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Abstract—Wireless sensor networks are vulnerable to energy holes, where sensors close to a static sink are fast drained of their energy.

Using a mobile sink (MS) can conquer this predicament and extend sensor lifetime. How to schedule a traveling path for the MS to efficiently

gather data from sensors is critical in performance. Some studies select a subset of sensors as rendezvous points (RPs). Non-RP sensors

send data to the nearest RPs and the MS visits RPs to retrieve data. However, these studies assume that sensors produce data with the

same speed and have no limitation on buffer size. When the two assumptions are invalid, they may encounter serious packet loss due to

buffer overflow at RPs. In the paper, we show that the path planning problem is NP-complete and propose an efficient path planning for

reliable data gathering (EARTH) algorithm by relaxing these impractical assumptions. It forms a spanning tree to connect all sensors and then

selects each RP based on hop count and distance in the tree and the amount of forwarding data from other sensors. An enhanced EARTH

(eEARTH) algorithm is also developed to further reduce path length. Both EARTH and eEARTH incur less computationsl overhead and can

flexibly recompute new paths when sensors change sensing rates. Simulation results verify that they can find short traveling paths for the MS

to collect sensing data without packet loss, as compared with existing methods.

Index Terms—Data gathering, mobile sink, path planning, sensing rate, wireless sensor network.
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1 INTRODUCTION

ONE core component of the emerging Internet of Things
(IoT) technology is wireless sensor network (WSN) [1],

which allows people to easily get environmental information.
It contains a lot of small embedded devices, namely sensors,
deployed in a region of interest. Each sensor keeps moni-
toring the surroundings and reporting its sensing data to a
sink via multihop communications. Various WSN applications
have been also developed, from air-quality monitoring [2] to
health assessment [3], intelligent transportation [4], precision
agriculture [5], and smart shopping [6].

Sensors are powered by small batteries, and it is uneco-
nomic to replace batteries as the number of sensors is large [7].
Due to the nature of multihop communications, the sensors
close to a static sink have to relay a great deal of data from
others farther away from the sink. It results in non-uniform
energy consumption of sensors, and those sensors near the
sink will use up their energy quickly. Thus, there is a high
possibility that the sink soon becomes disconnected from all
sensors, thereby shortening WSN lifetime. This situation is
called the energy hole problem [8].

Many research efforts have shown the effectiveness of
using a mobile sink (MS) to solve the energy hole problem [9],
[10]. The MS periodically moves along a preplanning route to
visit sensors to gather their data. In this way, sensors need not
relay data through many hops and thus save their energy on
communications. Moreover, since the role of data forwarders
(i.e., the sensors that connect to the sink) may change when
the MS moves, the amount of energy consumed by each sensor
could be more balanced.
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One critical issue is how to schedule a short traveling
path for the MS to get data from sensors, as sensing data
usually have timeliness (e.g., delay-sensitive applications [11]
or event reports [12]). Intuitively, we can let the MS visit each
sensor, and the problem will be same to the NP-complete
traveling salesman problem (TSP) [13]. However, when the scale
of WSN is large, such a solution may be infeasible since the
MS is liable to violate the delay constraint of sensing data
due to moving along a much longer path. Alternatively, one
can select a subset of sensors as rendezvous points (RPs) to
reduce path length [14]. In particular, non-RP sensors send
data to nearby RPs and the MS moves to visit only RPs to
collect all data. Thus, the problem becomes how to find RPs
such that the amount of energy consumption due to multihop
communications (from non-RP sensors to RPs) is minimized
with the shortest traveling path.

