
PERVASIVE AND MOBILE COMPUTING 1

Efficient Dispatch of Mobile Sensors in a WSN
with Wireless Chargers

You-Chiun Wang and Jiun-Wen Huang

Abstract—Hybrid wireless sensor networks (WSNs) contain static and mobile sensors to support various applications. Static sensors

monitor environment to find where events occur. Mobile sensors (MSs) move to event locations (ELs) to do advanced analysis. Since MSs

are powered by batteries, how to dispatch them to visit ELs in an energy-efficient manner is critical. Moreover, as the technology of wireless

chargers (WCs) is mature, it is feasible to use WCs to replenish energy of MSs during their working time. The paper addresses the

multi-round sensor dispatch problem in a hybrid WSN with WCs, whose goal is to schedule the paths of MSs to visit ELs and WCs in each

round, such that their lifetime is maximized. The problem is NP-hard and we propose a group-based mobile sensor dispatch (G-MSD)

algorithm, which clusters ELs into groups by their positions. G-MSD dispatches MSs to visit each group of ELs to save and balance their

moving energy costs. Besides, it schedules MSs to call at WCs to recharge batteries on demand. Simulation results verify that the G-MSD

algorithm greatly extends lifetime of MSs, as comparing with other methods.

Index Terms—load balance, mobile sensor, path planning, wireless charger, wireless sensor network.

✦

1 INTRODUCTION

A wireless sensor network (WSN) is made up of a large num-
ber of sensors with capabilities of sensing, computation,

and communication. They are deployed in a region of interest
to collect environmental information, and report sensing data
to a remote sink. Due to their context-aware monitoring ability,
WSNs promote the development of IoT (Internet of things)
[1], where appliances, devices, or vehicles can organize a
network for people to access their data by equipping with
sensors. Today, WSNs have been widely used in a variety of
applications, from precision agriculture [2] to smart shopping
[3], structural detection [4], and pollutant monitoring [5].

As robots and vehicles are mature technologies, it is prac-
tical to implement mobile sensors (MSs) by installing sensors
on these platforms [6]. Introducing mobility to sensors can
overcome difficulties incurred by static WSNs. First, since
sensors are often randomly deployed, there may be some
coverage holes without any sensor in the sensing field. When
sensors are broken or drained of energy, they leave more holes.
Thus, we can eliminate these holes by moving MSs to cover
them [7]. Second, it is infeasible to vary the mission of a
static WSN without adding new nodes. However, this problem
can be simply solved by using MSs. Third, some applications
require sophisticated sensors to detect certain events, but it is
uneconomic to deploy a lot of such sensors. In this case, we
can deploy cheap static sensors to provide basic monitoring of
the environment, while use sophisticated MSs to move in the
sensing field to support different missions [8].

This paper investigates the problem of dispatching MSs to
analyze events occurring in a hybrid WSN. Static sensors form
a backbone to find out where events appear and report them
to the sink. MSs are dispatched to visit event locations (ELs)
to perform in-depth analysis. Since events may occur anytime
and anywhere, it is inefficient to dispatch an MS right after the
occurrence of an event. Thus, we divide time into rounds and

The authors are with the Department of Computer Science and Engineer-
ing, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan. Email:
ycwang@cse.nsysu.edu.tw; m043040051@student.nsysu.edu.tw.

schedule the movement of MSs in a round-by-round fashion.
Since MSs are powered by small batteries and the energy
spent on movement dominates their energy consumption [9],
we aim at the issues of path efficiency and load balance of
MSs. Specifically, our goal is to maximize system lifetime of
the hybrid WSN, which is defined by the number of rounds
until some ELs cannot be visited by any MS due to exhaustion
of energy.

Moreover, wireless charging allows a power source to
transmit electromagnetic energy to electrical devices, so there
is no need to use cords to connect the power source and de-
vices. There are three popular techniques of wireless charging
[10], including inductive coupling, magnetic resonance cou-
pling, and radio frequency radiation. Recently, wireless chargers
(WCs) are popularly used to recharge the batteries of sensors
to prolong their usage time [11], [12]. It motivates us to adopt
WCs to help extend system lifetime by adaptively replenishing
energy of MSs.

Given a few static WCs, this paper formulates a multi-round
sensor dispatch problem in a hybrid WSN, which asks how to
efficiently schedule the paths of MSs to visit ELs and WCs
in each round, such that system lifetime is maximized. The
problem is NP-hard, so we propose a group-based mobile sensor
dispatch (G-MSD) algorithm. Our idea is to divide ELs into
groups based on their positions, where ELs close to each other
are grouped together. Then, MSs are dispatched to visit each
group of ELs with the objectives of reducing moving paths and
balancing their energy consumption. Besides, MSs will take
time out from their dispatching jobs to recharge batteries by
moving to the positions of WCs on their ways to visit ELs.
Through simulations, we show that our G-MSD algorithm can
significantly extend system lifetime.

We outline this paper as follows: Section 2 discusses related
work and Section 3 gives system model. Section 4 formulates
our problem. Then, we propose the G-MSD algorithm in
Section 5, followed by its performance evaluation in Section 6.
Finally, Section 7 concludes this paper.

2 PERVASIVE AND MOBILE COMPUTING

2 RELATED WORK

2.1 Mobility Management in Multi-robot Systems

In robotics, it attracts considerable attention to make multiple
robots collaborate to carry out certain tasks such as predator
avoidance [13] and trajectory tracking [14]. To do so, robots
should be trained to learn the mappings between their statuses
and actions, and different strategies like Q-learning [15] and
neural network [16] are proposed. Although these studies
involve in mobility management of robots, they have different
objectives with our work.

Task assignment is also critical in multi-robot systems. Each
task gives some target sites to be visited by robots, and the goal
is to minimize their costs (e.g., reducing moving distances)
[17]. This NP-hard problem can be solved by auction-based
methods [18], where each robot submits a bid (e.g., its distance
to reach a target site) to contest the task. Then, the robot
which gives the best bid can take the task. The work [19] uses
combinatorial auctions, where the auction of a task has multiple
items and each robot can bid on the combination of these items.
There are some similarities between the task assignment prob-
lem and our sensor dispatch problem. However, the auction-
based methods select a robot with the best bid to visit a target
site. Some robots may take more tasks and fast exhaust energy.
On the contrary, our G-MSD algorithm aims to balance energy
consumption of MSs to prolong their lifetime.

2.2 Mobility Management in Mobile WSNs

A number of studies use MSs to track objects. For example, [20]
moves MSs to improve the monitoring quality of a tracking
object, on the premise that MSs will not be disconnected or
reduce their coverage due to movement. Tan et al. [21] use a
WSN to look for an object, and ask MSs with higher signal-
to-noise ratios to move close to the object to provide in-depth
detection. In [22], MSs have two roles: leaders and followers. A
leader finds out the object in the sensing field, while followers
keep connectivity among sensors. Obviously, they cope with
different problems with ours.

How to move MSs to adjust WSN topology is also critical,
as the distribution of sensors has great impact on its detection
ability [23]. The study [24] views MSs as electric charges, so
they can exert forces to make themselves be evenly distributed
over the sensing field. The work [25] finds the sites to place
sensors to fully cover the sensing field, and uses a weighted
bipartite graph to decide which MSs should move to these
sites. The result is extended to multi-level coverage by [26], and
MSs compete to move to target sites in a distributed manner.
The work [27] finds coverage holes by a Voronoi diagram,
and moves MSs to cover holes. These studies consider saving
energy of MSs on movement, but they seek to optimize the
result in only one round.

2.3 Sensor Dispatch in Hybrid WSNs

A few sensor dispatch problems are proposed for hybrid
WSNs. In [28], static sensors notify nearby MSs of event
occurrence and ask them to analyze the event. When multiple
MSs get the notification, it chooses the MS that has a shorter
moving distance and whose leave causes a smaller coverage
hole, to visit the EL. The study [29] dispatches MSs to improve
sensing coverage of a hybrid WSN. Static sensors estimate
coverage holes and use the sizes of holes to bid for MSs.
However, [28], [29] do not consider lifetime of MSs. The work

[30] assumes that multiple types of events may occur in the
sensing field. The type of each event is single, but an MS
can analyze different types of events. The goal is to dispatch
MSs to visit ELs such that their types coincide and we can
prolong lifetime of MSs. A two-phase solution is proposed,
where the first phase finds one-to-one assignments between
MSs and ELs, and the next phase creates spanning trees for
MSs to visit unassigned ELs. Obviously, this sensor dispatch
problem is different from ours.

The work [31] considers a similar sensor dispatch problem
without WCs. An energy-balanced dispatch (EBD) method is
developed, which clusters ELs and assigns MSs to visit each
cluster. EBD uses a concept of bound to restrict MSs that can
visit each cluster, so as to balance their energy consumption.
Our G-MSD algorithm has three differences with EBD. First,
EBD clusters ELs only when ELs are more than MSs. In
contrast, G-MSD always groups ELs that are close to each
other, so as to save moving energy of MSs. Second, G-MSD
and EBD have different strategies in choosing MSs, where EBD
selects MSs based on merely their energy costs to visit ELs,
while G-MSD considers additionally the residual energy of
each MS. Thus, we can prevent MSs with less energy from
visiting large groups of ELs. Third, G-MSD allows MSs to
call at WCs to timely recharge their batteries. These designs
distinguish our G-MSD algorithm with the EBD method and
give its novelty. Simulation results in Section 6 will also show
that G-MSD significantly outperforms EBD in terms of system
lifetime.

2.4 Using WCs to Extend WSN Lifetime

How to use WCs to extend lifetime of sensors is widely
discussed. Both [12], [32] find where to place WCs in a WSN
such that the charging quality is maximized. Since adjacent
WCs may pose radio interference with each other, [33] uses
a concurrent charging schedule to fully charge sensors in the
minimum time. Besides, many studies [11], [34], [35] equip
WCs on mobile platforms, and ask them to travel in a WSN to
recharge sensors. These studies aim at tour planning of WCs
to make them fast visit sensors with less energy. None of them
considers using WCs to extend system lifetime in our sensor
dispatch problem.

