks how to quickly detect
DDoS attacks and stop them, such that not only the controller’s
overhead (in computation and SDN messages) is reduced but
also false alarms (caused by elephant flows and impulse flows)
can be minimized. Table 1 summarizes the notations used in
the paper.

5 THE PROPOSED ELD MECHANISM

As discussed earlier, a DDoS attack is usually accompanied by
lots of packets with various source IP addresses. Moreover, it
would last for a relatively long time in order to disrupt the
victim’s service. Consequently, three principles are adopted in
the ELD mechanism for the identification of DDoS attacks:

• Principle 1: Is the amount of traffics (i.e., flow size) too
large?

• Principle 2: Is the variability of source IP addresses too
high?

• Principle 3: Is the duration of the above situation too
long?

Generally speaking, principle 1 is applied to check whether
potential network congestion occurs, which may be a prelude
of DDoS attacks. On the other hand, principles 2 and 3 are used

Start

IP variability

estimating module

(Principle 2)

Yes

High variability

Impulse flow

checking module

(Principle 3)

False

True

Decision:

DDoS attack

Decision:

impulse flow

Decision:

elephant flow

Decision:

ordinary flow
No

Low

variability

Flow size > favg?

(Principle 1)

DDoS attack

stopping module

Fig. 2: Flowchart of the ELD mechanism.

Algorithm 1 The ELD mechanism

1: for each port ϕx ∈ Φ do
2: Let fx be the flow size of ϕx;
3: if fx > favg then
4: if IVE(ϕx) = high then
5: if IFC(ϕx) = false then
6: Call DAS(ϕx) to stop attacks;
7: end if
8: end if
9: end if

10: end for

to distinguish between elephant/impulse flows and DDoS
ones. When the checking conditions of these three principles
are all satisfied, there is a high possibility that an attack is
happening. In this case, the controller should take actions to
stop the attack by installing flow rules in OpenFlow switches.
Obviously, the controller needs to record the information of
packets to make decisions on whether DDoS attacks occur by
the above principles. However, since it has limited memory
space, we thus develop a data storage scheme to help the
controller efficiently perform its task.

Fig. 2 presents the flowchart of the ELD mechanism. Specif-
ically, each switch keeps monitoring the amount of traffics sent
through every port, which is known as the flow size. When the
flow size of a port goes beyond the average value favg in the
network (i.e., principle 1), the switch notifies the controller of
this incident. After that, the controller invokes the IP variability
estimating module to assess the variability of source IP addresses
for that port (i.e., principle 2). If the IP variability is low, the
controller judges that this is a safe case of elephant flows.
Otherwise, the controller further uses the impulse flow checking
module to determine whether this is a safe case of impulse flows
(i.e, principle 3). Once the module’s check cannot be passed
(i.e., returning false), the controller infers that a DDoS attack
is happening. In this case, the controller executes the DDoS
attack stopping module to ask the switch dropping malicious
packets, and then recovers the switch’s setting after the attack
terminates.

Based on the flowchart in Fig. 2, we present the pseudocode
of our ELD mechanism in Algorithm 1. Let Φ denote the
set of all ports of the switches in the target network. The

EFFICIENT AND LOW-COST DEFENSE AGAINST DISTRIBUTED DENIAL-OF-SERVICE ATTACKS IN SDN-BASED NETWORKS 5

Memory

Time

. . .

Record

t1t −

.

3t −7t −2
2 1
n

t
−− +1

2 1
n

t
−− +

1234n -1n

20

21222n -2

rtrt-1rt-3rt-7rt-2 +1
n-2rt-2 +1

n-1

Store

(a) Ideal case

Time

t 1 2 4 8 16

t+1 2 3 5 9 17

rt rt-1 rt-3 rt-7 rt-15

t+2 2 3 4 6 10

t+3 2 3 5 7 11

2 3 6 8 12

2 3 4 9 13

2 3 5 10 14

t+4

t+5

t+6

2 3 6 11 15

2 3 4 12 16

2 3 4 5 13

t+7

t+8

t+9 1

New record

Discarded record

Replacement

1

1

1

1

1

1

1

1

(b) Practical example

Fig. 3: The original RES scheme.

controller keeps monitoring each port in Φ and examines if any
port ϕx meets the checking conditions of the three principles.
Specifically, the code in line 3 shows the checking condition
of principle 1. The checking condition of principle 2 is indi-
cated in line 4, where the IVE(ϕx) procedure in Algorithm 2
will conduct the IP variability estimating module. Then, the
checking condition of principle 3 is given in line 5, where the
IFC(ϕx) procedure in Algorithm 3 will perform the impulse
flow checking module. Once the three if-conditions in lines 3–
5 are all satisfied, a DDoS attack is likely happening. Thus, the
DAS(ϕx) procedure in Algorithm 4 is called to carry out the
DDoS attack stopping module.

Below, we first propose our data storage scheme, then
elaborate on the design of each module, and finally make a
discussion on the ELD mechanism.

5.1 Data Storage Scheme

The controller takes down IP data for each port ϕx ∈ Φ.
Specifically, for every packet pi sent via port ϕx, a three-
tuple record ri = (ti, ai, wi) is produced, where ti is the time
when pi was sent, ai is the source IP address of pi, and wi

is the IP protocol number. Each switch can produce records
and keep them in the local memory, and periodically send a
batch of records to the controller for the sake of efficiency.
To find out DDoS attacks, the controller has to store a long
history of records as reference. Besides, more records of recent
packets should be also available. Since the memory space of
the controller is limited, these two objectives may conflict with
each other. To conquer the dilemma, we borrow the notion of
the reverse-exponential storage (RES) scheme [34].

Suppose that at most n records can be kept in the memory
and the current time is t. RES seeks to store historical records
at timestamps with intervals in an exponentially incremental
order from t. In an ideal case, RES stores records rt, rt−1,
rt−3, · · · , and rt−2n−1+1, as shown in Fig. 3(a). Thus, the
controller has records long time ago with different resolutions.
In practical implementation, when time moves to t+1, the site
for rt is given to rt+1, and the site for rt−1 is given to rt. Then,
the site for each rt−2τ+1, 2 ≤ τ ≤ n− 1, is given to the record
whose original timestamp is closest to t−2τ +1. An exception
is rt−2n−1+1, where the records with timestamps older than
t − 2n−1 + 1 are discarded. Fig. 3(b) gives an example, where
each number indicates the real age of a record at each time
instance. Suppose that the memory has historical records with
ages 1, 2, 4, 8, and 16 in sites rt, rt−1, rt−3, rt−7, and rt−15

at time t, respectively. When time moves to t + 1, the age of
each stored record is added by one. Thus, the records with ages
1, 2, 3, 5, and 9 are kept. However, the record with age 17 is
discarded because it is too old. Fig. 3(b) shows the results from
time t to t+ 9. Theorem 1 then discusses the property of RES.

Theorem 1. Given a memory with n records, the timestamp
gap between an actual record and its ideal case is no larger
than 2n−2 in RES, where n ≥ 2.

Proof: Observing from Fig. 3(b), the sites for rt and rt−1

are given to records rt+1 and rt when time moves to t + 1,
respectively, so the records kept in both sites rt and rt−1 must
be correct. For each of other sites rt−2τ+1, τ = 2, · · · , n−1, the
actual record rα stored in that site will meet the condition of
|α− (t− 2τ +1)| ≤ 2τ−1, because the original record stored in
site rt−2τ−1+1 will eventually move to site rt−2τ+1. Since τ ≤
n − 1, the maximum timestamp gap is thus 2(n−1)−1 = 2n−2.

