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Abstract—A data center network (DCN) is composed of many servers interconnected by well-organized switches, which involves massive
amount of data transmissions to provide cloud services. It is critical to manage packet routes in DCNs to avoid congestion on some links.
The software-defined networking (SDN) technique supports auto-configuration of switches by a central controller, and gives an easy way to
manage traffic flows. In the paper, we exploit SDN to improve performance of fat-tree DCNs, and propose a low-cost, load-balanced route
management (L2RM) framework. L2RM keeps monitoring network traffics and computes a load-deviation parameter to check if some links
of switches are burden with heavy loads. Then, an adaptive route modification (ARM) mechanism is triggered if necessary, which considers
the size limitation of flow tables and uses group tables in OpenFlow to distribute flows among different links to balance their loads. Besides,
L2RM uses a dynamic information polling (DIP) mechanism to query switches about their statuses, so as to reduce the message overhead
of the controller. Through Mininet simulations, we show that our L2RM framework can better increase link utilization, alleviate table overflow,
and reduce message cost, as comparing with other SDN-based approaches for fat-tree DCNs.

Index Terms—data center network (DCN), fat tree, load balance, OpenFlow, software-defined networking (SDN).

1 INTRODUCTION

HE boom in the service of cloud computing and big data
Tresults in a corresponding boom in the deployment of
data center networks (DCNs) [1]. In a DCN, numerous servers
are connected by many switches to form a huge intranet or
local area network. To support scalability, switches need to
be organized, so different network topologies such as fat tree,
virtual layer 2 (VL2), and jellyfish are proposed [2].

To handle the growing demand of cloud computing, it is
critical to efficiently route traffic flows among servers. Tra-
ditional switches possess both control and data planes, so
they decide where to forward packets on their own. How-
ever, as network scale substantially increases, popular routing
methods like the shortest-path routing may not work well. In
particular, some links of switches could become “hotspots”,
which will be inevitably congested by a large amount of data,
causing significant degradation in DCN performance [3].

The technique of software-defined networking (SDN) provides
a new paradigm to manage the network by centralizing the
control plane in a controller and distributing the data plane
among switches [4]. In this way, the controller is capable
of managing traffic flows by setting transmission rules in
switches to command their behavior in terms of packet pro-
cessing. In addition, administrators can easily manage the
whole network with the help of the controller, rather than
doing configuration on every switch. Due to its flexibility, there
have been various SDN applications developed, from routing
multicast flows [5] to providing anonymous communications
[6], isolating rogue access points [7], and eliminating redun-
dant packets [8].

In this paper, we aim to improve performance of fat-tree
DCNs by dynamically rerouting traffic flows to avoid link
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congestion. Based on SDN, we propose a low-cost, load-balanced
route management (L2ZRM) framework to help the controller get
network status by using three tables to store information
of paths, loads, and switches. According to the traffic loads
of links, L2RM computes a load-deviation parameter to check
whether there is potential congestion. If so, the adaptive route
modification (ARM) mechanism is invoked to reroute packets via
alternative paths and share the loads of congested links. To
save the controller’s overhead, a dynamic information polling
(DIP) mechanism is also developed to adjust the time period
for the controller to query switches about their information.

Our L2RM framework has three features. First, the ARM
mechanism is invoked only if necessary by using a dynamic
load-deviation parameter. Thus, we not only save the cost to
run the ARM mechanism but also keep the network stable (as
the routes of traffic flows will not change frequently). Second,
the ARM mechanism helps switches remove old entries from
their flow tables to avoid buffer overflow. Moreover, it amends
routes of traffic flows by varying bucket weights in group
tables defined by OpenFlow [9]. The design is lightweight and
incurs a low cost. Third, our DIP mechanism applies an ex-
ponential backoff idea to adjust the query period. In this way,
we can reduce the controller’s overhead while keeping correct
information of switches. These features distinguish the L2RM
framework from existing solutions and give our contributions.
Simulation results verify that L2ZRM outperforms other SDN-
based methods developed for fat-tree DCNs, including round
robin, LABERIO, and DLPO, in terms of link utilization, table
overflow, and message overhead.

This paper is outlined as follows: Section 2 gives back-
ground knowledge, and Section 3 surveys related work. We
present the L2RM framework in Section 4, followed by its
performance evaluation in Section 5. Then, a conclusion will
be drawn in Section 6.



TABLE 1: Example of a flow table (we omit some fields).

match fields priority instructions
in_port=1 priority=1 | actions=output:3
eth_type=0x0800, priority=1 | actions=flood
ipv4_src="10.0.0.1"
eth_type=0x0800, priority=1 | actions=group:87
ipv4_dst="10.0.0.2”

priority=0 | actions=controller:6633

TABLE 2: Example of a group table (we omit some fields).
group identifier | group type | action buckets
group_id=87 select bucket=weight:30, actions=output:3
bucket=weight:70, actions=output:4

2 PRELIMINARY

2.1 SDN Implementation: OpenFlow

OpenFlow is a popular protocol to implement SDN, which
is regulated by ONF (open networking foundation) [10]. It
defines the communication interface between the data and
control planes in SDN. Specifically, switches (i.e., data plane)
consult their flow tables and group tables to decide how to
process packets. The controller (i.e., control plane) establishes
a TLS (transport layer security) connection with each switch to
install rules in its tables. In this way, the controller is capable
of commanding the transmission behavior of the switch.

A flow table is composed of one or more flow entries, where
each flow entry has the following fields:

e Match fields: The switch uses it to check whether a
packet satisfies the conditions specified by the flow
entry.

o Priority: When a packet meets the conditions of mul-
tiple flow entries, the switch can select the flow entry
with the highest priority to process that packet.

e Counters: It stores the number of packets (and their
bytes) that the switch has processed by using the flow
entry.

o Instructions: Once a packet satisfies the conditions
given in the match fields, the switch will conduct the
operations indicated in this field to process that packet.

o Timeouts: It has idle-timeout and hard-timeout sub-fields.
The flow entry will be removed only when it is not used
during idle-timeout. Hard-timeout gives the lifetime of
the flow entry, so it must be discarded after timeout.

e Cookie: It is an opaque value set by the controller to
filter flow statistics, modification, or deletion. Thus, the
switch will not use the cookie field to process packets.