Existing methods to find RPs assume that sensors produce
data at the same speed (i.e., they have an equal sensing rate).
Moreover, RPs have sufficiently large buffers to cache the for-
warding data from neighbors and their sensing data before the
MS comes to get them. In practice, these assumptions may not
be always valid. For example, some sensors may be asked to
accelerate their sensing rates once they detect abnormal events
[12]. Besides, it is infeasible to let sensors possess large buffers
due to their small-sized implementation [15], [16]. Thus, when
the two assumptions are not available, existing methods will
lead to packet loss at some RPs due to buffer overflow. We give
an example in Fig. 1, where each sensor produces one packet
of sensing data, and r0 is the location of a base station (BS). To
reduce the MS’s traveling path while saving sensors’ energy
on communications, one will select sensors s1, s4, and s6 to
be RPs. Thus, each sensor can forward packets through just
one hop and save its energy. In addition, the path’s length
is also minimized. However, suppose that each sensor can



2 IEEE TRANSACTIONS ON MOBILE COMPUTING

s2

s3s5s7

s8

MS BS

r0

s6
s1

s4

forwarding data

traveling path

Fig. 1: An example to show the occurrence of packet loss when sensors
have diverse sensing rates and limited buffers.

cache at most three packets in its buffer, and sensor s8 now
produces two packets. In this case, RP s6 has to discard one
packet with the original path. In fact, we can change the path
to r0 → s1 → s4 → s6 → s8 → r0 to avoid packet loss.

Motivated by the above observation, this paper proposes
an efficient path planning for reliable data gathering (EARTH)
algorithm to adaptively select RPs based on sensing rates and
buffer sizes. The objectives are to 1) minimize the traveling
path, 2) save the energy of sensors spent on data transmissions,
and 3) prevent RPs from discarding packets due to buffer
overflow. To do so, the EARTH algorithm constructs a shortest-
path (SP) tree to connect all sensors. Starting from leaf nodes,
it progressively finds candidate RPs according to the amount
of relay data. Then, EARTH selects RPs from the candidates
by referring to their hop counts and distances. Thus, each RP
can have enough buffer space to cache all forwarding data and
its own data, before the MS comes to retrieve them. Moreover,
we also develop an enhanced EARTH (eEARTH) algorithm by
efficiently replacing some RPs to further reduce path length,
which helps speed up the MS’s data gathering process.

Our contributions are threefold. First, we point out that
existing methods do not consider the issues of diverse sensing
rates and buffer limitation, so they may fail to support a reli-
able data gathering mechanism due to buffer overflow at RPs.
Both the EARTH algorithm and its enhancement are proposed
to address the practical issues. Second, many methods find a
permanent path for the MS based on a constant sensing rate,
so some of them involve in developing a complicated solution
which incurs high computational overhead. Comparing with
them, our proposed algorithms can adaptively compute new
paths to deal with the case where sensors will need to adjust
their sensing rates (e.g., increasing the rates when detect-
ing events or decreasing the rates to save energy). Through
complexity analysis, we verify that the proposed algorithms
require less computational time. Third, with extensive simula-
tion results, we show that our algorithms not only find a short
traveling path, but also reduce energy consumption of sensors
on communications. Moreover, they can efficiently solve the
serious packet loss problem encountered by other methods.

We outline this paper as follows: Section 2 discusses related
work. Section 3 formulates the path planning problem. In Sec-
tion 4, we propose the EARTH algorithm and its enhancement.
Afterwards, performance is evaluated in Section 5. Section 6
finally gives a conclusion.

2 RELATED WORK

Our survey of related work has three parts. First, we study
the issue of dispatching mobile nodes to visit sensors. Then,
we address how to use one MS to directly gather data from

every sensor. Finally, we discuss the research efforts that aim
at selecting RPs to schedule the MS’s traveling path.

2.1 Dispatching Multiple Mobile Nodes

Some studies use k mobile ferries to gather data from each
sensor, whose objective is to decide the moving paths of ferries
and make them meet at some points to exchange data. The
work of [17] divides the sensing field into k grids and assigns
a ferry to visit the sensors in each grid. Besides, some contact
points are selected on grid boundary to make two ferries meet
together. In [18], three path-planning methods are developed
for ferries. The first method picks a contact point and cuts
the sensing field into k regions which intersect at the point.
Each ferry finds a Hamiltonian cycle to visit all sensors in a
region and the contact point. The second method derives k
cycles, where k − 1 cycles are used to visit sensors while one
cycle called bus is to connect all other cycles. Thus, ferries can
exchange their data via the bus cycle. The third method uses
one cycle to visit all sensors and each ferry moves along a
segment of the cycle. When a ferry fi contacts with the next
ferry fi+1, it sends data to fi+1, just like a relay race.