However, RES was originally designed for those devices
with very little memory space (e.g., small sensors). When n
becomes large, there will be more outdated records kept in
the memory. These records are too old as compared with the
lifespan of a DDoS attack. Thus, RES cannot be directly applied
to data storage for the controller, since many stored records are
pretty old and actually useless.

To solve this problem, we tailor RES to practical needs by
a nested RES (NRES) idea, as illustrated in Fig. 4(a). Similar
to RES, NRES also stores records rt, rt−1, rt−3, · · · , and
rt−2m−1+1, where m < n. For ease of presentation, let us set
rt, rt−1, rt−3, · · · , and rt−2m−1+1 as the first records of columns
1, 2, 3, · · · , and m, respectively. For each pair of columns τ
and τ + 1, they can store additional (τ − 1)/2 records. In
particular, if m is odd, we have τ = 1, 3, · · · ,m − 2 and
column m can also store extra (m − 1)/2 records. Otherwise,
we have τ = 1, 3, · · · ,m − 1. Then, we follow the rule of
RES to store records in each column. Specifically, records
rt−2τ−1+1, rt−2τ−1+1−1, rt−2τ−1+1−3, · · · , rt−2τ−1+1−(2k−1−1),
and rt−2τ−1+1−(2k−1) will be stored in column τ , where

k =
⌊

τ−1
2

⌋

. Fig. 4(a) presents an ideal case of our proposed
NRES scheme.

The remaining issue is how to decide the value of m, which
depends on the size n (in records) of the memory. In particular,
we find the smallest odd value of m that satisfies the following
inequality:

m− 1

2
×

⌊

m− 2

2

⌋

+
3m− 1

2
≥ n. (1)

6 INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS

. . .

1

20

21

2k -1

rt-2 +1
m-2rt-2 +1 rt-31

m-2rt-2 +1-(2 -1)
k

m-2rt-2 +1-(2 -1)
k-1

rt-2 +1-1
m-2

rt-2 +1-3
m-2

. . .

m-1

rt-31-1

rt-31-3

rt-15

rt-15-1

rt-15-3

rt-7

rt-7-1

rt-3

rt-3-1

rt-1 rt

23456m-1m

. . .

k

. . .

rt-2 +1-1
m-1

rt-2 +1-3
m-1

rt-2 +1-(2 -1)

rt-2 +1-(2 -1)

m-1

m-1 k-1

k

(a) Ideal case, where k =
⌊

m−1
2

⌋

Time

t 1 2 4 5 8

t+1 2 3 5 6 9

rt rt-1 rt-3 rt-4 rt-7

t+2 2 3 4 6 7

t+3 2 3 5 7 8

2 3 4 6 8

2 3 4 5 7

2 3 5 6 8

t+4

t+5

t+6

2 3 6 7 9

2 3 4 7 8

2 3 4 5 9

t+7

t+8

t+9 1

1

1

1

1

1

1

1

1 10 17 18 20 33

10 11 18 19 21

11 12 19 20 22

9 12 13 21 23

9 10 13 14 24

10 11 14 15 25

11 12 15 16 26

10 13 16 17 27

11 14 17 18 28

rt-8 rt-15 rt-16 rt-18 rt-31

9 16 17 19 32

(b) Practical example

Fig. 4: Our proposed NRES scheme.

Let mo be the answer in Eq. (1). Afterward, we also find the
smallest even value of m to satisfy the following inequality:

m

2
×

⌊

m− 1

2

⌋

+m ≥ n. (2)

Similarly, let me be the answer in Eq. (2). Then, the final value
of m is determined by

m = min{mo,me}. (3)

Theorem 2 proves the correctness of our selection for the value
of m. Next, Theorem 3 gives an analysis on the timestamp of
the oldest record stored by the NRES scheme.

Theorem 2. Suppose that at most n records can be kept in the
memory. Then, Eq. (3) must hold in the NRES scheme.

Proof: Observing from Fig. 4(a), NRES adds one more
record for each pair of columns in sequence. Therefore, the
number of records in each pair of columns will form an arith-
metic progression. Suppose that m is odd. Then, the maximum
number of records stored in the memory can be calculated by
(

2×
m−1
2 ×

(

1 +
⌊

m−2
2

⌋

+ 1
)

2

)

+

(

m− 1

2
+ 1

)

≥ n. (4)

In Eq. (4), the first term gives the total number of records stored
in columns 1, 2, · · · , and m− 1, and the second term indicates
the maximum number of records stored in column m. Since the
oldest record must locate in column m (but may not necessarily
be the last record of this column in the ideal case), the sum of
these two terms will be no smaller than n. By doing some
algebraic operations, Eq. (4) can be simplified to Eq. (1). On
the other hand, if m is even, the maximum number of records
stored in the memory will be computed by

2×
m
2 ×

(

1 +
⌊

m−1
2

⌋

+ 1
)

2
≥ n. (5)

Similarly, Eq. (5) can be simplified to Eq. (2). Evidently, the
value of m should be the minimum answer that satisfies both
Eqs. (1) and (2), which verifies this theorem.

Theorem 3. Let t be the current time. Then, the timestamp of the
oldest record kept in the memory by NRES is t − 2m−1 +
1 −

(

2ε−1 − 1
)

, where ε = n − m−1
2 ×

(⌊

m−2
2

⌋

+ 2
)

if m
is odd, or ε = n − m−2

2 ×
(⌊

m−3
2

⌋

+ 2⌋
)

−
(⌊

m−1
2

⌋

+ 1⌋
)

otherwise.

Proof: Due to the storage structure of NRES, the oldest
record must reside in column m, which implies that each of

EFFICIENT AND LOW-COST DEFENSE AGAINST DISTRIBUTED DENIAL-OF-SERVICE ATTACKS IN SDN-BASED NETWORKS 7

columns 1 to m− 1 can fully store its records. If m is odd, the
number of records stored in the first (m−1) columns is m−1

2 ×
(⌊

m−2
2

⌋

+ 2
)

, so there remains ε = n − m−1
2 ×

(⌊

m−2
2

⌋

+ 2
)

records in column m. On the other hand, when m is even,
the number of records stored in the first (m − 2) columns is
m−2
2 ×

(⌊

m−3
2

⌋

+ 2
)

. Besides, the number of records stored
in column m − 1 is

(⌊

m−1
2

⌋

+ 1⌋
)

. Therefore, there are ε =
n−m−2

2 ×
(⌊

m−3
2

⌋

+ 2⌋
)

−
(⌊

m−1
2

⌋

+ 1⌋
)

records left in column
m. Observing from Fig. 4(a), the ε-th record stored in column
m has timestamp of t− 2m−1 +1−

(

2ε−1 − 1
)

, so the theorem
is proven.

Fig. 4(b) gives an example, where n = 10. By Eqs. (1) and
(2), we have mo = 7 and me = 6, so m is 6. According
to Theorem 3, the timestamp of the oldest record will be
t−26−1+1−

(

2ε−1 − 1
)

, where ε = 10− 6−2
2 ×

(⌊

6−3
2

⌋

+ 2⌋
)

−
(⌊

6−1
2

⌋

+ 1⌋
)

= 1. Thus, the timestamp is t − 31. Suppose
that the memory has historical records with ages 1, 2, 4, 5,
8, 9, 16, 17, 19, and 32 in sites rt, rt−1, rt−3, rt−4, rt−7, rt−8,
rt−15, rt−16, rt−18, and rt−31 at time t, respectively. When time
moves to t+ 1, the age of each stored record is added by one.
Thus, the records with ages 1, 2, 3, 5, 6, 9, 10, 17, 18, and 20
are kept. The record with age 33 is discarded since it is too
old. Fig. 4(b) shows the results from t to t+ 9. We remark that
the original RES scheme will keep records with ages 1, 2, 4, 8,
16, 32, 64, 128, 256, and 1024, where many outdated records
are left in the memory. Compared with RES, our NRES scheme
can store much more recent (and informative) records, which
better utilizes the controller’s memory space.