Table 1 gives an example. The 1st flow entry means that
a packet coming from port 1 should be forwarded to port
3. The 2nd flow entry tells the switch to broadcast a packet
to all its ports if the packet has source IP address of 10.0.0.1.
The 3rd flow entry asks the switch to handle a packet by the
group table with ID 87 if the packet’s destination IP address
is 10.0.0.2. The 4th flow entry has no match fields, which
means that if none of the above flow entries can handle the
packet, it should be sent to the controller whose port is 6633.
We remark that the last flow entry will trigger an event of
table miss, which makes the switch send a Packet_In message
to the controller that contains the packet’s information. In this
case, the controller will generate a new flow entry (e.g., by
algorithms or administrators), and install the flow entry in the
switch by replying a Packet_Out message to it.
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Fig. 1: A 4-ary fat-tree DCN.

A group table can be viewed as an extension of the flow
table. It consists of group entries, each with four fields:

o Group identifier: It is a 32-bit unsigned integer used to
uniquely identify each group.

o Group type: If the value is “all”, the switch conducts
each action in the group. When the value is “select”,
the switch picks some actions to conduct based on their
weights.

o Counters: It increases whenever a packet is handled by
the group entry.

e Action buckets: Each bucket contains a set of actions
(and parameters) that tell the switch how to handle the
packet.

Table 2 shows an example. Recall that the 3rd flow entry in
Table 1 asks the switch referring to Table 2 (with group_id=87)
to handle the packet. Since the value of group type is “select”,
the switch picks one bucket of actions based on its weight. In
the example, the switch will forward the packet to its ports 3
and 4 with probabilities of 0.3 and 0.7, respectively.

2.2 DCN Topology: Fat Tree

Fat tree is a classic and common DCN topology [2], which
organizes switches into a tree-like structure. In general, a k-
ary fat tree can connect at most k3/4 servers by using 5k*/4
switches, where k is the number of ports in a switch. In a
fat-tree topology, switches are divided into three layers, called
core, aggregation, and edge. Edge switches directly connect with
servers. They are also grouped with aggregation switches into
k pods, where each pod has k/2 edge switches and k/2
aggregation switches. Thus, each edge switch uses k/2 ports to
connect with servers, and the residual ports are connected with
aggregation switches. Besides, the number of core switches is
k? /4, where a core switch uses one port to connect with each
pod. Fig. 1 gives an example, where k = 4. In a fat tree, we
can use the same type of switches (usually cheap commodity
products) to save the hardware cost. Moreover, since there are
multiple paths with an equal length between any two servers,
the fat-tree topology can support full bisection bandwidth in
theory [11]. However, this topology requires more switches to
maintain the tree structure, so it is economical and efficient to
adopt SDN to manage these switches.

3 RELATED WORK

In the literature, some studies are dedicated to the issue of
load balance in DCNs. We classify them into two categories.
One aims to balance working loads of servers, while the other
seeks to balance traffic loads in the network.
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3.1 Load Balance on Servers

As a DCN usually consists of identical servers, it is natural to
distribute jobs among them to avoid burdening some servers
with heavy loads. Load-balancing methods can be either static
or dynamic [12]. Static methods assign jobs to different servers
according to predefined rules, so they are easy to use but may
not give quick response to the change of network condition.
Dynamic methods consider the working load of each server
and can better support load balance. Lee et al. [13] survey three
common load-balancing methods, including round robin (RR),
least connection (LC), and shortest expected delay (SED). RR is
static, which asks servers to take jobs by turns. Both LC and
SED are dynamic, which select the server that has the fewest
client connections and spends the shortest working time to do
the job, respectively.

Some studies adopt SDN to achieve load balance on
servers. For example, [14] analyzes packets sent from clients by
the controller. Both RR and LC methods are then used to share
working loads among servers. However, [14] uses SDN merely
to collect the information of packets. The work [15] assigns
jobs to servers by referring to IP addresses of clients. When
a server becomes overloaded, the controller modifies its flow
entries to dispatch traffic flows to other servers. On the other
hand, [16] employs multipath TCP along with SDN to save
transmission time of traffic flows by allowing simultaneous
use of multiple paths in a fat-tree DCN. Thus, some network
devices will have longer idle time and can be put to sleep
to reduce energy consumption. Obviously, these studies have
different objectives with our paper.

3.2 Load Balance on Network

The work [17] considers scheduling a mix of traffic flows
with and without deadlines in a DCN. To prioritize deadline
flows while avoiding starving non-deadline flows, a minimal-
impact congestion control protocol is used to transmit deadline
flows by spending the least amount of bandwidth. Then, non-
deadline flows are scheduled with the objective of decreasing
their flow competition time. Bai et al. [18] apply the technique
of explicit congestion notification (ENC) to DCNs to improve
throughput and reduce latency. However, previous ENC meth-
ods assume that each switch port has only one queue. Thus,
they propose an ENC solution for multi-service DCNs, where
there are multiple service queues associated with each port to
isolate different traffic classes. The study [19] aims to support
micro load balance for DCNs by letting each switch make
its decision without a central controller. To do so, a set of
candidate next-hops for each destination should be installed
in the forwarding table of every switch. Then, a switch locally
decides where to route each packet and seeks to balance
loads of its ports. In [20], a small-scale DCN is considered,
where each top-of-rack (ToR) switch connects with the rest
components in the DCN (e.g., aggregation switches or servers).
To balance traffic loads, it reconfigures the network topology
to enable ToR switches with heavy loads to use under-utilized
uplinks from their neighbors. However, the above studies do
not exploit SDN to improve DCN performance.

A number of research efforts adopt SDN to manage traffic
flows in DCNs. Assuming that switches form a mesh topology,
[21] assigns a cost for each link for traffic routing. When a link
has lower utilization, VoIP flows are given with a lower cost
on that link. Then, the Dijkstra’s algorithm [22] is used to find
the shortest route for each flow. Thus, VoIP flows can have

precedence over others to get network bandwidth. The work
[23] uses depth-first search to find multiple routes from the
source to the destination in a DCN with the Abilene topology
[24]. Then, the route which offers the maximum bandwidth is
selected to send data. In addition, when the total utilization of
bandwidth is above 80%, new traffic requests will be denied to
avoid network congestion.