Several studies handle the data gathering problem by using
a mobile node to collect data from sensors. The work [36]
discusses how to use a mobile sink to travel in a rechargeable
WSN to collect data from sensors, where each sensor can har-
vest energy from its surroundings (e.g., solar and wind). The
goal is to maximize the amount of data collected by the mobile
sink while keeping network fairness. Obviously, [36] discusses
a different problem with our paper, as sensors can generate
energy by themselves, not by WCs. Guo et al. [37] use a WC to
recharge sensors and also collect their data. A set of sensors are
selected as anchors, where other sensors will relay data to these
anchors. Then, they decide both sequence and sojourn time for
a WC to visit anchors to get data and replenish energy. Unlike
[37], our paper addresses how to let MSs move to visit (static)
WCs to recharge their batteries, rather than using a mobile WC
for energy replenishment. The work [38] deploys both MSs
and WCs in a WSN to extend lifetime of sensors, where MSs
and WCs move to visit sensors to collect data and recharge
batteries, respectively. Nevertheless, WCs replenish energy of
only static sensors. MSs will be recharged only when they

EFFICIENT DISPATCH OF MOBILE SENSORS IN A WSN WITH WIRELESS CHARGERS 3

sink

event

static sensor

EL

MS

WC

event report

dispatching

command

moving path

(1)
(1)

(1)

(2) (2)

(3)

(3) (3)

Fig. 1: The sensor dispatch scenario in a hybrid WSN: (1) static sensors
notify the sink of ELs, (2) the sink assigns dispatching jobs to MSs, and (3)
MSs move to visit ELs and WCs.

return to the sink’s location. Thus, [38] has a different energy
replenishment model with our sensor dispatch problem.

3 SYSTEM MODEL

3.1 Network Model

We consider a hybrid WSN with static and mobile sensors, as
shown in Fig. 1. Static sensors form a backbone to connect all
nodes in the WSN, so the sink can get data from sensors and
send commands to them. When events occur, static sensors
notify the sink of their locations. As multiple static sensors
may detect the same event, we use the method in [28] to select
a delegate to notify the sink. Thus, each event can be modeled
by a point in the sensing field.

MSs are randomly scattered over the sensing field. When
the sink gets ELs, it can ask MSs to move (with a constant
speed) to visit ELs to analyze events. MSs are aware of their
locations [39], so they know where to move. If the sensing
field is obstacle-free, the shortest distance between an MS and
the destination (e.g., EL or WC) is their Euclidean distance.
Otherwise, we use the method in [25] to find the shortest
path for an MS to reach its destination by detouring obstacles.
Besides, MSs directly send their analytic data to the sink via
the backbone. Thus, after an MS finishes its dispatching job, it
stays at the last EL, instead of going back to the sink’s location.

3.2 Energy Model

Each MS has the same battery capacity emax and energy cost
ecost to move a unit distance. Besides, there are fixed WCs in
the sensing field, where their locations are known by MSs.
Each WC recharges one MS at a time, and it can recharge
at most α MSs in a round. An MS has to move to the WC’s
location to recharge its battery. The charging rate is a constant
r [40]. Once the MS is fully charged, it has an amount emax of
energy. As MSs are realized by equipping sensors on mobile
platforms, we assume that each MS has separated batteries for
its mobile platform (to provide mobility) and sensing device
(to support other jobs like event analysis and communication).
Since we aim at investigating path efficiency of MSs, both emax

and r are used by mobile platforms.
Let Tmax be the maximum amount of time for an MS to do

its job (i.e., visiting ELs) in a round. Each MS is allowed to visit
a WC for recharging only when it has enough time to complete
its assigned work in a round. Suppose that the time that an MS
sj needs to visit all its ELs is TD

j , which also includes the time

that sj analyzes events and reports data. Beside, let TC
j be the

sum of the time that sj moves to visit a WC and the time

that sj waits for service1. In theory, sj can be recharged for an
amount of energy:

min{r × (max{Tmax − TD
j − TC

j , 0}), emax − ej}, (1)

where ej is sj ’s residual energy. In Eq. 1, sj has an opportunity
to recharge its battery only when TD

j + TC
j < Tmax (i.e., it has

enough time to visit all assigned ELs and also move to meet
the WC for service). That is why we use the term max{Tmax −
TD
j − TC

j , 0}. Besides, due to the battery capacity, sj can be
recharged with no more than an amount (emax− ej) of energy.

One may suggest letting an MS complete its assigned work
after it visits a WC to replenish energy, thereby relaxing the
assumption in Eq. 1. However, this scheme is feasible only
when events will last for a long time. Let us consider one
special case, where events disappear in the beginning of the
next round. If we relax the restriction in Eq. 1, some MSs may
spend (much) more time on recharging batteries and have not
enough time to visit their assigned ELs in the current round.
Thus, we never can dispatch any MS to analyze these events
(in the next round), as they have already disappeared. In this
case, we fail to solve the sensor dispatch problem, even though
all MSs have sufficient energy. That is why we have to consider
the restriction of Eq. 1.

4 MULTI-ROUND SENSOR DISPATCH PROBLEM

We are given a set Ŝ of MSs and a set Ĉ of WCs. Suppose that

a set L̂ of ELs are reported by static sensors in each round.
The multi-round sensor dispatch problem asks how to assign each

MS sj ∈ Ŝ a visiting schedule Vj in every round, which

contains a sequence of ELs and possibly WCs (i.e., Vj ⊆ L̂∪Ĉ),
such that system lifetime (in rounds) is maximized, under two
conditions:

L̂ ⊆
⋃

sj∈Ŝ
Vj , (2)

ecost × Γ(Vj) ≤ ej + Ẽ(sj , Vj ∩ Ĉ), (3)

where Γ(Vj) is the length of a shortest path for sj to visit all

nodes in Vj , and Ẽ(sj , Vj ∩ Ĉ) gives the amount of energy that

sj is replenished by the WC(s) which it visits (i.e., Vj ∩ Ĉ). If

Vj ∩ Ĉ = ∅, we have Ẽ(sj , Vj ∩ Ĉ) = 0. Here, Eq. 2 indicates
that the union of nodes in all visiting schedules should include

L̂. In other words, each EL in L̂ must be visited by an MS. On
the other hand, Eq. 3 means that sj should have enough energy

(including the energy Ẽ(sj , Vj ∩ Ĉ) replenished from WCs)
to complete its visiting schedule Vj . Obviously, when these
two conditions are violated, system lifetime terminates, as we
cannot schedule MSs to visit all ELs due to lack of energy.

In our previous work [31], we showed that the problem
of dispatching MSs in a hybrid WSN without WCs is NP-
complete. Since the problem in [31] can be viewed as a special

case of the sensor dispatch problem by setting Ĉ = ∅, it will
be NP-hard. Table 1 summarizes our notations.

5 THE PROPOSED G-MSD ALGORITHM

G-MSD contains two schemes to schedule the movement of
MSs. In the task allocation scheme, we assign each MS some
ELs to be visited, so as to reduce their energy consumption
and also balance their loads. Then, in the energy replenishment

1. When multiple MSs come to visit the same WC, sj may have to wait
others before the WC can serve it.

4 PERVASIVE AND MOBILE COMPUTING

TABLE 1: Summary of notations.

notations definitions

Ŝ, Ĉ, L̂, Ĝ sets of MSs, WCs, ELs, and groups
emax, ecost battery capacity and moving energy cost

ej residual energy of MS sj
r charging rate

pi,j priority of MS sj with respect to group gi
ΦG

i , ΦS
j PO lists of group gi and MS sj

Tmax maximum working time in a round
TA

j,k
, TS

j,k
, TR

j,k
arrival, staying, and residual time in Fig. 5

TEC

j,k
recharging time that WC ck allocates to MS sj

δIGD threshold on the inter-group distance by eAHC
α number of MSs that a WC can serve in a round
β a coefficient to adjust limit ε

l1

l2
l3

l6

l4

l5

sensing field

(a) EL distribution

0

2

4

6

8

10

12

in
te

r-
g
ro

u
p
 d

is
ta

n
c
e
 (

IG
D

)

l1 l2 l3 l4 l5 l6

root

leaves

(b) eAHC result

Fig. 2: An example of grouping ELs.

scheme, we let MSs call at WCs to recharge their batteries, such
that they will spend less energy to move to visit WCs and the
total charging amount of MSs can be maximized. Below, we
detail our designs in both schemes.

5.1 Task Allocation Scheme

This scheme contains three phases to select an MS to visit each
EL. In phase 1, we divide ELs into groups, such that ELs in a
group are close to each other. In phase 2, we compute a priority
for every MS based on its moving cost and residual energy,
and create a preference-order (PO) list for each group that sorts
MSs by their priorities. In phase 3, each group selects an MS
from the PO list and contests it with other groups. Below, we
detail each phase.

5.1.1 Phase 1: Group ELs

When there are more ELs than MSs, it is efficient to group ELs
such that we can find a one-to-one assignment between each
MS and each group [31]. In fact, when ELs are fewer than MSs,
we can also group those ELs close to each other and ask one
MS to visit the group. Thus, we need not dispatch multiple
MSs to visit ELs in the group, thereby saving their energy.

To group ELs, we use the enhanced agglomerative hierarchical

clustering (eAHC) strategy [41]. Each EL li ∈ L̂ is initially
viewed as a single group gi. Then, we iteratively merge two
groups gi and gj such that they have the shortest inter-group
distance (IGD), which is the distance between the two farthest
ELs la and lb, where la ∈ gi and lb ∈ gj . This iteration is
repeated until the minimum IGD exceeds a threshold δIGD. We

give an example in Fig. 2, where |L̂| = 6. Fig. 2(a) shows the
distribution of ELs in the sensing field, while Fig. 2(b) presents
a tree structure that describes the relationship of different
groups formed by eAHC.