5.2 IP Variability Estimating Module

When a DDoS attack is under way, there would be a large
number of packets with different source IP addresses flooded
into a victim. Therefore, high IP variability of packets can be
considered a symptom of attacks (i.e., principle 2).

LetRx be the set of records kept in the controller’s memory
for a port ϕx ∈ Φ. Besides, let Gi denote the group of records
in Rx whose source IP addresses are ai. The condition of Gi ∩
Gj = ∅ must hold for ai 6= aj , where the notation ‘∩’ denotes
the operator of intersection, because each record has only one
source IP address. On the other hand, we have

⋃

∀ai
Gi = Rx,

where the notation ‘
⋃

’ denotes the operator of union, which
means that all Gi groups comprise the set Rx. Assume that all
records in Rx are divided into NG groups. The IP variability
for port ϕx is then defined by

Vx =
NG

|Rx|
× 100%, (6)

where |Rx| is the number of records in Rx. For example,
suppose that Rx has five records whose source IP addresses
are 10.0.0.1, 10.0.0.2, 10.0.0.2, 10.0.0.3, and 10.0.0.3. Obviously,
all records in Rx can be divided into three groups, so the IP
variability Vx is thus 3

5 × 100% = 60%.
From Eq. (6), a larger Vx value implicitly implies that each

group Gi contains fewer records. According to Theorem 3, the
NRES scheme lets the controller keep records of packets sent
within a fixed period (i.e., from time t−2m−1+1−

(

2ε−1 − 1
)

to
time t). In other words, the host connecting to port ϕx receives
packets from more sources, where each source sends just few
packets. In this case, there is a high possibility of attacks to
the host. Based on this observation, the controller adopts a
threshold δ to judge whether the IP variability is too high.
In case of Vx > δ, the controller further checks whether this

Algorithm 2 IP Variability Estimating (IVE) Module

1: procedure IVE(ϕx)
2: for each record ri ∈ Rx do
3: if the source IP address of ri is ai then
4: add ri to group Gi;
5: end if
6: end for
7: NG ← 0;
8: for each group Gi ⊆ Rx do
9: NG ← NG + 1;

10: end for
11: Vx ←

NG

|Rx|
× 100%;

12: if Vx > δ then
13: return high;
14: else
15: return low;
16: end if
17: end procedure

Start

Flow size > favg?

Yes

Flow size > 2favg?

Return false

(i.e., not passed)

No

Yes

c = c - 1

c = 0?

Reset c to β

No

Yes

Check in the

next slot

No

Fig. 5: The flowchart to check impulse flows in a slot.

incident (i.e., high IP variability) is caused by impulse flows
or DDoS attacks by the impulse flow checking module in
Section 5.3. Otherwise, the controller infers that the packets of
elephant flows are currently sent to the host (i.e., a safe case),
as shown in Fig. 2.

Algorithm 2 gives the pseudocode of the IP variability
estimating module, where the only parameter is the port to
be checked (i.e., ϕx). In lines 2–6, we divide the records in Rx

into groups based on their source IP addresses. Then, the code
in lines 7–10 calculates the number NG of groups in Rx. By
finding the IP variability Vx for port ϕx in line 11, the module
can return either high or low depending on whether Vx > δ or
not, respectively, as shown in lines 12–16.

It is conceivable that the threshold δ decides the accuracy
of attack recognition. In particular, a too large δ value impedes
the controller to rapidly recognize DDoS attacks, forcing the
victim to keep receiving lots of malicious packets. On the con-
trary, a too small δ value leads the controller to treat the packets
of some normal connections (e.g., elephant flows) as parts of
an attack, thereby causing many false alarms and erroneously
blocking their packets. In Section 6.3, we will make a further
discussion on the effect of δ, where it is suggested to set δ
between 80% and 90%.

5.3 Impulse Flow Checking Module

As discussed in Section 2.2, impulse flows usually possess
three signatures: 1) carrying large amount of data, 2) orig-
inating from many sources, and 3) lasting for a relatively

8 INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS

Algorithm 3 Impulse Flow Checking (IFC) Module

1: procedure IFC(ϕx)
2: Let fx,y be the flow size for port ϕx at slot y;
3: y ← 1; c← β;
4: while y ≤ Tobs do
5: if fx,y > 2favg then
6: return false;
7: end if
8: if fx,y > favg then
9: c← c− 1;

10: if c = 0 then
11: return false;
12: end if
13: else
14: c← β;
15: end if
16: y ← y + 1;
17: end while
18: return true;
19: end procedure

short time. Therefore, if the flow size is large (i.e., overtaking
favg) and the IP variability is also high, the controller should
determine whether this flow is impulse or DDoS (i.e., principle
3). To do so, the controller monitors the flow size for a number
Tobs of slots, namely the observing period. If the flow size
keeps larger than favg for β consecutive slots, the controller
infers that an attack is happening. Otherwise, the check by
this module is passed after the observing period ends, and the
controller infers that this incident is caused by impulse flows
(i.e., a safe case).

Fig. 5 shows the flowchart to check impulse flows in each
slot. Specifically, the controller uses a counter c to do the check,
whose initial value is β. In case that the flow size exceeds 2favg,
which implicitly implies that the victim is being overwhelmed
with lots of packets (whose IP variability is large), there is a
high possibility that an attack is launching. Thus, the module
returns false (i.e., not passed), and the controller need not do
the check in the next slot. Otherwise, the controller decreases
counter c by one if the flow size overtakes favg, or resets
counter c to the default value (i.e., β). When counter c is
either positive or reset to β, the controller does the check in
the next slot. Otherwise (i.e., counter c reaches to zero), the
module returns false. The above procedure is repeated, until
the observing period finishes. In this case, the module returns
true (i.e., passed).

Algorithm 3 presents the pseudocode of the impulse flow
checking module, where the counter c is initially set to β in
line 3. The code in lines 5–7 corresponds to the left part of the
flowchart in Fig. 5, while the code in lines 8–15 implements
the right part of the flowchart. The while-loop will be repeated
until y exceeds Tobs (i.e., we have checked all slots in the
observing period). In this case, the impulse flow checking
module will return true in line 18, which means that the check
is passed.

Fig. 6 gives two examples, where β is set to 2. A gray slot
means that the flow size is between favg and 2favg, while a
white slot means that the flow size is below favg. In Fig. 6(a),
since slots 1 and 4 are not consecutive, they are viewed as
impulse flows and the module will return true after slot 5. On
the other hand, counter c reaches zero at slot 2 in Fig. 6(b), so

1 2 3 4 5Slot

Counter c 1 2 12 2

Return true

(a) Case of “passed”

1 2 3 4 5Slot

Counter c 1 0

Return false

Skipped

(b) Case of “not passed”

Fig. 6: Two examples to illustrate how the impulse flow checking module
works.

TABLE 2: The meaning of each bit in the “tcp flags” field.
Bits Meanings
0–5 Original TCP flags defined in RFC 793 [35]
6–8 Extra TCP flags defined in RFC 3168 and 3540 [36], [37]
9–11 Reserved bits not yet standardized by IETF
12–15 Set to zero

the module directly returns false at slot 2, and residual slots
are skipped accordingly.

It is worth noting that a short-term and low-volume (STLV)
DDoS attack whose duration is shorter than β slots and flow
size is below 2favg will be passed by the module’s check. How-
ever, STLV attacks have insignificant impact on network per-
formance, because they produce not many packets and soon
disappear. Thus, we do not distinguish them from impulse
flows, since doing so will raise the controller’s computational
cost with just little benefit. Instead, the controller can record
the detection of impulse flows (possibly with STLV attacks) in
the log for the administrator’s reference. In Section 6.3, we will
discuss how to choose the default value β for counter c.