How to manage routes in fat-tree DCNs is also discussed.
The work [25] aims at elephant flows, each carrying a great deal
of data. The controller keeps monitoring link utilization and
splits these flows by sending their packets via different paths.
However, [25] uses SDN to adjust packet routes based on the
existence of elephant flows, instead of network status. Adami
et al. [26] classify traffic flows into bronze, silver, and gold.
For a bronze flow, the controller recalculates a new path only
when route failure occurs. For a silver flow, the controller finds
its working and recovery paths, where the former is used to
send data and the latter is used only when the working path is
broken. Then, a gold flow can send its data via both working
and recovery paths. However, [26] addresses how to recover
routes from failure, not to adjust routes to balance their loads.

In [27], a load-balanced routing with OpenFlow (LABERIO)
method is proposed to manage traffic flows. When the network
utilization exceeds a threshold, LABERIO iteratively selects
the flow using the most bandwidth from the busiest link, and
reroutes that flow to another path. However, it does not make
good use of group tables to distribute flows among different
paths. Besides, LABERIO may be frequently invoked due to
impulse flows (i.e., the flows which last in a short time but have
volumes of data), which wastes the controller’s resource to do
the load-balancing job. To cope with the problem, [28] develops
a dynamic load-balanced path optimization (DLPO) method and
uses the technique of simple moving average [29] to reduce
the triggering frequency of the DLPO method. In DLPO, the
top 10% of busiest links are selected and their flows are trans-
ferred to other links with lower utilization for load balance.
Nevertheless, [28] does not consider saving the controller’s
overhead caused by SDN messages. Since both [27] and [28]
address the load-balancing issue in fat-tree DCNs by using
SDN, we will compare our L2RM framework with LABERIO
and DLPO in Section 5. Simulation results will show that
L2RM outperforms them in terms of load balance, table usage,
and message overhead.

4 THE PROPOSED L2RM FRAMEWORK

Fig. 2 presents the system architecture of our L2RM frame-
work, which is installed in the controller to manage a fat-tree
DCN. It maintains path, load, and entry tables to monitor the
statuses of routes, traffic loads, and flow entries in relation to
each switch, respectively. Since some switches may be broken
(e.g., hardware failure or disconnection), L2RM uses a switch
health check (SHC) mechanism to check whether switches are
alive and remove invalid entries of failed switches from these
tables. Then, the controller periodically estimates the load-
deviation parameter Lp by referring to the load table. In case
that the number of times that Lp exceeds a threshold §, the
ARM mechanism is invoked to arrange routes for traffic flows.
In addition, the controller can use the DIP mechanism to poll
switches to update the three tables. Below, we detail our design
in each component.
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Fig. 2: Architecture of our L2RM framework, where underlined texts
indicate the sections that discuss the detailed designs of the corresponding
components.
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Fig. 3: Example of a DCN topology.

TABLE 3: Example of the path table (we omit some records).
(source, destination) | routes

{4001, 4003) {3001, [2001, 2002], 3002}

(4002, 4005) {3001, 2001, [1001, 1002], 2003, 3003},
{3001, 2002, [1003, 1004], 2004, 3003 }
{3002, 2001, [1001, 1002], 2003, 3004},
{3002, 2002, [1003, 1004], 2004, 3004}

(4003, 4007)

4.1 Table Maintenance

As mentioned earlier, the controller keeps three tables to get
network status efficiently. Specifically, the path table gives
the shortest routes between each pair of source and destina-
tion servers. To condense this table, we use a notation ‘[]’
to represent alternative switches in the same layer. Table 3
gives an example, where we consider the network topology
in Fig. 3. The 1st record in Table 3 indicates that there are two
shortest paths between servers 4001 and 4003. One is through
switches 3001—2001—3002 and the other is through switches
3001—2002—3002. These two paths include switches 3001 and
3002, but they choose different switches in the aggregation
layer. Therefore, we use a term {3001, [2001, 2002], 3002} to
represent both paths, which saves table size.

The controller can consult the path table to select alter-
native paths to balance traffic loads of links by the ARM
mechanism, which will be discussed in Section 4.4. Besides,
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TABLE 4: Example of the load table (we omit some records).

switch ID | traffic amount
2001 {1:3283, 2:218748, 3:1853, 4:3158}
2003 {1:3480, 2:1351, 3:288536, 4:2195}
3001 {1:597811, 2:1421, 3:878787, 4:585}

it can use the SHC mechanism in Section 4.2 to remove the
invalid records (due to switch failure) from the path table.
Theorem 1 analyzes the size of the path table.

Theorem 1. Let n and k be the number of servers and the number
of ports in a switch, respectively. When switches are arranged in a
k-ary fat tree, the path table will contain no more than (—1 — £ +

A S ; .
5+ % + 53) - n switches in its records.

Proof: There are three cases to be discussed.

Case I: Both source and destination servers are connected by
the same edge switch. In this case, the path contains only the
edge switch. According to Section 2.2, an edge switch connects
at most % servers. Thus, each server can choose (% -1
destinations. Since we have n servers, there will be at most
n(% — 1) switches stored in the records for case L.

Case II: Both source and destination servers are connected only
by the same aggregation switch. Observing from the example
of (4001,4003) pair in Table 3, each record of paths contains
two edge switches (which directly link to the source and
destination servers) and % alternative aggregation servers.
Thus, a record must have (4 + 2) switches. In case II, the
source server can choose the destination servers connected by
(g — 1) aggregation switches in the same pod, where each
aggregation switch further connects with g servers. In other
words, we have totally g(g — 1) choices of destination servers
for each source server. Consequently, we need to store at most

n- (& —1)(% + 2) switches in the records for case IL.

Case 11I: Both source and destination servers are connected onl
by the same core switch. A k-ary fat tree has no more than %
core switches, each connecting to an aggregation switch in one
pod. Thus, a record of paths will contain two edge switches,
two aggregation switches, and %2 alterative core switches.
Observing from the example of (4002, 4005) pair in Table 3,
each source server can select g aggregation servers to connect
with the core switch. Also, each destination server can find out
g aggregation servers to connect with the same core switch.
Therefore, we need to keep at most (% . g) records for each pair
of source and destination servers. Since there are n servers in
the DCN, we will have no more than n - %(% + 4) switches
in the records for case III.