The grouping result of eAHC depends on δIGD. In G-MSD,
there are two cases to be discussed:

sj

l1 l2

l3l4

(a)

min{pi,j} max{pi,j}

Φi

limit ε

β / |S|
G

(b)

Fig. 3: Two designs in phase 2: (a) finding the shortest path and (b)
computing the limit ε.

• Case of |Ŝ| < |L̂|: As mentioned earlier, we should clus-
ter ELs of L̂ into the same number of groups with MSs.

Let us consider an example in Fig. 2(b) with |Ŝ| = 3.
From the leaves of the eACH’s tree, we gradually move

towards the root, until we divide L̂ into three groups.
Thus, we get δIGD = 6 and the grouping result is
g1 = {l1, l2, l3}, g2 = {l4, l5}, and g3 = {l6}.

• Case of |Ŝ| ≥ |L̂|: In this case, we set the IGD threshold
by

δIGD =
ρ

|ŜFQ|

∑

sj∈ŜFQ

ej
ecost

, (4)

where ŜFQ is a subset of Ŝ which contains the first
quarter of MSs with the least amount of energy, and
0 < ρ < 0.5 is a coefficient. We give an example
in Fig. 2(b), where there are six MSs with energy of
e1 = 30, e2 = 40, e3 = 45, e4 = 58, e5 = 75,
and e6 = 87. Thus, we have ŜFQ = {s1}. Let us set
ecost = 3 and ρ = 0.3. Then, the IGD threshold is
δIGD = 0.3 × 30

3
= 3. Thus, the grouping result will

be g1 = {l1, l2}, g2 = {l3}, g3 = {l4, l5}, and g4 = {l6}.

We discuss the idea behind Eq. 4. When MSs have less energy,
we should form smaller groups of ELs so that each MS will
not consume too much energy on visiting the ELs in a group.
Thus, we estimate the maximum movable distance of each MS
by ej/ecost, and take their average of MSs in ŜFQ (i.e., the first
25% of MSs with less energy) as a reference. Besides, we use a
coefficient ρ to limit the size of groups in Eq. 4, so an MS will
not spend all its energy to visit one group of ELs.

5.1.2 Phase 2: Create PO lists

After phase 1, we obtain a set Ĝ of groups, where any two

groups will be disjointed. For each group gi ∈ Ĝ, we compute

a priority of every MS sj ∈ Ŝ with respect to gi by

pi,j = ξ(gi, sj)/ej , (5)

where ξ(gi, sj) is the amount of energy that sj spends to visit
all ELs in gi. Here, a smaller pi,j value means a higher priority.
From Eq. 5, when sj can spend less energy to do the job in gi
or it has more energy, sj will be given a higher priority (i.e.,
sj is more suitable for gi). Then, we create a PO list ΦG

i for gi,
which sorts MSs by their priorities (from high to low).

To get ξ(gi, sj) in Eq. 5, we find the shortest path for sj
to visit all ELs in gi. However, this method spends much
computational time, as we have to use a solution to the NP-
complete traveling salesman problem (TSP) to find the path for
every pair of MSs and groups. To save the computational time,
we find the minimum Hamiltonian cycle to visit all ELs in gi.
Then, we find the closest EL, say, lk in gi to sj , and remove
the longest edge linking to lk from the cycle. Thus, the shortest
path includes edge (sj , lk) and the Hamiltonian path. In this
way, we can greatly reduce the computational overhead, as

EFFICIENT DISPATCH OF MOBILE SENSORS IN A WSN WITH WIRELESS CHARGERS 5

we find the Hamiltonian cycle only once, instead of repeating

the TSP solution |Ŝ| times for each group. In fact, there have
been many heuristics and approximation algorithms proposed
to find the Hamiltonian cycle [42]. We give an example in
Fig. 3(a), where gi has four ELs. The minimum Hamiltonian
cycle in gi is l1 → l2 → l3 → l4 → l1. Since l1 is clos-
est to sj , we remove edge (l1, l2), and the shortest path is
sj → l1 → l4 → l3 → l2. Then, ξ(gi, sj) can be calculated
by taking the product of path length and ecost.

From the PO list ΦG
i , we select candidate MSs for each

group gi by a limit:

ε =
1

|Ĝ|
×

|Ĝ|
∑

i=1

min
ΦG

i

{pi,j}+

β

|Ĝ| × |Ŝ|
×

|Ĝ|
∑

i=1

(max
ΦG

i

{pi,j} −min
ΦG

i

{pi,j}), (6)

where β < |Ŝ| is a coefficient to adjust the value of limit, and
we will discuss its effect in Section 6.6. Then, we mark an MS sj
in ΦG

i as a candidate if pi,j ≤ ε. Besides, we use a variable bi to
record the number of candidate MSs in ΦG

i , where gi will use
bi as the bid to contest an MS in Section 5.1.3. Fig. 3(b) shows
our calculation of limit ε in Eq. 6, where we take the minimum
pi,j value in each PO list as its basis, and add a fixed portion

β/|Ŝ| of the difference between the maximum and minimum
pi,j values in each PO list to ε. By using the limit ε, we can
avoid selecting an MS far away from group gi to move to visit
its ELs, and balance energy consumption of MSs accordingly.

5.1.3 Phase 3: Pair Groups with MSs

In this phase, we pair each group with an MS by the following
steps:

1) We compute an energy threshold

δE = µE −

√

1

|Ŝ|

∑

sj∈Ŝ
(ej − µE)2, (7)

where µE = (
∑

sj∈Ŝ
ej)/|Ŝ| is average residual energy

of MSs. Here, δE is the difference between the average
energy and the standard deviation of energy of MSs.

Then, we use a queue Q̃G to store all groups in Ĝ.
2) Dequeue a group gi from Q̃G, and select the first

candidate MS, say, sj from its PO list. If sj is unpaired,
we pair sj with gi (i.e., sj should visit ELs in gi).
Otherwise, sj must be paired with another group, say,
gk. In this case, we use five rules in sequence to let
them contest sj :

R1. When ej < δE , we compare the energy costs
for sj to visit ELs in gi and gk. Specifically, if
ξ(gi, sj) < ξ(gk, sj), we pair sj with gi. Other-
wise, sj is still paired with gk.

R2. If bi < bk, we pair sj with gi.
R3. Suppose that pi,x and pk,y are the lowest prior-

ities in the PO lists of gi and gk, respectively. If
bi = bk and pi,x > pk,y , we pair sj with gi.

R4. If bi = bk, pi,x = pk,y , and ξ(gi, sj) < ξ(gk, sj),
we pair sj with gi.

R5. Otherwise, sj should be still paired with gk.

If sj is paired with gi, we add gk to Q̃G (as it becomes
unpaired), update its PO list ΦG

k and bid bk by the rule

in step 3, and go to step 4. Otherwise, we go to step 3
to deal with gi.

3) Since sj is not paired with gi, we remove sj from ΦG
i

and decrease its bid bi by one. If bi = 0 (i.e., there is
no candidate MS), we mark the first MS in ΦG

i as a
candidate and set bi = 1.

4) Repeat step 2 until Q̃G becomes empty.

Thanks to the grouping operation in Section 5.1.1, we have

|Ĝ| ≤ |Ŝ|. Thus, we ensure that each group in Ĝ can always

find an MS in Ŝ to visit its ELs. After assigning an MS sj to a
group gi, sj can visit all ELs in gi following the shortest path
calculated in Section 5.1.2.

Fig. 4 gives an example, where Ŝ = {s1, s2, s3, s4} and

Ĝ = {g1, g2, g3}. Based on the priorities in Fig. 4(a), the PO lists
of g1, g2, and g3 are ΦG

1 = {s2, s3, s1, s4}, ΦG
2 = {s1, s3, s2, s4},

and ΦG
3 = {s1, s2, s3, s4}, respectively. By setting β = 10 in

Eq. 6, we can get the limit ε = 0.2345. Thus, the candidates

of each group contain all MSs in Ŝ. In the beginning, we use

a queue Q̃G to include all groups in Ĝ. Then, we dequeue g1
from Q̃G and pair it with the first candidate in ΦG

1 (i.e., s2).
Similarly, we also pair g2 with s1, as shown in Fig. 4(b). After
dequeuing g3 from Q̃G, we find that its first candidate s1 has
been paired with g2. In this case, g3 contests s1 with g2. Since
b2 = 3 and b3 = 4, g2 wins the contest by rule R2. Thus, g3
removes s1 from its PO list ΦG

3 and selects the next candidate
s2. However, s2 has been paired with g1, so g3 has to contest
s2 with g1. Since the lowest priorities in ΦG

1 and ΦG
3 are 0.08

and 0.12, respectively, g3 wins the contest by rule R3 and we
thus pair s2 with g3, as shown in Fig. 4(c). Then, g1 is added
to Q̃G again. Finally, we pair g1 with s3 from its PO list ΦG

1 , as
shown in Fig. 4(d).

We discuss our design in the five rules. In rule R1, when
the amount of residual energy of the contested MS sj is below
the energy threshold δE , it means that sj may not move in
a long distance. Thus, we should choose the group with a
lower energy cost ξ(gi, sj) for sj to do the job. Rules R2–R5
are designed for the case of ej ≥ δE (i.e., sj has more energy).
When two groups gi and gk contest sj , we first compare their
numbers of candidate MSs by rule R2. If a group has more
candidates, we make it give up sj , as there is a good possibility
for the group to choose another MS. However, when gi and gk
have the same number of candidates, we compare their lowest
priorities by rule R3. If a group has a lower priority (i.e., larger
pi,j value), it means that once the group gives up sj , the group
may choose another MS far away from it (referring to Eq. 5).
In this case, we would pose unbalanced loads on MSs. That is
why we let the group with a lower priority win the contest.
When gi and gk have the same (lowest) priority, we choose the
group with a lower energy cost to be the winner by rules R4
and R5, so as to reduce energy consumption of sj .