5.4 DDoS Attack Stopping Module

Based on the flowchart in Fig. 2, if the flow size is large,
the IP variability is high, and the duration is also long, then
there is a high possibility that the victim is being attacked
by DDoS packets. According to the records in its memory,
the controller can analyze the attack’s type. Specifically, the
IP protocol numbers for TCP, UDP, and ICMP flows are 6,
17, and 1, respectively. If a great deal of records have one
certain protocol number (e.g., the percentage of such records is
larger than 25%), they are treated as parts of the corresponding
attack.

Suppose that the IP address of the victim (linked to port ϕx)
is av . Depending on the type, the controller installs a flow rule
in the corresponding switch to ask it discarding DDoS packets
as follows:

• Flow rule for TCP SYN flood:
eth type=0x0800, ip proto=6, tcp flags=2, ipv4 dst=av

• Flow rule for UDP flood:
eth type=0x0800, ip proto=17, ipv4 dst=av

• Flow rule for ICMP flood:
eth type=0x0800, ip proto=1, ipv4 dst=av

In particular, the term “eth type=0x0800” means to handle
IPv4 packets. When IPv6 is used, we can set the “eth type”
field to 0x86DD and replace the “ipv4 dst” field with the
“ipv6 dst” field. Based on the OpenFlow switch specification
worked out by ONF [38], the “tcp flags” field is used to match
the flag bits in a TCP header. The length of this field is 2
bytes, and Table 2 gives the meaning of each bit, where bit
0 is the least significant bit. Thus, we add the condition of
“tcp flags=2” for TCP SYN flood, as it means to consider only

EFFICIENT AND LOW-COST DEFENSE AGAINST DISTRIBUTED DENIAL-OF-SERVICE ATTACKS IN SDN-BASED NETWORKS 9

Algorithm 4 DDoS Attack Stopping (DAS) Module

1: procedure DAS(ϕx)
2: NTCP ← 0; NUDP ← 0; NICMP ← 0;
3: for each record ri ∈ Rx do
4: if wi = 6 then
5: NTCP ← NTCP + 1;
6: else if wi = 17 then
7: NUDP ← NUDP + 1;
8: else if wi = 1 then
9: NICMP ← NICMP + 1;

10: end if
11: end for
12: if NTCP/|Rx| ≥ 25% then
13: install the flow rule for TCP SYN flood;
14: end if
15: if NUDP/|Rx| ≥ 25% then
16: install the flow rule for UDP flood;
17: end if
18: if NICMP/|Rx| ≥ 25% then
19: install the flow rule for ICMP flood;
20: end if
21: end procedure

SYN packets. Then, the packets satisfying the installed rule
will be blocked by the switch to stop attacks.

Algorithm 4 then presents the pseudocode of the DDoS
attack stopping module. The code in lines 2 to 11 gathers
statistics for each type of packets recorded in Rx, where wi is
the IP protocol number of a record ri ∈ Rx. Then, if a certain
type of packets occupies more than one quarter of records in
Rx, which means that the corresponding DDoS attack is likely
happening, the controller then installs the necessary flow rule
to stop the attack. This code is given in lines 12–20.

Evidently, the flow rule should be removed once the attack
terminates, or new (normal) connections will be also blocked
by the switch even if there is no attack. Some studies [28] sets
a constant timeout to let the switch remove flow rules after the
timeout expires. However, since the duration of attacks is not
fixed, the controller may have to repeatedly install the same
rule. Moreover, the victim would be still attacked by DDoS
packets after timeout (but before the controller installs the
rule again). Consequently, instead of using the fixed timeout
mechanism, the controller will refer to the amount of residual
DDoS traffics to make the decision (i.e., removing flow rules)
in our design.

To do so, the switch reports to the controller the amount of
traffics blocked by the installed rule. If it falls below a threshold
(e.g., 5% of total traffics sent via the switch’s port), there is
a good possibility that the attack terminates. However, some
attacks may be repetitively launched, last for a short time, and
then disappear. In this case, the controller will encounter the
same problem arisen in the above timeout mechanism. To ad-
dress this issue, we borrow the notion of second chance, which
is used in the entry replacement for database systems [39] or
main memory [40]. In particular, only when the switch reports
that the amount of blocked traffics is below the threshold (i.e.,
the safe case) for two successive slots, will the controller ask
it to remove the flow rule. Like the design in Fig. 5, it can be
implemented by using a counter. Initially, the counter is set to
two. If the switch reports that the situation is safe, the counter
is deducted by one. Otherwise, the counter is reset to two.

When the counter becomes zero, the controller infers that the
attack terminates and thus asks the switch to remove its flow
rules.

5.5 Discussion

One common protocol-based DDoS attack usually produces a
mass of packets, originates from many sources (possibly with
counterfeit IP addresses), and lasts for a relatively long period.
Thus, the flow size, IP variability, and duration will be three
important indicators to recognize attacks. In ELD, we first
check whether the flow size of a port ϕx overtakes the average
value favg. If so, there may be either attacks or elephant
flows. In this case, the IP variability will be a good index
to distinguish between them, since elephant flows originate
from much fewer sources as compared with DDoS attacks.
However, if the IP variability estimating module reports that
the variability is pretty high (i.e., exceeding the threshold δ),
we refer to both the flow size and duration to distinguish
between dangerous DDoS attacks and safe impulse flows. In
particular, impulse flows have a flow size smaller than 2favg
and a duration shorter than β slots. In other words, they
soon disappear and will not send too many packets to the
victim. In this case, even though they are possibly launched by
attackers, these impulse flows (or called STLV attacks) will not
significantly degrade the victim’s performance. As mentioned
in Section 5.3, we can ask the controller to simply record this
event in a log to reduce its computational cost. Finally, once
the controller finds out a suspicious DDoS attack by ELD, it
consults the stored records of IP information to find out the
attack’s type and then installs the corresponding flow rule in
the switch to discard following packets sent by the attacker. To
prevent the controller from repetitively installing flow rules for
the same attack, we adopt a second-chance idea. Only when
the switch reports a safe situation for two consecutive slots,
will the flow rule be removed. In this way, we can reduce the
message overhead for the controller on installing flow rules.
The above designs of ELD help the controller fast identify
DDoS attacks and stop them with a low cost.

6 PERFORMANCE EVALUATION

The Mininet simulator [41] is used to evaluate the performance
of our proposed ELD mechanism. To achieve the functionality
of SDN in Mininet, switches are implemented by the Open
vSwitch module [42] to support the OpenFlow protocol, and
the iPerf tool [43] is adopted to generate practical traffic flows
in the network. Moreover, the controller is carried out by the
Ryu framework [44] due to two reasons. First, Ryu provides
many software components with well-defined application pro-
gram interfaces (and also extensive documentation), which
facilitates program development for the controller. Second,
Ryu fully supports all versions of OpenFlow, which includes
version 1.5 as of our simulations.

Fig. 1 presents the network topology, where the target net-
work is located in the subnet of 10.0.0.0/24 (in other words, the
IP addresses of its hosts are between 10.0.0.0 and 10.0.0.255).
There are also three exterior networks located in the subnets
of 11.0.0.0/24, 12.0.0.0/24, and 13.0.0.0/24, with which some
switches of the target network are connected. Each exterior
network contains 150 hosts. In the target network, there are
five OpenFlow switches, each linking with 30 hosts. An at-
tacker picks one host in the target network as the victim and

10 INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS

manipulates a botnet of 256 members to send DDoS packets to
that host. Around 10% of botnet members reside in the target
network and others are distributed over the three exterior
networks. Both the controller and the victim are not aware
of the distribution of botnet members.