By combining the results of these cases, we will store at
most nz(g ~D+n: EE-DE+2)+n- (44 =(-1-
g + % + % + ’;—2) -1 switches in all records of the path table,
which proves this theorem. O

Then, the load table stores the amount of traffic load of
each switch (in terms of its ports) collected in the previous
T,on duration, where T, is an adjustable parameter decided
by the DIP mechanism in Section 4.5. Each record of the load
table has the format of (switch ID, {port1: traffic amount1,
port2: traffic amount?2, -- -, portk: traffic amount k}), where
the amount of traffic is measured in bytes. The controller
queries each switch about its information by DIP and updates
the load table accordingly. Table 4 gives an example. The
controller also uses the load table to determine whether to
invoke the ARM mechanism, as discussed in Section 4.3.
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The entry table keeps track of the utilization of the flow
table owned by each switch. Its record has the format of
(switch ID, the number of used flow entries, the size of the
flow table). For example, a record (1001, 18, 20) means that
switch 1001 has stored 18 flow entries in its flow table, whose
maximum size is 20 flow entries. The controller can refer to
the entry table to monitor the usage of flow tables (to prevent
them from overflowing) and update its information by the
DIP mechanism. Note that every flow table must contain one
default flow entry, which is shown in the last entry of Table 1.
The default entry allows the switch to notify the controller of
the new packet that the switch has no rules to handle it, so the
controller can decide how to process that packet by installing
new entries in the switch’s flow table. Theorem 2 analyzes the
sizes of both load and entry tables.

Theorem 2. Given a k-ary fat-tree DCN, the maximum sizes of
load and entry tables will be 5k* /4 and 5k? /4, respectively.

Proof: As discussed in Section 2.2, a k-ary fat tree has at
most 5k?2 /4 switches, where k is also the number of ports per
switch. In the load table, since we need to record the amount of
traffic passed through each port of every switch, the maximum
size of the load table will thus be 5k3/4. On the other hand,
each switch has one flow table, so the maximum size of the
entry table will be 52 /4. O

We remark that the analysis of both Theorems 1 and 2 hold
only for fat-tree DCNs.

4.2 The SHC Mechanism

The SHC mechanism follows the OpenFlow protocol for the
controller to check the health of each switch. In particular,
a switch has four states with respect to its connection with
the controller. In the beginning, the switch starts from the
HANDSHAKE_DISPATCHER state to get in touch with the
controller. Then, it changes to the CONFIG_DISPATCHER state
to negotiate parameters with the controller. After that, the
switch enters the MAIN_DISPATCHER state. In this state, the
controller can get the messages of switch feature to capture the
network topology (and update the path table accordingly),
and also transmit sef-config messages to command switches.
However, in case of switch failure (e.g., shut down or network
disconnected), the controller will mark the switch’s state as
DEAD_DISPATCHER and trigger an event of EventOfPState-
Change to indicate some failure in the network equipment.

Therefore, once the controller receives the EventOfPState-
Change event in regard to a switch s;, it searches all records
in the path table and removes s; from existing paths. When a
path becomes partitioned due to the removal of s;, the path is
discarded accordingly. Besides, the records that contain s; in
both load and entry tables will be also marked as invalid.

4.3 Moment to Invoke The ARM Mechanism

To update the load table, the controller uses the function of
OFPPortStatsRequest to query each switch about the amount
of traffic passing through it. Then, the switch will reply the
number of received packets, the amount of received data (in
bytes), the number of transmitted packets, and the amount of
transmitted data (in bytes) by each of its ports. However, since
every port p; of a switch will connect to at most one port p; of
another switch, it means that the amount of data transmitted
by port p, must be equal to the amount of data received by

slot 1 2 3 4 5 6 7 8 9 10 M

ARM

Fig. 4: Example of using the CW counter to decide when to invoke the
ARM mechanism, where gray slots mean that the condition of Lp > ¢
holds.

port p;. Therefore, we store only the information of transmitted
data in the load table.

Based on the amount of data transmitted by each port, we
define the traffic load of a link /; ; (which connects ports p; and
p;) at time ¢ as follows:

Ai; (1)

Gij(t) = o i)’ (1)

where A, ;(t) is the amount of data transmitted through I; ;
and C; ;(t) is the maximum capacity of /; ; at time ¢. The units
of both A; ;(t) and C; ;(t) in Eq. 1 are bits, so ¢; ;(t) will be
a rational number without any unit. In particular, we have
0< G,y (t) <1, because a link never carries data more than its
capacity. Let £ denote the set of all links in the DCN. We can
estimate the load-deviation parameter by

Lp= ﬁ S (16 (1) — Gans D)), @
l

i EL

where (avg(t) is the average traffic load of all links at time
t. Here, Eq. 2 borrows the notion of the variance equation.
Since 0 < [(;,(t) — Cave(t)] < 1, we thus add an offset of
1 to it. Obviously, when traffic loads of links become more
unbalanced, L p increases accordingly. Theorem 3 analyzes the
range of Lp’s value.

Given the load-deviation parameter Lp, we can check if it
exceeds a threshold ¢ (i.e., some links are burdened with heavy
loads) and invoke the ARM mechanism accordingly. However,
there may be impulse flows in the DCN that generate volumes
of data in a short time but soon disappear. In this case, there
is no need to run the ARM mechanism, as switches will not be
congested by such flows for a long time. Thus, we check the
condition of Lp > § for CW consecutive times to determine
whether to invoke the ARM mechanism. As shown in Fig. 2,
we reduce a counter CW by one whenever the condition is
true, or restore CW to its default value. When CW = 0,
the ARM mechanism will be executed. After the execution of
ARM, we restart the above procedure to check Lp in the next
slot. In this case, the “restore CW” block in the flowchart of
Fig. 2 will reset CW to its default value. We give an example
in Fig. 4, where the default value of CW is 2. In the example,
the ARM mechanism will be invoked on slots 5 and 10.

Theorem 3. The inequality 1 < Lp < 2.25 must hold.