5.1.4 Discussion

The idea of our task allocation scheme is to group ELs and
allow these groups to contest MSs with the objectives of
minimizing energy consumption and balancing their loads.
There are three special designs in the scheme. First, we group
ELs that are close to each other by the eAHC strategy, even if
there are fewer ELs than MSs. Moreover, we use a threshold
δIGD to decide the diameter of each group by Eq. 4, which
considers residual energy of MSs. Thus, we can dispatch an
MS to visit nearby ELs, instead of dispatching multiple MSs to
visit them (which wastes energy). Second, when selecting MSs

6 PERVASIVE AND MOBILE COMPUTING

s1 s3

l4

l2l3

l1
g3

g1

g2

s2
s4

group s1 s2 s3 s4

g1 0.050 0.028 0.036 0.080

g2 0.028 0.070 0.058 0.127

g3 0.020 0.036 0.070 0.120

priority

(a) initial state

s1 s3

l4

l2l3

l1
g3

g1

g2

�1={�3, �1, �4}

�2={�3, �2, �4}

�3={�1, �2, �3, �4}

s2

s4

(b) iteration 1

s1 s3

l4

l2l3

l1
g3

g1

g2

�1={�3, �1, �4}

�2={�3, �2, �4}

�3={�3, �4}

s2

s4

(c) iteration 2

s1 s3

l4

l2l3

l1
g3

g1

g2

�1={�1, �4}

�2={�3, �2, �4}

�3={�3, �4}

s4
s2

(d) iteration 3

Fig. 4: An example of pairing groups with MSs.

to visit groups, we adopt both the energy cost ξ(gi, sj) and
residual energy ej of each MS as the metric by Eq. 5. Thus, we
can avoid dispatching an MS with less energy to visit a group
that requires a longer moving distance or contains more ELs.
So, the MS can conserve energy and we also let it visit a WC to
replenish energy by the scheme in Section 5.2. Third, our task
allocation scheme uses the energy threshold δE to let an MS
with less energy choose the task with a lower energy cost to
save its energy. Then, we allow two groups contesting an MS
based on multiple factors, including the number of candidates,
the minimum priority, and the energy cost. Theorem 1 analyzes
the time complexity of this scheme.

Theorem 1. Given m ELs and n MSs, the time complexity of the
task allocation scheme is O(m2 + (m − n + 1)3 + n2 lg n) in the
worst case, where m > n.

Proof. Our task allocation scheme contains three phases. In
phase 1, we use eAHC to group ELs. The worst case occurs

when |L̂| > |Ŝ| (i.e., m > n). By using the implementa-
tion in [43], it takes O(m2) to get the result of eAHC. To

find the IGD threshold in Eq. 4, we sort all MSs in Ŝ and

compute the average energy of MSs in ŜFQ, so it spends
time of O(n lg n) + O(n/4). Thus, phase 1 takes time of
O(m2) +O(n lg n) +O(n/4) = O(m2).

In phase 2, we compute the priority of each MS with respect
to each group. Since m > n, there will be n groups found in
phase 1. The worst case occurs when one group has (m−n+1)
ELs while each of other (n− 1) groups has an EL. It takes time
of (n − 1) × O(n) = O(n(n − 1)) to compute the priorities
of MSs for these (n − 1) groups by Eq. 5. For the group with
(m−n+1) ELs, we use the Christofides algorithm [42] to find
the minimum Hamiltonian cycle to visit all ELs, which takes
O((m−n+1)3) time. We also find the closest EL in the group
for each MS, which spends O(n(m−n+1)) time. Thus, it takes
time of O((m−n+1)3)+O(n(m−n+1)) = O((m−n+1)3) to
compute the priorities of MSs for the group with (m − n + 1)
ELs. To get the PO list for each group, we sort all MSs by
their priorities. This operation takes time of n × O(n lg n) =

O(n2 lg n). Then, it spends O(n) time to find the limit ε by
Eq. 6. To get candidates in each group, we search MSs in its PO
list in sequence. This operation takes time of n×O(n) = O(n2).
Thus, phase 2 spends time of O(n(n−1))+O((m−n+1)3)+
O(n2 lg n) +O(n) +O(n2) = O((m− n+ 1)3) +O(n2 lg n).

In phase 3, we spend O(2n) time to compute the threshold
δE (i.e., O(n) time to find the average µE and O(n) time to
find the standard deviation). Then, we use five rules to pair
each group with an MS. The worst case occurs when we try all
combinations of groups and MSs, which spends O(n2) time.
Thus, phase 3 takes time of O(2n) +O(n2) = O(n2).

To sum up, the task allocation scheme will spend time of
O(m2) + O((m − n + 1)3) + O(n2 lg n) + O(n2) = O(m2 +
(m − n + 1)3 + n2 lg n) in the worst case, which verifies the
theorem.

5.2 Energy Replenishment Scheme

After assigning each MS sj to visit ELs, if sj still has time
left in the round, we can let it call at a WC to replenish
energy. To improve the recharging efficiency, we consider three
objectives: 1) maximize the total amount of replenished energy,
2) minimize the amount of energy spent by each MS to visit
a WC, and 3) maximize the number of recharged MSs. With
the objectives, our energy replenishment scheme contains three
parts to select MSs to visit WCs. In part 1, we create a PO list
ΦS

j for each MS sj to store candidate WCs. In part 2, we pick

one WC from ΦS
j to recharge sj . Besides, we use a list for each

WC to record MSs that it needs to serve. In phase 3, we find
the recharging sequence of MSs based on their arrival time at
a WC. Below, we detail each part.

5.2.1 Find Candidate WCs

For each MS sj , we first check if it needs to be recharged or
not. When ej/emax ≥ δfull, it means that sj ’s battery is almost
full, where δfull is an upper-bound threshold on the battery’s

EFFICIENT DISPATCH OF MOBILE SENSORS IN A WSN WITH WIRELESS CHARGERS 7

sj

l izl iyl i1 l ix
... ck ...

≤ Tmax

Tj,k
A

Tj,k
R

Tj,k
S

Fig. 5: The amount of time TA

j,k
, TS

j,k
, and TR

j,k
for an MS sj .

capacity2. In this case, sj need not be recharged. Otherwise, we
find candidate WCs for sj to recharge its battery. Specifically,
we consider two types of MSs below.

Type 1: sj is assigned with a group gi of ELs, whose

shortest path Hi,j is sj → li1 · · · → liz . For each WC ck ∈ Ĉ ,
we use the insertion TSP heuristic [42] to add ck to path Hi,j . Let
the new shortest path HA

i,j be sj → li1 → · · · → lix → ck →
liy → · · · → liz . We then compute the following time for sj , as
shown in Fig. 5: 1) TA

j,k: the amount of time elapsed before sj
arrives at ck’s position (i.e., the amount of time for sj moves
along path sj → li1 → · · · → lix → ck), 2) T S

j,k: the amount of

time that sj stays at ck’s position for recharging, and 3) TR
j,k:

the amount of time since sj leaves ck’s position until it visits
the last EL (i.e., the amount of time for sj moves along path
ck → liy → · · · → liz). Since the maximum working time in a
round is Tmax, we derive that T S

j,k = Tmax − TA
j,k − TR

j,k. Then,
we use two conditions to check if ck is a candidate of sj :

ej ≥ ecost × length(HA
i,j), (8)

rT S
j,k ≥ ecost × length(lix → ck → liy) + σ, (9)

where length(·) denotes the length of a path. Here, Eq. 8
indicates that sj should have enough energy to move along
the amended path HA

i,j that includes ck. If Eq. 8 is violated,
it is infeasible for sj to visit ck (due to lack of energy). On
the other hand, the left term of Eq. 9, rT S

j,k, gives the amount
of replenished energy of sj from ck, while its right term,
ecost×length(lix → ck → liy), gives the extra energy cost for sj
to visit ck. Thus, Eq. 9 indicates that the net amount of energy
replenishment of sj from ck should be at least σ. Otherwise,
it is uneconomic for sj to move to visit ck for recharging its
battery. In our simulations, we set σ to one unit of energy.
When both conditions in Eqs. 8 and 9 are satisfied, ck will be
added to sj ’s PO list ΦS

j .
Type 2: sj has no dispatching job in this round. Thus, TA

j,k

will be the time for sj moving from its current position to ck’s
position, and TR

j,k = 0 as sj need not visit any EL. Similarly,
we also use two conditions to check if ck is a candidate of sj :

ej ≥ ecost × length(sj → ck), (10)

rT S
j,k ≥ ecost × length(sj → ck) + σ, (11)

If both conditions in Eqs. 10 and 11 are satisfied, ck is added
to sj ’s PO list ΦS

j .
After checking all WCs, we sort the candidates in ΦS

j by

their TA
j,k values (from small to large). If the PO list of an MS

is empty, it will not participate in the energy replenishment
scheme.

5.2.2 Assign WCs to MSs

For each WC ck, we use a serving list φk to record the set of
MSs to be recharged. Let queue Q̃S store MSs selected for ck in
Section 5.2.1. We then create φk by four steps:

2. According to [44], when a battery is being recharged, if the battery
has 100% energy (with a tolerance band of 5%), a battery-full event will
be triggered to stop the recharging procedure. Thus, we suggest setting
δfull = 0.95.