Following the traffic patterns in the work [14], each DDoS
flow produces 10000 to 15000 packets per second and lasts
for 10 to 20 seconds by default. On the other hand, a normal
host transmits 2000 packets every second on the average.
A few normal hosts are selected to generate elephant flows
and impulse flows, whose destinations are the victim. Each
elephant flow behaves similarly with a DDoS flow (in terms
of data volume and duration). An impulse flow produces 3000
to 6000 packets in every second and lasts for 2 to 5 seconds.
Neither the victim nor the controller has the knowledge of the
above settings. The simulation time is set to 1000 seconds.

Below, we measure both the performance and overhead
of each SDN-based approach, followed by the comparison of
memory utilization between different data storage schemes.
After that, we evaluate the effect of parameters in ELD.

6.1 Comparison on Performance and Overhead

Since the proposed ELD mechanism works on the basis of
the SDN technique, we compare it with two DDoS coun-
termeasures also based on SDN, namely SLICOTS [28] and
SDNScore [33]. As discussed in Section 3.2, SLICOTS is a
lightweight approach which sets a constant timeout T for
each flow rule. Thus, a rule will be spontaneously removed
by the switch after T seconds. In SLICOTS, we set T to 3 (the
default value mentioned in the study [28]), 5, and 10 seconds to
observe its effect. On the other hand, SDNScore is a much more
sophisticated approach by checking eight features of packets.
There are 28 tables built in SDNScore to help the controller
grade every packet, so as to decide whether to send or drop
the packet. Evidently, SLICOTS aims to reduce the message
overhead of the controller while SDNScore seeks to improve
the accuracy on attack recognition. By comparing both of them,
we can demonstrate how our ELD mechanism strikes a good
balance between performance and overhead on DDoS defense.
In ELD, we set δ to 80% and β to 2, and the length of each slot
is 3 seconds.

Fig. 7 gives the true positive rate of each approach, which is
defined by the ratio of the successfully blocked DDoS packets
to the total DDoS packets produced by an attack. In this
experiment, there are 30 DDoS attacks launched, including 10
TCP SYN flood, 10 UDP flood, and 10 ICMP flood attacks. The
interval between two adjacent attacks is set to [15, 20] seconds.
The attack rate is increased from 9000 to 24000 packets per
second. Generally speaking, the true positive rate of each ap-
proach decreases when the attack rate increases, as the attacker
sends more packets to the victim within the same attacking
period (i.e., 10–20 seconds). The true positive rate of SLICOTS
is significantly improved by extending the timeout from 3 to
5 seconds. The reason is that the switch will not block DDoS
packets after removing the flow rule and before the controller
reinstalling it. Thus, a longer timeout helps SLICOTS increase
its true positive rate. However, even though we increase the
timeout to 10 seconds, SLICOTS can block at most 73.6%
of DDoS packets. On the other hand, SDNScore considers
more features of packets and also their relationship, so it
can substantially increase the true positive rate as compared
with SLICOTS. Our ELD mechanism recognizes DDoS attacks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

9000 12000 15000 18000 21000 24000

Attack rate (packets/second)

T
ru

e
 p

o
s
it
iv

e
 r

a
te

SLICOTS (3) SLICOTS (5)

SLICOTS (10) SDNScore

ELD

(a) TCP SYN flood

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

9000 12000 15000 18000 21000 24000

Attack rate (packets/second)

T
ru

e
 p

o
s
it
iv

e
 r

a
te

SLICOTS (3) SLICOTS (5)

SLICOTS (10) SDNScore

ELD

(b) UDP flood

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

9000 12000 15000 18000 21000 24000

Attack rate (packets/second)

T
ru

e
 p

o
s
it
iv

e
 r

a
te

SLICOTS (3) SLICOTS (5)

SLICOTS (10) SDNScore

ELD

(c) ICMP flood

Fig. 7: Comparison on the true positive rate.

based on flow size, IP variability, and duration. In contrast
with SDNScore, it refers to much fewer features. However,
ELD can still perform as well as SDNScore, which verifies its
effectiveness on attack detection and reaction.

Fig. 8 compares the false positive rate of SLICOTS, SDNScore,
and ELD, which is defined by the ratio of the blocked packets
of elephant flows and impulse flows to the total packets
that they produce. In the experiment, there are 10 elephant
flows and 10 impulse flows generated. Since both SLICOTS
and SDNScore do not discriminate between elephant/impulse
flows and DDoS ones, they will result in many false alarms. In
particular, SLICOTS blocks more than 91% and 70% of packets
of elephant flows and impulse flows, respectively. SDNScore

EFFICIENT AND LOW-COST DEFENSE AGAINST DISTRIBUTED DENIAL-OF-SERVICE ATTACKS IN SDN-BASED NETWORKS 11

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

9000 12000 15000 18000 21000 24000

Attack rate (packets/second)

F
a

ls
e

 p
o

s
it
iv

e
 r

a
te

SLICOTS (3) SLICOTS (5)

SLICOTS (10) SDNScore

ELD

(a) Elephant flows

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

9000 12000 15000 18000 21000 24000

Attack rate (packets/second)

F
a
ls

e
 p

o
s
it
iv

e
 r

a
te

SLICOTS (3) SLICOTS (5)

SLICOTS (10) SDNScore

ELD

(b) Impulse flows

Fig. 8: Comparison on the false positive rate.

blocks more than 89% and 68% of packets of elephant flows
and impulse flows, respectively. Since elephant flows originate
from just few sources, it is easy for ELD to distinguish them
from DDoS attacks by referring to the IP variability, so ELD
blocks almost no packets of elephant flows (i.e., zero false
alarm). On the other hand, when the attack rate is small, a
few impulse flows may behave similar to DDoS flows (i.e.,
producing too many packets). In this case, they would be
treated as DDoS ones and thereby blocked by ELD. However,
such false alarms can be eliminated in ELD by increasing the
attack rate, as shown in Fig. 8(b).

By considering 30 DDoS attacks, 10 elephant flows, and 10
impulse flows as in the previous two experiments, we then
use a receiver operating characteristic (ROC) chart in terms of
both false positive rate and true positive rate to compare the
accuracy of each approach. In this experiment, each DDoS flow
produces 10000 to 15000 packets per second. Fig. 9 presents the
ROC chart, where the diagonal line indicates the random guess
line. When the result of an approach is closer to the upper
left corner, it means that the approach has higher accuracy.
For SLICOTS, increasing the timeout T helps improve its
accuracy. However, the effect of improvement is insignificant
by increasing T from 5 to 10 seconds, which shows the limit
of SLICOTS. On the other hand, the result of SDNScore lies
close to the random guess line, which implies that the accuracy
of SDNScore is slightly higher than 50%. The result of our
ELD mechanism shows the best predictive power among all
approaches, where it not only keeps a high positive rate (for
correctly recognizing DDoS attacks) but also has a lower false

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Worse

Better

ELD
SDNScore

SLICOT (3)

SLICOT (5)

SLICOT (10)

Fig. 9: The ROC chart.

TABLE 3: Comparison on the number of installed flow rules (with 95%
confidence).

Approaches Installed rules
SLICOTS (3) 161± 0.116
SLICOTS (5) 101± 0.069
SLICOTS (10) 57.3± 0.031
SDNScore 60± 0

ELD 30± 0

positive rate (for distinguishing elephant/impulse flows from
attacks).