Proof: Observing from Eq. 2, the minimum value of Lp
occurs when every (; ;(¢) is equal to (avg(t) (i-e., all links have
the same traffic load). In this case, we can derive that

:‘%' > (1402 =1
l;

i,; €L

Lp

The maximum value of Lp occurs when one half of all links
in £ each has the maximum load, while the other half of links
each has the minimum load. Based on the definition in Eq. 1,



TABLE 5: Default routes installed in switch s;’s group table.

group identifier | group type | action buckets

group_id=10 select bucket=weight:100, actions=output:1
bucket=weight:0, actions=output:3

the load /; ; is between 0 and 1. In this case, we can calculate
that Cavg(t) = 0.5, and derive that

1
Lp= = Y (1405)* =225,
|£| l;, ;€L
which proves the theorem. O

From the analysis in Theorem 3, we can quantify Lp’s
range into percentage to reflect the degree of how traffic
loads of links are unbalanced, where the case of Lp = 1
corresponds to 0% (i.e., the least unbalancing case) and the case
of Lp = 2.25 corresponds to 100% (i.e., the most unbalancing
case). In this way, one suggested value of ¢ is to take 25%
of Lp’s range (i.e.,, § = 1.3125). In our simulations, we thus
set 6 to 1.3. Except for the threshold ¢, the default value of
CW will also determine the triggering frequency of the ARM
mechanism. Therefore, we will evaluate the effects of both §
and CW in Section 5.4.

4.4 The ARM Mechanism

When some links are about to be congested, the controller
carries out the ARM mechanism to reroute their traffic flows
for load balance. Specifically, the ARM mechanism has three
stages. In the initial stage, each new flow is assigned routes
based on the path table. Then, the controller adjusts the
amount of flows’ data sent through different routes in the
rerouting stage. Finally, the controller installs necessary flow
entries to make switches reroute these flows in the reaction
stage.

4.4.1

The stage is used only when a switch s; catches one packet
of a new flow f;. In this case, s; notifies the controller of f;’s
source and destination IP addresses via a Pack_In message.
The controller then refers to the path table to select two routes
for f; to send its packets. One is the primary route and the
other is a backup route!. As their names would suggest, f;’s
packets will be sent through the primary route as a default,
and the backup route is used for the load-balancing purpose.
Afterwards, the controller installs flow entries in the switches
along these two routes by replying Packet_Out messages to
them. Let us consider an example. Suppose that the source
and destination IP addresses of f; are 10.0.0.1 and 10.0.0.16,
respectively. Then, the controller installs a flow entry in s;’s
flow table as follows:
match fields: ip, nw_src=10.0.0.1, nw_dst=10.0.0.16
instructions: actions=group:10

The flow entry asks s; to consult the group table with ID 10
to send f;’s packets, as given in Table 5. In the example, the
primary and backup routes of f; will run through s;’s 1st
and 3rd ports, respectively. Theorem 4 analyzes the number
of Packet_Out messages that the controller uses to install flow
entries in switches by the initial stage.

Initial Stage

1. In Section 5.5, we will evaluate the effect of the number of backup
routes. Simulation result show that it is enough to use one backup route
to keep flow throughput while reducing the overflow probability.
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To deal with the stale route problem, where some links may
be broken but s; still forwards packets to these links, we set
an idle-timeout Tige for the flow entry. Thus, s; will remove
the flow entry (and also the group table) after Tiq. expires.
Using the idle-timeout can also helps s; periodically weed out
old flow entries and prevent its flow table from overflowing.
Remark 1 discusses how to decide the value of Tigie.

Theorem 4. Given m new flows, the controller requires no more
than 8m Packet_Out messages to install necessary flow entries in
switches to deal with these flows in a fat-tree DCN.

Proof: Observing from the fat-tree topology in Fig. 1, the
longest route for a flow will go through one core switch, two
aggregation switches, and two edge switches. However, the
primary and backup routes of a flow must share the same edge
switches (i.e., one connects to the source server and the other
connects to the destination server). Thus, the controller has to
install flow entries in at most 8 switches (for both primary and
backup routes of a flow) in the worst case. Since it is enough to
use one Packet_Out message to install flow entries in a switch,
the controller will transmit at most 8m Packet_Out messages
to switches for the new flows, which proves this theorem. [

Remark 1 (Set the value of Tigic). To prevent each flow entry
from occupying the space of a flow table for a long time, the work
[30] sets the value of idle-timeout between Ti5™ and TS, whose
suggested values are 10 and 50, respectively. In fact, the idle-timeout
Tiq1e should vary depending on the size of available space of a flow
table. Specifically, if less space remains in the flow table, we should
assign a shorter idle-timeout for the flow entry, and vice versa. Thus,
we improve the method in [30] by setting Tiqie as follows:

Nused

1 idle 1 i
idle
N otal

e, €)

(T —

where Nysed and Niotal denote the number of used flow entries and
the maximum size of the flow table (also measured in flow entries),
respectively. In Eq. 3, Tiqie will be limited between T3, and T3>,
Besides, it decreases as the flow table contains more flow entries. We
will also measure the effect of different Ti ). and T3¢ values in

Section 5.6. I

4.4.2 Rerouting Stage

When a link becomes congested, the controller asks its switch
to also forward some packets to the backup route to share
the link’s load. In particular, the rerouting stage contains the
following steps:

S1. Select the link /; ; with the maximum (; ;(t) value from
L (i.e., the busiest link). If there is a tie, we arbitrarily
pick a link. Let us denote by s, the host switch of [; ;.

S2.  Among the flows transmitted through /; ;, we select the
flow f;, with the largest traffic demand. If there is a
tie, we arbitrarily pick a flow. Assume that the primary
and backup routes of f;, go through ports p; and p; of
switch s,, respectively.

S3. If (3.(t) > (i ;(t) by referring to Eq. 1, which means
that link [ , in the backup route is also busy, we find
another backup route from the path table, say, with link
ly , through s,’s port py such that ( ,(t) < ¢, ;(¢) and
Cp y(t) is the minimum. Then, we replace the backup
route via p, with the new route via py in s,’s group
entry. Otherwise, we skip this step.
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S4. Let A; and A, be the amount of data sent through ports
p; and py, respectively’. Then, we adjust the bucket
weights of both p; and p;, by

Ap
wy, =100 — w;. ®)

In this way, s, will forward each of fj’s packet via
its ports p; and pp, with probabilities of w;/100 and
wyp /100, respectively. Thus, the traffic load of link lij
(via port p;) can be shared by the backup route (via
port py).