1) Dequeue an MS sj from Q̃S and pick the first can-
didate3, say, ck from its PO list ΦS

j . We then remove

ck from ΦS
j . Besides, we add sj to φk based on its

TA
j,k value (from small to large). When Q̃S = ∅, we

terminate this method, as we have checked all MSs.
2) Allocate an amount of recharging time for an MS sj in

φk by

TEC
j,k =

emax − ej,k
∑

si∈φk
(emax − ei,k)

× TC
avg,

TC
avg =

1

|φk|

∑

si∈φk

T S
i,k. (12)

Here, ej,k is the amount of sj ’s residual energy when
it arrives at ck’s position.

3) With TEC
j,k , we can estimate the amount of sj ’s replen-

ished energy from ck by eRj,k = r × TEC
j,k . Besides, we

also compute its total working time Tj (including the
time to visit ELs and also the time to wait and recharge
at ck) by the method in Section 5.2.3.

4) We use three conditions to check whether ck is capable
of serving all MSs in its list φk:

|φk| ≤ α, (13)

Tj ≤ Tmax, ∀sj ∈ φk, (14)

eRj,k − ζ(sj , ck) ≥ σ, ∀sj ∈ φk, (15)

where ζ(sj , ck) is the energy cost for sj to visit ck.
In particular, ζ(sj , ck) = ecost × length(lix → ck →
liy) if sj belongs to type 1, and ζ(sj , ck) = ecost ×
length(sj → ck) otherwise. Eq. 13 indicates that ck
can serve at most α MSs, and Eq. 14 means that total
working time of sj cannot exceed Tmax in a round.
Similar to Eqs. 9 and 11, Eq. 15 indicates that the net
amount of energy replenishment of sj from ck should
be at least σ. If any condition is violated, we remove
the last MS sl (i.e., with the largest TA

l,k time) from φk,

add sl to Q̃S, and go back to step 2 to recompute TEC
j,k .

Otherwise, we return to step 1 to pick the next MS in
Q̃S.

5.2.3 Decide the Recharging Sequence

Given the serving list φk of a WC ck, we compute the recharg-
ing sequence (denoted by φS

k) of all MSs in φk by the following
three steps:

1) Dequeue the first MS, say, sj from φk. We then com-
pute the waiting time before ck finishes recharging sj ’s
battery by Twait = TA

j,k + TEC
j,k . Here, the waiting time

is the sum of sj ’s arrival time TA
j,k and its recharging

time TEC
j,k . We can also compute its total working time

by

Tj = Twait + TR
j,k. (16)

Then, we add sj to φS
k.

2) Create a list φtemp, and move MSs that meet the
condition of TA

j,k ≤ Twait from φk to φtemp. Then,
we pick MS sj from φtemp with the largest value of
(TEC

j,k + TR
j,k), add sj to φS

k, update

Twait = Twait + TEC
j,k , (17)

3. In case that sj has no candidate (i.e., ΦS
j = ∅), we remove sj from Q̃S

and select the next MS.

8 PERVASIVE AND MOBILE COMPUTING

and set Tj by Eq. 16. Note that since Twait is changed
by Eq. 17, we need to update both φk and φtemp by the
above rule. This step is repeated until φtemp becomes
empty.

3) Repeat both steps 1 and 2, until φk is empty.

Since all MSs in φk are sorted by their TA
j,k values (from

small to large), the first MS sj in φk must be also the first
MS that arrives at ck’s position. Besides, as ck can serve only
one MS at a time, all other MSs have to wait until ck finishes
recharging sj (for TEC

j,k time). That is why we compute the
waiting time Twait by Eq. 16. In step 2, when an MS satisfies
the condition of TA

j,k ≤ Twait, it means that the MS has to wait
when it arrives at ck’s position (as ck is still recharging the
battery of another MS). Thus, we use a list φtemp to store such
MSs. Once ck finishes its recharging job, we pick the MS that
will spend the most time to finish its dispatching job (including
the recharging time TEC

j,k and the time TR
j,k to visit residual ELs)

to be served by ck (otherwise, the MS may not finish its job in
a round). After we decide the next MS to be recharged, the
waiting time will be updated by adding the recharging time
TEC
j,k of the selected MS, as shown in Eq. 17. Thus, we need to

update φtemp by including extra MSs whose TA
j,k time do not

exceed the new waiting time Twait. In this way, we can decide
the recharging sequence of MSs in φk.

We consider an example with φk = {s1, s2, s3}, where
(TA

j,k, T
EC
j,k , TR

j,k) of s1, s2, and s3 are (40, 20, 12), (50, 16,
20), and (55, 18, 24), respectively. By step 1, we dequeue s1
from φk and add it to φS

k. We compute the waiting time
by Twait = 40 + 20 = 60 and also s1’s working time by
T1 = 60 + 12 = 72. Since s2 and s3 satisfy the condition of
TA
j,k ≤ 60, they are moved from φk to φtemp by step 2. Because

TEC
2,k +TR

2,k = 16+20 = 36 and TEC
3,k +TR

3,k = 18+24 = 42, we

add s3 to φS
k, update the waiting time by Twait = 60+18 = 78,

and compute its working time by T3 = 78 + 24 = 102.
Then, we add s2 to φS

k and compute its working time by
T2 = (78 + 16) + 20 = 114. The recharging sequence of φk

will be s1 ⇒ s3 ⇒ s2.

5.2.4 Discussion

In this scheme, we analyze the arrival time TA
j,k, staying time

T S
j,k, and residual time TR

j,k of each MS sj to visit a WC ck
by Fig. 5. Then, we use Eqs. 8–11 to eliminate the WCs that
sj cannot reach or has to spend more energy than it can be
recharged from its candidate list. Afterwards, we let each MS
select the first WC from its PO list ΦS

j to meet objective 2 in
Section 5.2. Besides, each WC also keeps a list φk to record
the set of MSs to be served. Since the total recharging time
is limited to TC

avg, we should allocate it to as more MSs as
possible to satisfy both objectives 1 and 3. To do so, we use
Eq. 12 to allocate the recharging time for each MS in φk, where
an MS with less energy can be recharged for longer time.
Moreover, we also use the conditions in Eqs. 13–15 to avoid
adding too many MSs to the serving list of a WC. To check
the condition in Eq. 14, we use the method in Section 5.2.3 to
decide the recharging sequence of MSs. Thus, MSs can move to
meet WCs on their ways to visit ELs for energy replenishment,
thereby extending system lifetime. Theorem 2 analyzes the
time complexity of our energy replenish scheme.

Theorem 2. Given m ELs, n MSs, and h WCs, the energy replen-
ishment scheme has time complexity of O(h(m+ n(lg h+ α2))) in
the worst case.

TABLE 2: Comparison on the time complexity of different methods.
method time complexity
EBD (K-means) O(mnϕ) +O(mn lgn)
EBD (balanced) O(mnϕ+m2n2) +O(mn lgn)
EBD (eAHC) O(m2) +O(mn lgn)
G-MSD (task allocation) O(m2 + (m− n+ 1)3 + n2 lgn)
G-MSD (energy replenishment) O(h(m+ n(lg h+ α2)))

Proof. In part 1, we use O(n) time to check the status of
each MS’s battery. Then, we find parameters TA

j,k, T S
j,k, and

TR
j,k for each (MS, WC) pair. The worst case occurs when

all MSs belong to type 1. As mentioned in Theorem 1, we
consider the case that a group has (m − n + 1) ELs while
each of other (n − 1) groups has one EL. For each WC, it
takes time of O(m − n + 1) + O(n − 1) = O(m) to find the
parameters for all MSs. As there are h WCs, the operation
takes O(mh) time. Then, we spend O(nh lg h) time to sort
the PO list of each MS. Thus, the time complexity of part 1
is O(n) +O(mh) +O(nh lg h) = O(mh) +O(nh lg h).

In part 2, we compute TEC
j,k for each MS in the serving list

of a WC by Eq. 12. Since a WC can serve at most α MSs, step 3
takes O(2α) time. In step 5, we use three conditions to check if
a WC can serve all MSs in its list. Here, Eq. 13 takes only O(1)
time, and Eq. 15 spends O(α) time. For Eq. 14, we use the
method in Section 5.2.3 (i.e., part 3) to compute the working
time of an MS. Thus, part 3 takes O(α) time, as it iteratively
checks each MS in the serving list. Since we check every MS by
Eq. 14, it spends time of α×O(α) = O(α2). So, an iteration of
part 2 takes time of O(2α)+O(1)+O(α2)+O(α) = O(α2). As
we check each (MS, WC) pair, there are at most nh iterations.
Thus, part 2 spends time of nh×O(α2) = O(nhα2).

Since the calculation of part 3 is included in part 2 (i.e.,
Eq. 14), the energy replenishment scheme has time complexity
of O(mh) +O(nh lg h) +O(nhα2) = O(h(m+ n(lg h+α2))).

6 PERFORMANCE EVALUATION

We develop a simulator in Java to evaluate performance of
G-MSD. The sensing field is a 450 m× 300 m rectangle, where
400 static sensors are deployed. The communication range of a
sensor is 80 m, so all static sensors form a connected network.
For MSs, we set their parameters based on the configura-
tion of Khepera IV mobile robots [45]. The moving speed is
1 m/s and the energy cost ecost to move one unit distance is
10.75 J/m. Besides, the maximum battery capacity emax is set to
3600 s×(3400mah/1000)×7.4V = 90576 J. There are also four
WCs in the network, each deployed on the center of a quarter
of the sensing field. The charging rate r is 5 J/s [40]. We set
δfull = 0.95, so an MS will not be recharged if it has more
than 95% energy. Besides, by setting α = 5, a WC can serve no
more than five MSs in a round. In each round, the maximum
working time Tmax is set to 800 seconds. A number of ELs will
be arbitrarily selected from the positions of all static sensors.
When an MS arrives at one EL, it will spend 30 seconds to
analyze the event.