Next, we measure the number of flow rules installed by the
controller to defend against DDoS attacks. In the experiment,
there are 30 attacks launched in sequence, each with a duration
of [10, 20] seconds. When an attack terminates, the next attack
will be launched after 15 to 20 seconds. Table 3 gives the
average number of flow rules installed, where we repeat the
simulation for 10000 times and the confidence level is set to
95%. Obviously, the more flow rules are installed, the higher
message overhead will be incurred by the controller. Recall
that SLICOTS sets a constant timeout (i.e., T seconds) for
each installed rule. Let DA

i be the duration of the i-th attack.
Then, the total number of flow rules installed in SLICOTS
is calculated by

∑30
i=1⌈D

A

i /T ⌉. Expectably, a shorter timeout
leads the controller to install flow rules more frequently, as
each rule will be soon removed by the switch. On the other
hand, SDNScore decides whether to drop or forward each
packet by consulting its tables. Thus, the controller needs to
install two flow rules for every attack. That is why the number
of flow rules installed in SDNScore is the double of the number
of attacks. As discussed in Section 5.4, our ELD mechanism
installs just one flow rule to drop the packets generated by
each attack. The controller will remove the rule only when it
finds that the attack terminates (by the second-chance method).
Thus, the number of flow rules installed in ELD will be equal
to the number of attacks, which results in the lowest message
overhead. In particular, ELD can save 81.4%, 70.3%, 47.6%, and
50.0% of flow rules to be installed, as compared with SLICOTS
(3), SLICOTS (5), SLICOTS (10), and SDNScore, respectively.

After that, we evaluate the computational cost of the con-
troller (in terms of the number of operations) to detect and stop
DDoS attacks. Let Ntotal be the total number of packets. For
SLICOTS, it records four features of each packet (i.e., source
IP address, destination IP address, source port, destination
port), which requires 4Ntotal operations to conduct feature

12 INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS

TABLE 4: Comparison on the computational cost of the controller.
Approaches Feature extraction Attack identification Extra actions Total costs
SLICOTS 4 features/packet 4 operations/check None 400,080
SDNScore 8 features/packet 28 operations/packet 1 operation/packet 3,700,000
ELD 1 feature/packet 3 operations/check 1 operation/check 100,080

extraction of packets. Suppose that SLICOTS checks whether
an attack occurs every Ncheck packets on the average. Then,
it takes at most 4⌈Ntotal/Ncheck⌉ operations to perform attack
identification [28]. Thus, the total number of operations used
in SLICOTS will be

NSLICOTS = 4Ntotal + 4⌈Ntotal/Ncheck⌉. (7)

As discussed in Section 3.2, SDNScore extracts eight features
from each packet. To find out an attack, SDNScore will refer
to 28 tables to grade every packet. Moreover, it has to decide
whether to drop or send the packet. Therefore, the total num-
ber of operations required in SDNScore is estimated by

NSDNScore = 8Ntotal + 28Ntotal +Ntotal = 37Ntotal. (8)

In ELD, it records only the source IP address of each packet.
Like SLICOTS, ELD also checks if an attack occurs every Ncheck

packets. Based on the flowchart in Fig. 2, there are three oper-
ations involved to perform attack identification (i.e., checking
flow size, IP variability estimating module, and impulse flow
checking module). Besides, the controller will check whether
to remove flow rules every Ncheck packets after it finds out an
attack (and installs flow rules to stop the attack). Consequently,
the total number of operations taken in ELD is measured by

NELD = Ntotal + 3⌈Ntotal/Ncheck⌉+ ⌈Ntotal/Ncheck⌉

= Ntotal + 4⌈Ntotal/Ncheck⌉. (9)

Table 4 compares the computational cost spent by the con-
troller in these three approaches, where we set Ntotal = 100000
and Ncheck = 5000. In particular, SLICOTS and SDNScore have
around 4 and 37 times of the number of required operations
than ELD, which shows that ELD can greatly reduce the
controller’s overhead in computation.

6.2 Comparison on Memory Utilization

As discussed in Section 5.1, the previous RES scheme [34] will
store many outdated records when the memory space becomes
large. Thus, the NRES scheme is developed to conquer the
problem. In this section, we study their memory utilization.
Except for RES, two additional data storage schemes are also
considered for comparison:

• Sequential (SEQ) storage scheme: SEQ stores records just
like a FIFO (first-in, first-out) queue.

• Fibonacci (FIB) storage scheme: FIB stores records based
on a Fibonacci sequence, where F0 = 0, F1 = 1, and
Fk = Fk−1 + Fk−2 for any k > 1. In an ideal case, FIB
will keep records with ages 1, 2, 3, 5, 8, 13, 21, 34, 55,
89, 144, and so on.

Table 5 lists the oldest record (in age) that can be kept by
each data storage scheme, where the maximum number of
records stored in the memory is increased from 4 to 40. For
SEQ, the age of the oldest record is linear with the memory
size, which means that it cannot store records long time ago. At
the other extreme, the oldest records in RES and FIB have very
large ages. This phenomenon implies that both RES and FIB

TABLE 5: The oldest records kept by different data storage schemes.
Space SEQ RES FIB NRES

4 4 8 5 5
8 8 128 34 17

12 12 2,048 233 34
16 16 32,768 1,597 67
20 20 524,288 10,946 131
24 24 8,388,608 75,025 259
28 28 134,217,728 514,229 1,026
32 32 2,147,483,648 3,524,578 2,049
36 36 34,359,738,368 24,157,817 2,053
40 40 549,755,813,888 165,580,141 4,099

0

10

20

30

40

50

60

70

80

90

100

4 8 12 16 20 24 28 32 36 40

Memory space (record)

A
tt
a

c
k
-s

p
a

n
c
o

v
e

ri
n

g
ra

ti
o

(%
)

SEQ

RES

FIB

NRES

(a) Attack-span covering ratio

0

10

20

30

40

50

60

70

80

90

100

4 8 12 16 20 24 28 32 36 40
Memory space (record)

P
e

rc
e

n
ta

g
e

 o
f
to

o
 o

ld
 r

e
c
o

rd
s
 (

%
)

SEQ

RES

FIB

NRES

(b) Percentage of too old records

Fig. 10: Comparison on memory utilization.

will keep too old (i.e., useless) records when the memory space
is relatively large. Compared with these schemes, the age-
growing speed of the oldest record in NRES is reasonable, so
it can keep enough historical records while removing useless
records.

Fig. 10 compares the memory utilization of SEQ, RES, FIB,
and NRES in terms of recording DDoS packets, where the
attack produces 10000 packets. In particular, Fig. 10(a) gives
the attack-span covering ratio, which is defined as follows:

largest age of records within attack’s lifespan

the number of packets produced by the attack
× 100%. (10)

For example, if at most 16 records can be stored in the memory,
RES ideally keeps records with ages 1, 2, 4, · · · , 8192, 16384,

EFFICIENT AND LOW-COST DEFENSE AGAINST DISTRIBUTED DENIAL-OF-SERVICE ATTACKS IN SDN-BASED NETWORKS 13

and 32768. Thus, the largest age of records within the attack’s
lifespan is 8192, and the attack-span covering ratio is 81.92%.
Since each scheme must store the record with age 1, a higher
ratio means that the scheme has a broader view of the attack.
Based on the experimental data in Fig. 10(a), the ratio of SEQ
is pretty close to zero, which means that SEQ is only able to
store very recent records and thus has a quite narrow view of
the attack. On the contrary, both SEQ and RES have evidently
higher ratios, which implies that they can keep records in the
early stage of the attack, thereby expanding their views of the
attack. The attack-span covering ratio of NRES significantly
grows as the memory space is enlarged (especially when the
memory can store more than 24 records), so it also has a much
broader view than SEQ.