S5. Update the load-deviation parameter Lp in Eq. 2. If Lp
is still above the threshold §, we return to step 1 to find
another busy link. Otherwise, the algorithm terminates.

Let us give an example of weight adjustment in step S4 by
Table 5. Suppose that A; = 4203952 (for port 1) and A, =
1326821 (for port 3). Then, the bucket weight w; for port 1
will be [mﬁ% x 100 = 24 and the bucket weight wy,
for port 3 will be 100 — 24 = 76. Therefore, around 24% and
76% of f1’s packets will be sent through ports 1 and 3, thereby
alleviating the load of link /; ;.

We discuss the rationale of this stage. Since the backup
route via port p, has a lighter load than the primary route
via port p;, we adjust the bucket weights w; and wy to make
them inversely proportional to the amount of data transmitted
through p; and py, respectively. Thus, the switch can send more
packets of flow fj through the backup route whose current
load is not heavy. Only when the backup route is also busy,
will the controller finds a new route (through port py) in step
S3 to share the load of the primary route. In this way, we can
greatly reduce the computation cost and message overhead
of the controller, as it simply adjusts the bucket weights of
existing routes in a switch, instead of frequently consulting the
path load to install new routes in multiple switches. Theorem 5
analyzes the time complexity of the rerouting stage.

Theorem 5. Given n; links in the DCN, the worst-case time
complexity of the rerouting stage is O(n?).

Proof: In step S1, we have to pick out the busiest link
from L. To facilitate this procedure, we can build a maximum
heap to store all links by their (; ;(¢) values, which spends
O(n;) time. Then, it takes O(lg n;) time to pick the busiest link
from the heap. In step S2, suppose that at most ny flows can be
transmitted through a port, where ny < n;. It will take O(ny)
time to find flow fj from port p;. In step S3, since each switch
has k ports, we can find the backup route (via port ') with
no more than O(k) time. Obviously, we have k < n;. Then,
it takes constant time to do the calculation of Egs. 4 and 5 in
step S4. Besides, we will update the data structures of links
lp,» and [; ; in the heap, which takes 20(lgn;) time. In step
S5, we need to compute Lp by Eq. 2, where it takes O(n;)
time to find (aye(t) and also O(n;) time to do the summation.
Therefore, each iteration of the rerouting stage will spend time
of O(lgn;) + O(ny) + O(k) + 20(Ign;) + 20(n;) = O(my).
The worst case occurs when we check every link in £, which
results in n; iterations. Thus, the overall time complexity will

be O(n;) + ny - O(ny) = O(n?). |

2. Obviously, if we do the replacement of backup route in step S3, it will
be port py in step S4.

TABLE 6: Example of adjusting the polling period by the DIP mechanism.

successive time | polling period (seconds)
a<3 Tpon =5 x29=5
3<a<6 Tpon =5 x 21 =10
6<a<9 Tpon =5 x 22 =20
9<a<12 Tpon =5 x 23 =40
12<a<15 Tpon =5 x 24 =80
15<a<18 Tpon =5 x 25 = 160
a>18 Tpon =5 x 26 =320

4.4.3 Reaction Stage

The controller sends Packet_Out messages to switches to mod-
ify their flow entries (e.g., updating bucket weights). Since
these messages are transmitted through the same network
links with ordinary packets, the update of routes in different
switches may not be consistent. In this case, some switches will
not have correct flow entries to deal with the transmission of a
flow, thereby causing the event of table miss and dropping its
packets. To solve this problem, we suggest updating the flow
tables of switches in a reverse manner. In particular, suppose
that the new route of a flow is s1 — s — --- — s,. The
controller then updates the flow tables of switches following
the sequence of s,,, s,—1, - - -, and s;. In this way, we can avoid
the occurrence of a situation where the flow’s packets come
to a switch before the switch gets the Packet_Out message to
update its route.

In the reaction stage, the number of Packet_Out messages
that the controller has to send depends on the number of
switches whose flow entries are updated in the rerouting stage.
From Theorem 5, we observe that the ARM mechanism may
spend more computational time. That is why we develop the
method in Section 4.3 to significantly reduce the frequency of
invoking the ARM mechanism, which avoids ARM becoming
a bottleneck of our L2RM framework and also saves the
computational resource of the controller.

4.5 The DIP Mechanism

To keep correct information of the path, load, and entry tables,
the controller will periodically poll switches for their infor-
mation to update these tables. Specifically, the polling period
T,ou decides not only the correctness of table content but also
the message overhead for the controller to get information
of switches. Moreover, the polling period should be dynamic,
since it is not necessary for the controller to frequently query
switches in some cases. For example, when the network is
stable and most links are load-balanced, there is no need to
invoke the ARM mechanism to reroute packets. In this case,
the controller can actually update its tables at a later time and
save the message overhead accordingly.

Based on this observation, the DIP mechanism adjusts the
polling period by borrowing the notion of exponential backoff in
IEEE 802.11 [31] as follows:

Tpoll = Teheck X 20(/57 (6)

where Tiheck 1S the minimum time interval for the controller
to compute the load-deviation parameter Lp by Eq. 2, v is the
successive time that the condition of Lp < ¢ holds (i.e., the
ARM mechanism is not invoked), and 5 € N is a coefficient.
In case of Lp > 9§, «v is reset to 0. Besides, the maximum value
of « is limited to 6. Thus, the value of T},,;; will not grow too
large, and the controller can still update its tables when the
network keeps stable for a long time. Table 6 gives an example,
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where we set Tiheck to Sseconds and 3 to 3. In Eq. 6, the
coefficient 8 provides flexibility in adjusting the polling period.
Specifically, when most links are load-balanced (i.e., Lp keeps
below ) in the current T}y period, we can double the value
of Tyon to further reduce the message overhead incurred by
the controller.