We compare our G-MSD algorithm with the EBD method
[31], which considers two grouping strategies to cluster ELs.
In the K-means strategy, ELs are divided into K groups such
that each EL in a group is closest to the group’s centroid than
the centroid of another group, and K is equal to the number
of MSs. The balanced strategy modifies the result of K-means
by minimizing the difference between the lengths of shortest

EFFICIENT DISPATCH OF MOBILE SENSORS IN A WSN WITH WIRELESS CHARGERS 9

TABLE 3: Comparison on system lifetime (in rounds).
number of ELs without WCs with WCs

(i.e., |L̂|) 40 70 100 40 70 100
EBD (K-means) 240.6 93.6 82.7 429.3 110.7 95.3
EBD (balanced) 241.8 113.8 101.3 438.6 141.9 121.4
EBD (eAHC) 241.7 112.3 110.1 438.1 139.9 133.8
G-MSD 271.7 115.0 112.5 613.8 142.6 137.1

paths to visit all ELs in any two groups. Besides, we also apply
the eAHC strategy to EBD to evaluate its effect. In G-MSD,
we set β = 15. For each experiment, we repeat 100 times of
simulations and take their average value. Given m ELs, n MSs,
and h WCs, Table 2 lists time complexity of different methods,
where ϕ is the number of iterations to perform K-means for
clustering (which usually ranges from tens to hundreds).

6.1 System Lifetime

We first measure system lifetime with 50 MSs. The left part
of Table 3 gives the experimental result when there are no
WCs. For the EBD method, since it does not group ELs when

|L̂| ≤ |Ŝ|, using different group strategies has less effect on

lifetime as |L̂| = 40. However, when ELs are more than MSs,
the K-means strategy results in shorter lifetime, as comparing
with other two strategies. The reason is that the K-means
strategy may not form groups of ELs with similar sizes, so
some MSs would have to spend more energy to visit ELs in

large groups. When |L̂| = 100, the eAHC strategy performs
better than the K-means and balanced strategies, since it
considers the distance between any two adjacent ELs to form
groups. Our G-MSD algorithm not only group ELs by eAHC

even if |L̂| ≤ |Ŝ| but also considers both energy costs and
residual energy of MSs, so it always has the longest lifetime.
Specifically, G-MSD can extend 12.5%, 7.9%, and 14.8% of life-
time than EBD when there are 40, 70, and 100 ELs, respectively.

The right part of Table 3 shows system lifetime by using
four WCs. Since the EBD method does not consider recharg-
ing MSs, we apply our energy replenishment scheme to it.
Obviously, we can extend lifetime of MSs by using WCs
to recharge them, where the energy replenishment scheme
increases 80.0%, 22.7%, and 19.2% of EBD’s lifetime with 40,
70, and 100 ELs, respectively. When |L̂| = 40, G-MSD can
greatly extend lifetime from 271.7 rounds to 613.8 rounds (with
an improving ratio of 125.9%). Even when there are 70 and
100 ELs, using WCs can extend averagely 24.0% and 21.9%
of G-MSD’s lifetime. This experiment shows that both task
allocation and energy replenishment schemes in G-MSD can
well cooperate, thereby achieving much longer lifetime.

6.2 Survived MSs

We then study survived MSs in each round, where |Ŝ| = 50
and |Ĉ| = 0. Fig. 6(a) gives the result when |L̂| = 35. In this
case, the grouping strategy has no effect on survived MSs in

the EBD method, as it does not group ELs when |L̂| ≤ |Ŝ|. In
EBD, some MSs use up their energy in the 290th round, and
all MSs die after the 330th round. On the other hand, G-MSD
can keep all MSs alive until the 350th round, and the longest
survived time of MSs is 370 rounds. The reason is that G-MSD
considers residual energy when pairing them with groups of
ELs. Thus, it will avoid selecting an MS with less energy to
visit a large group, thereby extending the MS’s lifetime.

Fig. 6(b) shows the result when |L̂| = 120. As there are
more ELs than MSs, the grouping strategy plays a key role in

0

10

20

30

40

50

280 290 300 310 320 330 340 350 360 370

round

s
u

rv
iv

e
d

M
S

s

EBD (K-means)

EBD (balanced)

EBD (eAHC)

G-MSD

(a) 35 ELs

0

10

20

30

40

50

70 76 82 88 94 100 106

round

s
u

rv
iv

e
d

M
S

s

EBD (K-means)

EBD (balanced)

EBD (eAHC)

G-MSD

(b) 120 ELs

Fig. 6: Comparison on survived MSs by different methods without WCs.

EBD. Specifically, all MSs run out of their energy in the 76th,
92nd, and 106th rounds by EBD when the K-means, balanced,
and eAHC strategies are adopted, respectively. Since the G-
MSD algorithm uses the eAHC strategy to group ELs and there
are more ELs than MSs, G-MSD has similar survived time of
MSs with EBD that uses the eAHC strategy. However, the first
MS dies in the 100th and 104th rounds in EBD (with eAHC)
and G-MSD, respectively, which shows that G-MSD can better
utilize energy of MSs.

We also measure the effect of WCs on survived MSs in G-
MSD, as shown in Fig. 7. When |L̂| = 40 (i.e., |Ŝ| > |L̂|), using
WCs can greatly extend the survived time of MSs from 269
rounds to 607 rounds (with an improving ratio of 125.7%).

Besides, when |L̂| = 100 (i.e., |Ŝ| < |L̂|), using WCs can
also extend the survived time of MSs from 108 rounds to
131 rounds (with an improving ratio of 21.3%). Note that the

number of survived MSs is much larger in the case of |Ŝ| > |L̂|
compared to the case of |Ŝ| < |L̂|. The reason is that each MS

is assigned with fewer ELs (or even no ELs) when |Ŝ| > |L̂|.
Thus, MSs need not move in longer distances and conserve
their energy. Moreover, there is a good possibility for most MSs
to call at WCs, as they have more T S

j time (referring to Fig. 5)
for recharging. Thus, each MS can survive in a long time when

|Ŝ| > |L̂|.

6.3 Energy Consumption

Next, we evaluate energy consumption of MSs without WCs.
Fig. 8(a) gives average energy consumed by MSs in a round.
Since there are 50 MSs, there is a turning point on the result of

each method when |L̂| = 50. In particular, as |L̂| grows from 30

10 PERVASIVE AND MOBILE COMPUTING

0

10

20

30

40

50

260 264 268 586 590 594 598 602 606

round

s
u

rv
iv

e
d

M
S

s

without WCs

with WCs

(a) 40 ELs

0

10

20

30

40

50

100 104 108 112 116 120 124 128 132

round

s
u

rv
iv

e
d

M
S

s

without WCs

with WCs

(b) 100 ELs

Fig. 7: Comparison on survived MSs by our G-MSD algorithm without
and with WCs.

to 50, average energy increases drastically. However, when |L̂|
increases from 50 to 120, average energy increases smoothly
(since all methods group ELs in the beginning). In the EBD
method, the K-means strategy makes MSs consume the most
energy, because it would form groups of ELs with unbalanced
sizes. Our G-MSD algorithm always lets MSs spend the least
energy by dispatching them based on their priorities in Eq. 5,
which considers not only the energy cost but also residual
energy of each MS. Then, Fig. 8(b) compares the standard
deviation of energy consumption by different methods. Since
EBD aims to balance energy consumption of MSs while G-MSD
considers balancing their residual energy, EBD will result in a
slightly lower standard deviation than G-MSD. From Fig. 8(b),
we observe that EBD with eAHC has the lowest standard
deviation, which shows that eAHC can form groups of ELs
such that the energy cost for an MS to visit each group is
similar.

Fig. 9(a) shows the standard deviation of MSs’ residual

energy in each round. When |L̂| = 35, the EBD method will
not group ELs until the number of survived MSs is below 35
(in the 300th round). As EBD does not care residual energy of
MSs but seeks to balance their energy consumption, the gap
between maximum and minimum residual energy of MSs will
increase as time goes by. That is why the standard deviation of
EBD keeps growing. After the 300th round, most MSs exhaust
their energy, so the standard deviation drops fast in EBD. On
the contrary, our G-MSD algorithm considers residual energy
of MSs by Eq. 5, so it always has the lowest standard deviation.
Thus, G-MSD can better balancing the load of each MS. When

0

200

400

600

800

1000

1200

30 40 50 60 70 80 90 100 110 120

number of ELs

a
v
e

ra
g

e
e

n
e

rg
y

c
o

n
s
u

m
p

ti
o

n
(J

)

EBD (K-means)

EBD (balanced)

EBD (eAHC)

G-MSD

(a) average

0

200

400

600

800

1000

1200

30 40 50 60 70 80 90 100 110 120

number of ELs

s
ta

n
d

a
rd

d
e

v
ia

ti
o

n
o

f
e

n
e

rg
y

(J
) EBD (K-means)

EBD (balanced)

EBD (eAHC)

G-MSD

(b) standard deviation

Fig. 8: Comparison on energy consumption of MSs per round.

|L̂| = 100, the eAHC strategy can help EBD decrease its
standard deviation, thereby extending system lifetime. On the
other hand, G-MSD can keep a pretty low standard deviation

as |L̂| = 100, which shows its effectiveness on saving energy
of MSs.

6.4 Effect of Grouping Strategies

We study the effect of different grouping strategies, including
K-means, balanced, and eAHC, on the moving distance for
each MS to visit ELs in a group. In the experiment, we set

|Ŝ| = 20 and iteratively increase |L̂| from 30 to 80. Fig. 10(a)
gives the average length of the shortest path to visit all ELs
in each group. Since the K-means strategy does not consider
balancing the size of each group, some groups may contain
ELs that are far away from each other. Thus, we need to find
a longer path for the MS to visit ELs in such a group. On
the contrary, the eAHC strategy iteratively merges two groups
with the shortest inter-group distance, so it can form groups
with smaller diameters, thereby reducing the average path
length.