On the other hand, Fig. 10(b) shows the percentage of
too old records, which is defined by the percentage of the
records whose timestamps are earlier than the beginning of
the attack. When the memory can store more than 16 records,
both RES and FIB start keeping too old records, and their
percentages grow very fast as the memory’s size increases. This
phenomenon implies that RES and FIB actually store much
fewer records for DDoS packets than other schemes. In this
case, they will substantially decrease the resolution of view for
the attack.

From the result in Fig. 10, our NRES scheme has a much
higher attack-span covering ratio than SEQ, and will not
store too old records as compared with both RES and FIB.
Therefore, NRES can provide a broad and high-resolution view
of potential attacks, which facilitates the recognition of DDoS
packets for the controller.

6.3 Effect of Parameters in ELD

Finally, we investigate the effect of parameters δ and β on
ELD’s performance. Specifically, when the IP variability Vx

in Eq. (6) overtakes the threshold δ, the controller infers that
there is a high possibility of attacks to the victim. To find an
appropriate value for δ, three experiments are conducted as
follows:

• Experiment 1: Totally 30 non-overlapped DDoS attacks
are launched during 1000 seconds, where the interval
between two adjacent attacks is set to [15, 20] sec-
onds. Each attack produces [10000, 15000] packets every
second and has lifespan of [10, 20] seconds. In this
experiment, we evaluate the true positive rate.

• Experiment 2: There is no DDoS attack in the 1000-
second simulation. Each host generates one ordinary
flow which produces [1500, 2000] packets per second.
We measure the false positive rate of these flows, which
is defined by the ratio of the blocked packets to their
produced packets.

• Experiment 3: It is a combination of both experiments
1 and 2 (i.e., DDoS and ordinary flows coexist). In
the experiment, we observe the false positive rate of
ordinary flows after each attack.

Fig. 11 presents the experimental data, where the value
of δ is varied from 0% to 100%. In experiment 1, since a
DDoS attack usually originates from multiple sources, a lower
δ value can help the controller find out more packets of the
attack. Therefore, the true positive rate is kept in 0.9 when δ
is increased from 0% to 80%. However, because DDoS packets
could be also produced from the same sources, some of them

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90 100

Parameter δ (%)

R
a

te
s

Exp1: True positive rate

Exp2: False positive rate of
ordinary flows

Exp3: False positive rate of
ordinary flows after attacks

Fig. 11: Effect of parameter δ on the true positive rate and the false positive
rate.

0

10

20

30

40

50

60

70

80

90

100

T
�
�

 1

U
�
�

 1

I�
�
�

 1

T
�
�

 2

U
�
�

 2

I�
�
�

 2
T
�
�

 3
U
�
�

 3
I�
�
�

 3

T
�
�

U
�
�

I�
�
�

T
�
�

 5

U
�
�

 5

I�
�
�

 5

T
�
�

 6

U
�
�

 6

I�
�
�

 6

T
�
�

 7

U
�
�

 7

I�
�
�

 7

T
�
�

 8

U
�
�

 8

I�
�
�

 8

T
�
�

 9

U
�
�

 9

I�
�
�

 9

T
�
�

1
0

U
�
�

1
0

I�
�
�
�
�

Attacks

N
�
�
�	
l�

�
��

�a
��
�
��
�

Fig. 12: Non-blocking ratios of attacks by setting β = 1.

may be thus mistaken for normal packets when δ is set to too
large. That is why the true positive rate drops when δ is larger
than 80%.

In experiment 2, a smaller δ value contrarily leads to a
higher false positive rate. In particular, when δ is below 40%,
the false positive rate is kept in 0.8. The reason is that there
are a number of hosts generating these ordinary flows, which
raises their IP variability. As δ increases, some low-volume
flows will be ignored by the controller (so their packets will not
be blocked), thereby reducing the false positive rate. When δ
overtakes 70%, the controller can recognize all ordinary flows,
so there will be no false alarm accordingly.

Similarly, a smaller δ value also keeps a higher false pos-
itive rate in experiment 3. Since DDoS and ordinary flows
coexist, the controller has to raise the value of δ to distinguish
between them. As can be seen from Fig. 11, the controller can
eliminate false alarms when δ ≥ 80%. Based on the results
of these three experiments, we suggest setting threshold δ in
[80%, 90%] to increase the true positive rate and decrease the
false positive rate.

On the other hand, parameter β is used in the impulse
flow checking module (referring to Section 5.3). In particular,
when the flow size keeps above the average value favg for
β consecutive slots, the controller infers that a DDoS attack
may be happening. Otherwise, it could be an impulse flow.
To find a suitable value of β, we also launch 30 DDoS attacks
as in experiment 1 and measure the non-blocking ratio, which is
defined by the ratio of the packets not blocked by the controller
to the total packets produced by an attack. Fig. 12 gives the
experimental data by setting β = 1, where “TCP i”, “UDP i”,

14 INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS

and “ICMP i”, i = 1..10, denote the i-th TCP SYN flood, UDP
flood, and ICMP flood attacks, respectively. It can be observed
that some attacks still have pretty high non-blocking ratios.
However, when β is set to two (or larger), the controller can
recognize each attack and block its packets accordingly. Here,
we omit the result of β = 2 because all attacks have zero
non-blocking ratios. Since parameter β should be set as small
as possible to prevent the controller from checking too many
slots, a better value of β will be thus 2 in this experiment.

7 CONCLUSION

DDoS attacks compel victim servers to be unable to provide
services to legitimate users by overwhelming victims with lots
of requests. They would also greatly degrade SDN’s perfor-
mance, because the controller has to deal with many connec-
tions generated by the attacks. Thus, this paper develops a
lightweight but efficient ELD mechanism to defend against
protocol-based DDoS attacks, whose objective is to reduce the
controller’s overhead to fast recognize attacks and stop them
in time. Since the memory space is limited, we propose an
NRES data storage scheme in ELD to help the controller record
more recent packets while keeping a few ancient packets for
reference, so as to offer a broad and high-resolution view of
attacks. By checking the signatures of flow size, IP variability,
and duration, ELD differentiates normal flows from DDoS
ones, thereby avoiding dropping the packets of elephant flows
and impulse flows. Simulation results show that ELD increases
the true positive rate, substantially decreases false alarms, and
significantly reduces the controller’s overhead, as compared
with both SLICOTS and SDNScore. Moreover, our proposed
NRES scheme outperforms other data storage schemes in
terms of memory utilization, which helps the controller store
packets’ information and detect DDoS attacks more efficiently.

REFERENCES

[1] N. Hoque, D.K. Bhattacharyya, and J.K. Kalita, “Botnet in DDoS
attacks: trends and challenges,” IEEE Comm. Surveys & Tutorials, vol.
17, no. 4, pp. 2242–2270, 2015.

[2] Z. Trabelsi, S. Zeidan, and K. Hayawi, “Denial of firewalling attacks
(DoF): the case study of the emerging BlackNurse attack,” IEEE
Access, vol. 7, pp. 61596–61609, 2019.

[3] D. Kreutz, F.M.V. Ramos, P.E. Verissimo, C.E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: a comprehensive
survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[4] Y.C. Wang and S.Y. You, “An efficient route management framework
for load balance and overhead reduction in SDN-based data center
networks,” IEEE Trans. Network and Service Management, vol. 15, no.
4, pp. 1422–1434, 2018.

[5] T. Zhu, D. Feng, F. Wang, Y. Hua, Q. Shi, J. Liu, Y. Cheng, and Y.
Wan, “Efficient anonymous communication in SDN-based data center
networks,” IEEE/ACM Trans. Networking, vol. 25, no. 6, pp. 3767–3780,
2017.