5 PERFORMANCE EVALUATION

We implement our L2RM framework on the Mininet simulator
[32], which supports the OpenFlow protocol. The controller
is implemented by Ryu [33], which is a popular component-
based framework for SDN implementation. On the other hand,
switches are implemented by the Open vSwitch module [34] to
simulate the behavior of OpenFlow switches. Besides, we use
the iPerf tool [35] to generate real traffic flows in a network.
In our simulations, we consider a DCN whose topology is
a 4-ary fat tree, as shown in Fig. 1. Moreover, there are three
scenarios used to model the generation of traffic flows:

e Multi-destination (MD) scenario: We choose two servers
linked by the same edge switch to be sources. Each of
them will send packets to five servers.

o Uniform traffic (UT) scenario: There are ten servers to
generate flows, where each one has a different destina-
tion. Thus, flows may be distributed among links.

o Concentrated traffic (CT) scenario: We select twelve
servers as sources and three servers as destinations.
This scenario can be used to model the traffic pattern
where many users query resource possessed by just few
servers.

Each flow is a TCP connection and produces packets in every
[10, 15] seconds. The simulation time is 300 seconds.

We compare L2RM with three SDN-based methods dis-
cussed in Section 3, including RR [14], LABERIO [27], and
DLPO [28]. They also aim to balance traffic loads of links
in a fat-tree DCN. As mentioned in Section 4.3, we set the
threshold § to 1.3 in L2RM. Besides, we also set T/3i" = 10
and T}3%* = 50 in Eq. 3. Below, we measure the performance
of each method in terms of link utilization, table overflow, and
message overhead. Then, we evaluate the effects of different
parameters, including 6, CW, the number of backup routes,
ﬂré‘lié‘, and ;7% on L2RM performance.

5.1 Link Utilization

We compare the average link utilization of each method, as
shown in Fig. 5. Since the amount of data generated by traffic
flows are fixed, high link utilization implies that the method
could make good use of different routes to send data. There is
a similar periodicity in changes of link utilization, where the
period length is about 10 to 15 seconds (i.e., consistent with
the time interval that each flow produces packets). Besides,
most methods have lower link utilization in the MD scenario,
as there are only two servers to generate flows and they are
connected by the same edge switch.

The RR method asks a switch to send packets of each
flow via two fixed links in turns. When these links become
congested, packet loss may frequently occur. That is why RR
results in the lowest link utilization in Fig. 5. By dynamically
changing routes, LABERIO, DLPO, and L2RM can increase
their link utilization accordingly. Our L2RM framework signif-
icantly outperforms LABERIO and DLPO in the UT scenario.
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TABLE 7: Confidence intervals of average link utilization in Fig. 5.

method MD scenario | UT scenario | CT scenario
RR 20.13 +£2.27 24.87 + 2.81 26.70 4+ 3.02
LABERIO | 26.74 +3.02 | 31.99 +3.61 | 30.42 4 3.44
DLPO 24.26 + 2.74 29.71 +3.36 | 30.31 £+ 3.42
L2RM 28.35 +3.20 | 35.17+£3.97 | 34.37 +3.88

The reason is that each source server has its own destination.
Thus, traffic flows may be evenly distributed among links, and
L2RM can better use group tables to balance loads of links.

Table 7 presents the confidence intervals of average link
utilization by different methods in Fig. 5, where the confidence
level is 95%. The RR method has higher link utilization in the
CT scenario than in other scenarios, since there are the most
source servers (i.e., 12 servers) in this scenario. On the other
hand, LARBERIO, DLPO, and L2RM perform better in the UT
scenario, because there are more source servers (i.e., 10 servers)
and each of them has its own destination. Thus, there are more
choices for these methods to pick backup routes to balance link
loads. From Table 7, we observe that L2ZRM always has the best
performance among all methods in different scenarios, which
demonstrates its effectiveness on improving link utilization.

We also evaluate the standard deviation of link loads, as
given in Fig. 6. Specifically, the lower the standard deviation,
the more balanced the link loads. Since the MD scenario is a
multicast scenario with only two sources, all methods have
lower standard deviation in the MD scenario than in other
scenarios. In the RR method, as each switch uses two fixed
links to transmit packets of a flow by turns, the loads of
these links may become similar. That is why it results in the
lowest standard deviation. On the other hand, L2RM can have
lower standard deviation than both LARBERIO and DLPO,
especially in the UT and CT scenarios. That is because L2RM
adopts group tables for the routing purpose and adaptively
adjusts the bucket weights of routes to decide the percentages
of packets to be sent via these routes. In this way, L2RM can
further balance link loads.

5.2 Table Overflow

We then measure the degree of table overflow by different
methods, which can be evaluated by two metrics:

e Blocked packet: When a switch has no idea to handle
a packet, if no additional flow entries can be installed
(e.g., due to running out of table space), the packet is
called blocked [30] and has to be discarded by the switch.

o Table-full event: When a switch uses up its table space
but the controller seeks to install new flow entries (e.g.,
due to blocked packets), an event of table full will occur.

The number of table-full events will be larger than the number
of blocked packets, because each blocked packet will be also
sent to the controller for processing. In fact, when a table-full
event occurs, it means that the controller tries in vain to install
flow entries in the switch, which wastes resource. Therefore,
we can also use the number of table-full events to measure the
amount of “useless” load by the controller.

Fig. 7 gives the number of blocked packets generated by
each method, while Fig. 8 shows the number of table-full
events caused by each method, where we increase table size
from 10 to 50 flow entries. When the DCN becomes more
congested, both blocked packets and table-full events will
increase, because the controller has to install more flow entries
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TABLE 8: Reduction ratio of message overhead by L2RM in Fig. 10.

method MD scenario | UT scenario | CT scenario
RR 18.75% 5.79% 5.63%
LABERIO 49.29% 45.10% 50.96%
DLPO 24.50% 22.51% 24.26%

and 8, we observe that DLPO has the most blocked packets
and table-full events, followed by LABERIO and RR. On the
other hand, our L2RM framework can greatly reduce blocked
packets and table-full events, as comparing with the above
three methods. That is because L2RM allows each switch to
adaptively remove old records from its flow table by using
Eq. 3 to set an idle-timeout for every flow entry, which helps
save its table space.