Fig. 10(b) gives the standard deviation of path length in
each group. Obviously, when the standard deviation is smaller,
it means that the sizes of formed groups (in terms of path
lengths) are more balanced. In this way, MSs can have more
fair loads on visiting ELs in their groups, which helps extend
system lifetime. We can observe that both balanced and eAHC
strategies result in much smaller standard deviations than the
K-means strategy. Besides, these two strategies have similar
values of standard deviation, which indicates that the balanced

EFFICIENT DISPATCH OF MOBILE SENSORS IN A WSN WITH WIRELESS CHARGERS 11

0

1

2

3

4

5

6

30 90 150 210 270 330

round

s
ta

n
d

a
rd

d
e

v
ia

ti
o

n
(1

0
0

0
J
)

EBD (K-means)

EBD (balanced)

EBD (eAHC)

G-MSD

(a) 35 ELs

0

1

2

3

4

5

6

10 20 30 40 50 60 70 80 90 100 110

round

s
ta

n
d

a
rd

d
e

v
ia

ti
o

n
(1

0
0

0
J
)

EBD (K-means)

EBD (balanced)

EBD (eAHC)

G-MSD

(b) 100 ELs

Fig. 9: Comparison on the standard deviation of residual energy of MSs.

and eAHC strategies can form groups of ELs with more
balanced sizes.

6.5 Effect of WCs

Then, we measure the effect of WCs on G-MSD’s lifetime. To
do so, we divide the sensing field into k equal subregions, and
place one WC on the center of each region, where k ∈ [1, 4].
Fig. 11 shows system lifetime with 50 MSs when there are 40,
70, and 100 ELs. Obviously, the number of WCs has significant

effect on lifetime when |L̂| = 40. In this case, since there are
more MSs than ELs, we can allow those MSs without dispatch-
ing jobs to visit WCs to replenish their energy, thereby sub-
stantially extend their lifetime. Thus, system lifetime greatly
increases as the number of WCs grows. On the other hand,

when there are more ELs than MSs (i.e., |L̂| is 70 or 100),
placing more WCs cannot significantly prolong lifetime. The
reason is that every MS has to be assigned with a dispatching
job to visit ELs. Therefore, an MS may not have enough time
to recharge its battery, so there is not much help in extending
its lifetime by placing more WCs.

6.6 Effect of Parameters

Recall that α decides the number of MSs that a WC can serve
in each round. Table 4 shows its effect on system lifetime with

40 and 100 ELs, where we set |Ĉ| = 4 and |Ŝ| = 50. When
|L̂| = 40, lifetime keeps increasing in each method when we

increase α from 1 to 5. Similarly, when |L̂| = 100, lifetime also
keeps increasing as we raise α from 1 to 4. However, when
α ≥ 5, increasing α will not extend lifetime. The reason is
that a WC can recharge no more than one MS at a time. As

0

20

40

60

80

100

30 40 50 60 70 80

number of ELs

a
v
e

ra
g

e
p

a
th

le
n

g
th

(m
)

K-means

balanced

eAHC

(a) average

0

20

40

60

80

100

30 40 50 60 70 80

number of ELs

s
ta

n
d

a
rd

d
e

v
ia

ti
o

n
o

f
p

a
th

le
n

g
th

(m
)

K-means

balanced

eAHC

(b) standard deviation

Fig. 10: Effect of different grouping strategies on the length of a shortest
path to visit all ELs in each group.

0

100

200

300

400

500

600

700

0 1 2 3 4

number of WCs

s
y
s
te

m
lif

e
ti
m

e
(r

o
u

n
d

)

40 ELs

70 ELs

100 ELs

Fig. 11: Effect of the number of WCs on system lifetime.

discussed in Section 5.2.2, the total recharging time of a WC
is limited to TC

avg. In this case, even though we relax the α
constraint by setting α = ∞, the energy replenishment scheme
will not schedule more MSs to visit WCs. Thus, lifetime keeps
stable when α ≥ 5 in the experiment.

In the G-MSD algorithm, we use a limit ε by Eq. 6 for
each group of ELs to decide its candidate MSs and bid for
an MS. Eq. 6 relies on a coefficient β to adjust the value of
ε, so we evaluate its effect on system lifetime by G-MSD in

Table 5, where |Ŝ| = 50 and |Ĉ| = 0. When |L̂| = 40, we
can maximize lifetime by setting β = 20. Otherwise, the peak
value of lifetime occurs when β = 15. Thus, the suggested
value of β is within [15, 20] in this experiment.

We then measure the effect of charging rate r on G-MSD’s

12 PERVASIVE AND MOBILE COMPUTING

TABLE 4: Effect of parameter α on system lifetime (in rounds).
α value 1 2 3 4 5 6 ∞

number of ELs: 40
EBD (K-means) 417.2 418.1 425.5 426.7 429.3 427.1 427.8
EBD (balanced) 430.1 431.3 435.1 435.8 438.6 436.2 437.1
EBD (eAHC) 429.9 430.4 434.3 435.3 438.1 435.8 436.2
G-MSD 600.6 601.3 608.9 612.1 613.8 614.0 615.1
number of ELs: 100
EBD (K-means) 81.9 89.4 94.5 94.9 95.3 94.3 94.1
EBD (balanced) 114.2 118.8 121.7 122.2 121.4 121.0 120.7
EBD (eAHC) 131.4 132.9 135.0 134.7 133.8 133.7 133.6
G-MSD 130.7 135.1 136.3 136.4 137.1 135.7 135.2

TABLE 5: Effect of parameter β on system lifetime (in rounds).
β value 5 10 15 20 25 30

30 ELs 465.7 472.2 472.5 469.7 468.2 466.3
40 ELs 258.8 268.2 271.7 272.0 270.6 270.3
50 ELs 114.2 116.7 123.4 123.3 121.7 121.5
60 ELs 106.1 108.9 111.6 111.4 108.7 106.1
70 ELs 110.1 112.7 115.0 113.4 109.8 107.5
80 ELs 110.9 113.8 115.7 112.8 109.7 106.3

0

200

400

600

800

1000

1200

1 5 10

charging rate (J/s)

s
y
s
te

m
lif

e
ti
m

e
(r

o
u

n
d

)

40 ELs

70 ELs

100 ELs

(a) charging rate r

0

200

400

600

800

1000

1200

600 800 1000

working time (second)

s
y
s
te

m
lif

e
ti
m

e
(r

o
u

n
d

)

40 ELs

70 ELs

100 ELs

(b) working time Tmax

Fig. 12: Effect of charging rate and working time on system lifetime of G-
MSD.

lifetime with 50 MSs. Fig. 12(a) gives the simulation result,
where we set r to 1, 5, and 10 J/s. In general, a larger r value
means that each WC can recharge a battery in a higher speed.
Thus, when an MS calls at a WC, it can be replenished with
more energy and extend lifetime accordingly. That is why the

charging rate has significant impact when |L̂| < |Ŝ| (i.e., 40
ELs), as there is a good possibility for MSs to visit WCs for

recharging. When there are more ELs than MSs, each MS may
need to visit multiple ELs and have not enough time to visit a
WC. In this case, increasing r has less effect on lifetime.

Finally, we evaluate the working time Tmax on G-MSD’s
lifetime, where there are also 50 MSs. Fig. 12(b) shows the
result, where we set Tmax to 600, 800, and 1000 seconds. Since
Tmax decides the length of a round, a larger Tmax value implies
that the frequency of event occurrence will decrease. In this
case, each MS has ample time to finish its dispatching job
and also visit a WC to recharge its battery. Thus, we can
extend lifetime by increasing Tmax. Such a phenomenon is
more obvious when there are 40 ELs, since a part of MSs will
not be assigned with any job and have more time for WCs to
recharge their batteries.

7 CONCLUSION

Introducing mobility to a WSN gives it flexibility to conduct
various missions like event analysis. This paper aims at the
multi-round sensor dispatch problem in a hybrid WSN with
WCs, whose objective is to assign MSs to visit ELs and WCs to
maximize system lifetime. We propose the G-MSD algorithm
to solve this NP-hard problem. In G-MSD, we group ELs to
improve dispatching efficiency and let groups bid for MSs to
save and balance their energy costs. MSs are then scheduled
to call at WCs on their ways to visit ELs, so as to increase
recharging efficiency. Through simulations, we show that G-
MSD extends more than 40% of system lifetime than the EBD
method when MSs are more than ELs. Besides, the grouping
strategy has a great impact on performance, where the eAHC
strategy can cluster ELs into smaller groups, which helps re-
duce and balance energy costs of MSs. Moreover, we also show
that G-MSD can further extend system lifetime by increasing
the charging rate of WCs and the working time of MSs.

REFERENCES

[1] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos,
“Wireless sensor network virtualization: a survey,” IEEE Comm. Sur-
veys & Tutorials, vol. 18, no. 1, pp. 553–576, 2016.

[2] P. Tokekar, J.V. Hook, D. Mulla, and V. Isler, “Sensor planning for
a symbiotic UAV and UGV system for precision agriculture,” IEEE
Trans. Robotics, vol. 32, no. 6, pp. 1498–1511, 2016.

[3] Y.C. Wang and C.C. Yang, “3S-cart: a lightweight, interactive sensor-
based cart for smart shopping in supermarkets,” IEEE Sensors J., vol.
16, no. 17, pp. 6774–6781, 2016.

[4] C.A. Tokognon, B. Gao, G.Y. Tian, and Y. Yan, “Structural health
monitoring framework based on Internet of things: a survey,” IEEE
Internet of Things J., vol. 4, no. 3, pp. 619–635, 2017.

[5] Y.C. Wang and G.W. Chen, “Efficient data gathering and estimation
for metropolitan air quality monitoring by using vehicular sensor
networks,” IEEE Trans. Vehicular Technology, vol. 66, no. 8, pp. 7234–
7248, 2017.