[6] J.H. Cox, R. Clark, and H. Owen, “Leveraging SDN and WebRTC
for rogue access point security,” IEEE Trans. Network and Service
Management, vol. 14, no. 3, pp. 756–770, 2017.

[7] Y.C. Wang and H. Hu, “An adaptive broadcast and multicast traffic
cutting framework to improve Ethernet efficiency by SDN,” J. Infor-
mation Science and Engineering, vol. 35, no. 2, pp. 375–392, 2019.

[8] P. Dong, X. Du, H. Zhang, and T. Xu, “A detection method for a novel
DDoS attack against SDN controllers by vast new low-traffic flows,”
Prof. IEEE Int’l Conf. Comm., 2016, pp. 1–6.

[9] W. Wang, Y. Sun, K. Salamatian, and Z. Li, “Adaptive path isolation
for elephant and mice flows by exploiting path diversity in datacen-
ters,” IEEE Trans. Network and Service Management, vol. 13, no. 1, pp.
5–18, 2016.

[10] M. Bogdanoski, T. Shuminoskiand, and A. Risteski, “Analysis of the
SYN flood DoS attack,” Int’l J. Computer Network and Information
Security, vol. 8, pp. 1–11, 2013.

[11] K. Treseangrat, S.S. Kolahi, and B. Sarrafpour, “Analysis of UDP
DDoS cyber flood attack and defense mechanisms on Windows
Server 2012 and Linux Ubuntu 13,” Proc. IEEE Int’l Conf. Computer,
Information and Telecomm. Systems, 2015, pp. 1–5.

[12] P. Harshita and R. Nayyar, “Detection of ICMP flood DDoS attack,”
Int’l J. Computer Science Trends and Technology, vol. 5, no. 2, pp. 199–
205, 2017.

[13] C.Y. Lin, C. Chen, J.W. Chang, and Y.H. Chu, “Elephant flow detection
in datacenters using OpenFlow-based hierarchical statistics pulling,”
Proc. IEEE Global Comm. Con., 2014, pp. 2264–2269.

[14] S.K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: flexible and
elastic DDoS defense,” Prof. USENIX Security Symposium, 2015, pp.
817–832.

[15] Y.C. Wang and H. Hu, “A Low-cost, high-efficiency SDN framework
to diminish redundant ARP and IGMP traffics in large-scale LANs,”
Prof. IEEE Computer Software and Applications Conf., 2018, pp. 894–903.

[16] P. Skrobanek, Intrusion Detection Systems. London: IntechOpen, 2011.
[17] D. Pengfule, T. Zhihong, Z. Hongli, W. Yong, Z. Liang, and G.

Sanchuan, “Detection and defense of SYN flood attacks based on
dual stack network firewall,” Prof. IEEE Int’l Conf. Data Science in
Cyberspace, 2016, pp. 526–531.

[18] G. Yao, J. Bi, and A.V. Vasilakos, “Passive IP traceback: disclosing
the locations of IP spoofers from path backscatter,” IEEE Trans.
Information Forensics and Security, vol. 10, no. 3, pp. 471–484, 2015.

[19] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical net-
work support for IP traceback,” ACM SIGCOMM Computer Comm.
Review, vol. 30, no. 4, pp. 295–306, 2000.

[20] C. Gong and K. Sarac, “A more practical approach for single-packet
IP traceback using packet logging and marking,” IEEE Trans. Parallel
and Distributed Systems, vol. 19, no. 10, pp. 1310–1324, 2008.

[21] A. Izaddoost, M. Othman, and M.F.A. Rasid, “Accurate ICMP trace-
back model under DoS/DDoS attack,” Proc. Int’l Conf. Advanced
Computing and Comm., 2007, pp. 441–446.

[22] B. Al-Duwairi and G. Manimaran, “Intentional dropping: a novel
scheme for SYN flooding mitigation,” Proc. IEEE INFOCOM, 2005,
pp. 2820–2824.

[23] B. Hang and R. Hu, “A novel SYN cookie method for TCP layer DDoS
attack,” Proc. Int’l Conf. Future BioMedical Information Engineering,
2009, pp. 445–448.

[24] Understanding unicast reverse path forwarding. [Online].
Available: https://www.cisco.com/c/en/us/about/security-center/
unicast-reverse-path-forwarding.html

[25] R. Xu, W. L. Ma, and W. L. Zheng, “Defending against UDP flooding
by negative selection algorithm based on eigenvalue sets,” Proc. Int’l
Conf. Information Assurance and Security, 2009, pp. 342–345.

[26] P. Rengaraju, V.R. Ramanan, and C.H. Lung, “Detection and preven-
tion of DoS attacks in software-defined cloud networks,” Proc. IEEE
Conf. Dependable and Secure Computing, 2017, pp. 217–223.

[27] P. Iannucci and M. Gupta, IBM SmartCloud: building a cloud enabled
data center. Endicott: IBM Redbooks, 2013.

[28] R. Mohammadi, R. Javidan, and M. Conti, “SLICOTS: an SDN-based
lightweight countermeasure for TCP SYN flooding attacks,” IEEE
Trans. Network and Service Management, vol. 14, no. 2, pp. 487–97, 2017.

[29] UDP-based amplification attacks. [Online]. Available: https://www.
us-cert.gov/ncas/alerts/TA14-017A

[30] L. Mutu, R. Saleh, and A. Matrawy, “Improved SDN responsiveness
to UDP flood attacks,” Proc. IEEE Conf. Comm. and Network Security,
2015, pp. 715–716.

[31] H.C. Wei, Y.H. Tung, and C.M. Yu, “Counteracting UDP flooding
attacks in SDN,” Proc. IEEE Conf. Network Softwarization, 2016, pp.
367–371.

[32] Y. Yu, L. Guo, Y. Liu, J. Zheng, and Y. Zong, “An efficient SDN-based
DDoS attack detection and rapid response platform in vehicular
networks,” IEEE Access, vol. 6, pp. 44570–44579, 2018.

[33] K. Kalkan, G. Gur, and F. Alagoz, “SDNScore: a statistical defense
mechanism against DDoS attacks in SDN environment,” Proc. IEEE
Symp. Computers and Comm., 2017, pp. 669–675.

[34] Y.C. Wang, Y.Y. Hsieh, and Y.C. Tseng, “Multiresolution spatial and
temporal coding in a wireless sensor network for long-term monitor-
ing applications,” IEEE Trans. Computers, vol. 58, no. 6, pp. 827–838,
2009.

[35] Transmission Control Protocol. [Online]. Available: https://tools.ietf.
org/html/rfc793

[36] The Addition of Explicit Congestion Notification (ECN) to IP. [On-
line]. Available: https://tools.ietf.org/html/rfc3168

[37] Robust Explicit Congestion Notification (ECN) Signaling with
Nonces. [Online]. Available: https://tools.ietf.org/html/rfc3540

[38] OpenFlow. [Online]. Available: https://www.opennetworking.org/
wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf

EFFICIENT AND LOW-COST DEFENSE AGAINST DISTRIBUTED DENIAL-OF-SERVICE ATTACKS IN SDN-BASED NETWORKS 15

[39] C.C. Lo and K.L. Sue, “Second chance replacement policy for mobile
database overflow,” Proc. IEEE Global Telecomm. Conf., 2002, pp. 1683–
1687.

[40] A. Silberschatz, P.B. Galvin, and G. Gagne, Operating System Concepts.
Hoboken: Wiley, 2008.

[41] Mininet. [Online]. Available: http://mininet.org/
[42] Open vSwitch. [Online]. Available: https://www.openvswitch.org/
[43] iPerf. [Online]. Available: https://iperf.fr/
[44] Ryu. [Online]. Available: https://osrg.github.io/ryu/