A hybrid WSN is considered in [19], where static sensors
detect events while mobile sensors move to visit event sites
to gather data. Since mobile sensors have limited energy, the
goal is to extend their lifetime by dispatching them in a round-
by-round manner. Event sites are divided into clusters, and
[19] assigns one mobile sensor to each group, which considers
not only reducing the traveling paths of mobile sensors but
also balancing their energy consumption. Then, the mobile
sensor uses a TSP method to call on every site in the cluster.
The work of [20] extends the dispatch problem with multi-
attribute mobile sensors. Each event site has one attribute of
sensing data but a mobile sensor can gather data with multiple
attributes. To solve this problem, [20] pairs each mobile sensor
with an event site to satisfy the Pareto optimality [21]. Then,
each mobile sensor uses a spanning tree to connect unpaired
event sites such that the mobile sensor has the same attribute
with these event sites and the tree’s weight is minimized. Thus,
it can balance the amount of energy spent by mobile sensors.

Although the above studies deal with the issue of path
planning, they have different objectives with our paper.

2.2 Using an MS to Visit Each Sensor

Given a set of sparsely scattered sensors, some studies sched-
ule the traveling path of an MS to gather their data with the
goal of minimizing path length. The work of [22] assumes
that sensors have different communication ranges, and the
MS can get data from a sensor once it touches any point
within the sensor’s communication range. Thus, [22] uses an
evolutionary algorithm to find the touching points on the
boundary of each sensor’s communication range, and connects
these points by a TSP method, so as to reduce the overall path.
The work of [23] also finds touching points from the boundary
of communication range, but it eliminates some redundant
points (e.g., visiting the same sensor multiple times). In this
way, [23] can further shorten the traveling path.

The work of [24] assumes that the MS’s speed is adjustable
and it keeps collecting data from a sensor when the MS
roams within the sensor’s communication range. Then, the
objectives are to schedule the MS’s traveling path and also
change its speed along the path, such that the MS can gather
data from each sensor with the shortest time. He et al. [25] use
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a progressive strategy to compute the traveling path with a
delay constraint. They first use a TSP method to find a path
to visit all sensors. By modeling the sensors’ communication
ranges as disks, the Welzl’s method [26] is then used to find
the smallest enclosing disks along the path. In this way, the
path is iteratively reduced, as the MS can gather data from
multiple sensors when it locates within the overlapping region
of their communication ranges.

As discussed in Section 1, the traveling path becomes much
longer when there are many sensors. Thus, the above schemes
may not perform well in a large-scale WSN.

2.3 Selecting RPs to Gather Data

Both [27] and [28] assume that an MS keeps moving along
a fixed and known trajectory, and sensors are scattered close
to the MS’s path. When a sensor resides within the MS’s
communication range (when the MS approaches), it becomes
an RP to relay data for others. Thus, both studies focus on
analyzing queuing delays and energy consumption of sensors
in this network paradigm. Obviously, they deal with a different
problem with our path planning problem.

The work of [29] considers a strip-shaped sensing field
with both entrance and exit points re and rx on its two sides,
respectively. To find the traveling path of an MS, it divides the
sensing field into two halves and finds a turning point rt on
the field’s center line, such that when the MS moves along the
path re → rt → rx, sensors in each half can spend less energy
on sending data to the MS. Afterwards, [29] iteratively cuts
each half into two equal parts and repeats the above process to
find a turning point in each part, until the path’s length reaches
an upper bound. In this way, sensors near the traveling path
will become RPs. However, this scheme may not be applied to
a sensing field with arbitrary shape.