[6] Y.C. Wang, “Mobile sensor networks: system hardware and dispatch
software,” ACM Computing Surveys, vol. 47, no. 1, pp. 12:1–12:36,
2014.

EFFICIENT DISPATCH OF MOBILE SENSORS IN A WSN WITH WIRELESS CHARGERS 13

[7] J. Rezazadeh, M. Moradi, and A.S. Ismail, “Mobile wireles sensor
networks overview,” Int’l J. Computer Comm. and Networks, vol. 2, no.
1, pp. 17–22, 2012.

[8] Y.C. Wang, F.J. Wu, and Y.C. Tseng, “Mobility management algo-
rithms and applications for mobile sensor networks,” Wireless Comm.
and Mobile Computing, vol. 12, no. 1, pp. 7–21, 2012.

[9] Y. Mei, Y.H. Lu, Y.C. Hu, and C.S.G. Lee, “Deployment of mobile
robots with energy and timing constraints,” IEEE Trans. Robotics, vol.
22, no. 3, pp. 507–522, 2006.

[10] X. Lu, P. Wang, D. Niyato, D.I. Kim, and Z. Han, “Wireless charging
technologies: fundamentals, standards, and network applications,”
IEEE Comm. Surveys & Tutorials, vol. 18, no. 2, pp. 1413–1452, 2016.

[11] G. Jiang, S.K. Lam, Y. Sun, L. Tu, and J. Wu, “Joint charging tour
planning and depot positioning for wireless sensor networks using
mobile chargers,” IEEE/ACM Trans. Networking, vol. 25, no. 4, pp.
2250–2266, 2017.

[12] D. Arivudainambi and S. Balaji, “Optimal placement of wireless
chargers in rechargeable sensor networks,” IEEE Sensors J., vol. 18,
no. 10, pp. 4212–4222, 2018.

[13] H.M. La, R. Lim, and W. Sheng, “Multirobot cooperative learning for
predator avoidance,” IEEE Trans. Control Systems Technology, vol. 23,
no. 1, pp. 52–63, 2015.

[14] K. Pereida, M.K. Helwa, and A.P. Schoellig, “Data-efficient mul-
tirobot, multitask transfer learning for trajectory tracking,” IEEE
Robotics and Automation Letters, vol. 3, no. 2, pp. 1260–1267, 2018.

[15] Y. Wang and C.W. Silva, “Sequential Q-learning with Kalman filtering
for multirobot cooperative transportation,” IEEE/ASME Trans. Mecha-
tronics, vol. 15, no. 2, pp. 261–268, 2010.

[16] Y. Wang, L. Cheng, Z.G. Hou, J. Yu, and M. Tan, “Optimal formation
of multirobot systems based on a recurrent neural network,” IEEE
Trans. Neural Networks and Learning Systems, vol. 27, no. 2, pp. 322–
333, 2016.

[17] H. Hatime, R. Pendse, and J.M. Watkins, “Comparative study of task
allocation strategies in multirobot systems,” IEEE Sensors J., vol. 13,
no. 1, pp. 253–262, 2013.

[18] L. Luo, N. Chakraborty, and K. Sycara, “Distributed algorithms for
multirobot task assignment with task deadline constraints,” IEEE
Trans. Automation Science and Engineering, vol. 12, no. 3, pp. 876–888,
2015.

[19] Y. Cui, X. Wu, J. Song, and H. Ma, “A dynamic task equilibrium
allocation algorithm based on combinatorial auctions,” Proc. Int’l
Conf. Intelligent Human-Machine Systems and Cybernetics, 2016, pp.
530–533.

[20] Y. Zou and K. Chakrabarty, “Distributed mobility management for
target tracking in mobile sensor networks,” IEEE Trans. Mobile Com-
puting, vol. 6, no. 8, pp. 872–887, 2007.

[21] R. Tan, G. Xing, J. Wang, and H.C. So, “Exploiting reactive mobility
for collaborative target detection in wireless sensor networks,” IEEE
Trans. Mobile Computing, vol. 9, no. 3, pp. 317–332, 2010.

[22] J. Hu, L. Xie, and C. Zhang, “Energy-based multiple target localiza-
tion and pursuit in mobile sensor networks,” IEEE Trans. Instrumen-
tation and Measurement, vol. 61, no. 1, pp. 212–220, 2012.

[23] Y.C. Wang, K.Y. Cheng, and Y.C. Tseng, “Using event detection
latency to evaluate the coverage of a wireless sensor network,”
Computer Comm., vol. 30, no. 14-15, pp. 2699–2707, 2007.

[24] X. Wang and S. Wang, “Hierarchical deployment optimization for
wireless sensor networks,” IEEE Trans. Mobile Computing, vol. 10, no.
7, pp. 1028–1041, 2011.

[25] Y.C. Wang, C.C. Hu, and Y.C. Tseng, “Efficient placement and dis-
patch of sensors in a wireless sensor network,” IEEE Trans. Mobile
Computing, vol. 7, no. 2, pp. 262–274, 2008.

[26] Y.C. Wang and Y.C. Tseng, “Distributed deployment schemes for
mobile wireless sensor networks to ensure multilevel coverage,” IEEE
Trans. Parallel and Distributed Systems, vol. 19, no. 9, pp. 1280–1294,
2008.

[27] N. Bartolini, T. Calamoneri, T.F.L. Porta, and S. Silvestri, “Au-
tonomous deployment of heterogeneous mobile sensors,” IEEE Trans.
Mobile Computing, vol. 10, no. 6, pp. 753–766, 2011.

[28] A. Verma, H. Sawant, and J. Tan, “Selection and navigation of
mobile sensor nodes using a sensor network,” Pervasive and Mobile
Computing, vol. 2, no. 1, pp. 65–84, 2006.

[29] G. Wang, G. Cao, P. Berman, and T.F.L. Porta, “Bidding protocols for
deploying mobile sensors,” IEEE Trans. Mobile Computing, vol. 6, no.
5, pp. 515–528, 2007.

[30] Y.C. Wang, “A two-phase dispatch heuristic to schedule the move-
ment of multi-attribute mobile sensors in a hybrid wireless sensor
network,” IEEE Trans. Mobile Computing, vol. 13, no. 4, pp. 709–722,
2014.

[31] Y.C. Wang, W.C. Peng, and Y.C. Tseng, “Energy-balanced dispatch
of mobile sensors in a hybrid wireless sensor network,” IEEE Trans.
Parallel and Distributed Systems, vol. 21, no. 12, pp. 1836–1850, 2010.

[32] S. Zhang, Z. Qian, J. Wu, F. Kong, and S. Lu, “Wireless charger
placement and power allocation for maximizing charging quality,”
IEEE Trans. Mobile Computing, vol. 17, no. 6, pp. 1483–1496, 2018.

[33] P. Guo, X. Liu, S. Tang, and J. Cao, “Concurrently wireless charging
sensor networks with efficient scheduling,” IEEE Trans. Mobile Com-
puting, vol. 16, no. 9, pp. 2450–2463, 2017.

[34] W. Liang, Z. Xu, W. Xu, J. Shi, G. Mao, and S.K. Das, “Approximation
algorithms for charging reward maximization in rechargeable sensor
networks via a mobile charger,” IEEE/ACM Trans. Networking, vol. 25,
no. 5, pp. 3161–3174, 2017.

[35] T. Liu, B. Wu, H. Wu, and J. Peng, “Low-cost collaborative mobile
charging for large-scale wireless sensor networks,” IEEE Trans. Mobile
Computing, vol. 16, no. 8, pp. 2213–2227, 2017.

[36] P. Zhong, Y.T. Li, W.R. Liu, G.H. Duan, Y.W. Chen, and N. Xiong,
“Joint mobile data collection and wireless energy transfer in wireless
rechargeable sensor networks,” Sensors, vol. 17, no. 8, pp. 1–23, 2017.

[37] S. Guo, C. Wang, and Y. Yang, “Joint mobile data gathering and
energy provisioning in wireless rechargeable sensor networks,” IEEE
Trans. Mobile Computing, vol. 13, no. 12, pp. 2836–2852, 2014.

[38] Y. Zhang, S. He, and J. Chen, “Near optimal data gathering in
rechargeable sensor networks with a mobile sink,” IEEE Trans. Mobile
Computing, vol. 16, no. 6, pp. 1718–1729, 2017.

[39] R.M. Buehrer, H. Wymeersch, and R.M. Vaghefi, “Collaborative sen-
sor network localization: algorithms and practical issues,” Proc. The
IEEE, vol. 106, no. 6, pp. 1089–1114, 2018.

[40] A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher, and
M. Soljacic, “Wireless power transfer via strongly coupled magnetic
resonances,” Sciences, vol. 317, no. 5834, pp. 83–86, 2007.

[41] Y.C. Wang and S.J. Liu, “Minimum-cost deployment of adjustable
readers to provide complete coverage of tags in RFID systems,” J.
Systems and Software, vol. 134, pp. 228–241, 2017.

[42] V.S. Borkar, V. Ejov, J.A. Filar, and G.T. Nguyen, Hamiltonian Cycle
Problem and Markov Chains. Berlin: Springer, 2012.

[43] D. Defays, “An efficient algorithm for a complete link method,” The
Computer J., vol. 20, no. 4, pp. 364–366, 1977.

[44] M.D. Apperley and M.M. Alahmari, “Tracking battery state-of-
charge in a continuous use off-grid electricity system,” University
of Waikato, Department of Computer Science, Tech. Rep., 04 2013.

[45] J.M. Soares, I. Navarro, and A. Martinoli, “The Khepera IV mobile
robot: performance evaluation, sensory data and software toolbox,”
Proc. Iberian Robotics Conf., 2015, pp. 767–781.