We also study the usage rates of flow tables by different
methods. In the experiment, we set table size to 20 flow
entries. When a flow table is full but the controller still asks
its switch to install new flow entries, these flow entries will
be discarded accordingly. Fig. 9 gives the average usage rate
of the top 50% of table tables (in terms of their usage rates).
Since RR, LABERIO, and DLPO do not consider removing old
flow entries, their usage rates will increase and then keep in
high values as time goes by. On the contrary, L2ZRM uses Eq. 3
to decide the lifetime of each flow entry. Thus, a switch can
automatically remove stale ones from its flow table. That is
why the usage rate of L2RM periodically decreases and then
increases. In the MD scenario, since there are only two sources,
RR will install the fewest flow entries among all methods.
L2RM can regularly weed out unused flow entries, so it has
a lower usage rate than LARBERIO and DLPO. On the other
hand, in both UT and CT scenarios, as more switches are
involved in relaying packets, more flow entries have to be
installed. Thanks to the setting of idle-timeout by Eq. 3, L2RM
can conserve table space and thus result in the lowest table
usage rate in these two scenarios.

5.3 Message Overhead

Then, we evaluate the message overhead for the controller to
query and command switches, whose experimental results are
given in Fig. 10. On the whole, each method requires more
SDN messages in the CT scenario, followed by UT and MD
scenarios. The reason is that there are the most sources that
produce packets in the CT scenario, while only two sources
are used in the MD scenario. For the RR method, since each
switch sends packets of a flow via two routes in turns, the
controller need not exchange many messages with switches.
On the contrary, the controller will incur the highest message
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Fig. 10: Comparison on the message overhead.

overhead in LABERIO, as it frequently asks the controller to
do the load-balancing job. As discussed in Section 3.2, DLPO
uses simple moving average to reduce its triggering frequency.
Thus, it will have a lower message overhead than LABERIO.
Among all methods, L2RM can always result in the lowest
message overhead due to the design of the DIP mechanism in
Section 4.5.

Table 8 presents the reduction ratio of message overhead
by L2RM, as comparing with other methods. On the average,
our L2RM framework can save 10.06%, 48.45%, and 23.76%
of SDN message overheads as comparing with RR, LABERIO,
and DLPO, which verifies its message efficiency.

5.4 Effect of 6 and CW

In Section 4.3, we use both parameters § and CW to control
when to invoke the ARM mechanism to do the load-balancing
job in L2RM. As discussed in Theorem 5, the rerouting stage of
ARM is a time-consuming operation. Thus, we investigate how
these two parameters affect the triggering frequency of ARM.
In Theorem 3, we show that the range of the load-deviation
parameter Lp is between 1 and 2.25. Therefore, starting from
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Fig. 11: Effect of parameters 6 and CW on the triggering frequency of ARM.

0 = 1, we iteratively add it by 0.1, until 6 = 2.2 in the
experiment.

Fig. 11 shows the experimental results. Generally speaking,
the triggering frequency decreases when 6 grows, because only
when Lp > 6 will we seek to invoke the ARM mechanism. In
addition, the ARM mechanism will be executed only when the
condition of Lp > 0 holds for CW successive slots. Thus,
a larger CW value, a lower triggering frequency. In the MD
scenario, since there are only two sources that generate flows,
the triggering frequency drastically drops when 6 > 1.3. In
the UT scenario, we increase more sources, so the triggering
frequency significantly decreases when d exceeds 1.3. On the
other hand, since there are the most sources that send packets
to only three destinations, the network will easily become
congested in the CT scenario. Thus, the triggering frequency
gradually decreases when ¢ increases in the UT scenario.

Observing from Fig. 11, a better choice is to set 6 = 1.3
and CW = 2, because this setting still allows us to invoke
the ARM mechanism to balance traffic loads among flows in
the MD scenario. Besides, it can greatly reduce the triggering
frequency of ARM in both UT and CT scenarios, so as to save
the computational resource of the controller.

5.5 Effect of Backup Routes

Next, we evaluate the effect of different numbers of backup
routes on both the average flow throughput and the overflow
probability. Fig. 12 presents the experimental results, where
we consider 0, 1, 2, and 3 backup routes for each flow. Broadly
speaking, increasing the number of backup routes can improve
flow throughput, because there are more choices for a switch
to relay the packets of each flow. However, it also substantially
increases the overflow probability of the flow table, since the
switch needs to store more routing information. Such a trend
is more obvious in the CT scenario, as there are the most
sources that transmit packets to just three destinations. From
Fig. 12, we suggest using one backup route for the three traffic
scenarios, since it can increase flow throughput but will not
drastically increase the overflow probability.

5.6 Effect of 773" and T73*
To conserve table space, L2RM adopts Eq. 3 to compute the

idle-timeout Tjqi. for each flow entry, which are decided by
T, T, and the number of used flow entries Nygeq. Fig. 13

shows how Tjg changes when we vary the value of iré‘fen,

where we set table size to 30 flow entries and 732" to 50. The

1

value of Tjqi will decrease linearly as the value of Nyseq grows.
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Fig. 13: Effect of T;%iM value on the idle-timeout T}qye.

Besides, the slope of Tiqics result depends on the gap between

max and THin. Specifically, the larger the gap, the larger the
slope. In other words, a new flow entry will be given a shorter
lifetime when (T032* — THiM) increases. In this way, we can
speed up removing flow entries when there remains less space

in a flow table.
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Fig. 14: Effect of different [T%i1, TaX] ranges.

We finally study the effect of different 775", T'%2*] ranges
on SDN messages and table-full events in L2RM, where we
set [TT3n Tmax] to [0, 10], [10,50], and [50, 100]. Fig. 14 gives
the experimental results. In particular, when the [T75 Tax]
range is smaller, each flow entry will be given a shorter idle-
timeout by Eq. 3. In this case, since a switch will fast remove
its flow entries, the controller has to reinstall the removed
flow entries (for packet routes). On the other hand, a shorter
idle-timeout means that the flow table will not be occupied
by old flow entries for long time. Thus, the table-full events
will decrease accordingly. From Fig. 14, a better choice is to

set [T1in, Tmax] to [10, 50, since it can balance between SDN
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Fig. 12: Effect of the number of backup routes on the average flow throughput and the overflow probability.
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