Some studies use a tree that link all sensors to find the trav-
eling path and RPs. Specifically, [30] forms a minimum Steiner
tree and traverses it in a preorder sequence, until the time that
the MS moves to visit the selected vertices (i.e., RPs) exceeds
the delay threshold. Since the Steiner tree may have virtual
vertices (i.e., they do not correspond to sensors), it replaces
such RPs by the nearest sensors. However, this method may
cause longer data forwarding paths for some non-RP sensors,
as the Steiner tree is traversed in preorder. So, it will force
the sensors to spend more energy on communications. Xing
et al. [14] create a routing tree in the WSN and assign each
tree edge a weight based on the number of sensors using the
edge to relay their data. Then, the MS selects the edges with
larger weights under a delay constraint. Since the MS will
move along tree edges, some RPs may be visited many times.
Thus, [14] iteratively amends the traveling path via a TSP
method. However, the TSP method is invoked nRP times in
every iteration, where nRP is the number of RPs, so the scheme
incurs high computational overhead of O(n2RPΥ), where Υ is
the time used to run the TSP method.

A few studies seek to find the minimum RPs by limiting
the hop count from each non-RP sensor to the nearest RP. The
work of [31] forms an SP tree in the WSN. From each leaf node,
the ancestor node k-hops away is selected as an RP. Then,
each RP collects data from all nodes in its subtree, and the MS
moves to visit RPs to gather data. The work of [32] proposes a
single-hop data-gathering problem to find the fewest RPs such
that every non-RP sensor can always find a one-hop RP to
relay its data. This problem is formulated by a mixed-integer

problem (i.e., NP-hard) and a spanning-tree covering heuristic
is used to select RPs. Though non-RP sensors can spend less
energy to send data to RPs, each RP has to collect data from
relatively more sensors and spends more energy accordingly.
Therefore, the energy hole problem may still occur at some
RPs.

The work of [33] proposes a cluster based (CB) method to
find RPs. It randomly selects some sensors as cluster heads,
and each other sensor joins the cluster whose head is closest.
Then, one RP is selected from each cluster. If the traveling path
used to visit all RPs is shorter than a threshold Lmax, CB adds
more cluster heads and repeats the procedure. However, since
cluster heads are randomly selected, some clusters may have
more sensors, which makes their sensors spend more energy
on communications. In [34], a weighted rendezvous planning
(WRP) scheme is proposed by forming a spanning tree in the
WSN. Each sensor si is given a weight Wi = Ni × H(i,M),
where Ni is the number of packets that si sends to an RP
and H(i,M) is the hop count between si and its closest RP.
Since WRP assumes that each sensor produces one packet
of sensing data, Ni is the number of si’s children plus one.
Then, WRP selects an RP with the maximum weight and uses
a TSP method to schedule a path to visit each RP. The iteration
is repeated until path length exceeds Lmax. However, since
it uses the TSP method to recompute the path to visit RPs
(including the new found one) in each iteration, WRP has time
complexity of O(n2Υ), which is higher than that in [14].

Comparing with existing methods, our paper considers
the issues of diverse sensing rates and limited buffers, which
are rarely studied in the literature. Thus, it can find a better
traveling path to save sensors’ energy on communications,
avoid RPs dropping packets due to buffer overflow, and help
the MS efficiently gather data from RPs.

3 PROBLEM DEFINITION

We first present the network architecture, followed by the
energy model. Then, we depict the path planning problem.
Finally, we discuss some practical issues.

3.1 Network Architecture

Consider a set of sensors S = {s1, s2, · · · , sn} and a BS r0
that form a connected network. Sensors are homogeneous, so
they have identical buffer capacity and communication range.
Each sensor si has a sensing rate ri (i.e., the number of packets
produced per unit time), and it can store at most B packets of
sensing data in its buffer. The destination of all sensing data
is r0. There is an MS that periodically makes a tour around
the network to collect data from sensors. The MS has to come
back to r0 to offload its gathering data. We divide the time
axis into multiple rounds with length T , where T is a given
input (and we will discuss how to set its value in Section 3.4).
In each round, the MS moves from r0, visits some sensors,
and goes back to r0. Note that each sensor produces at most
mi = ⌊ri × T ⌋ packets in a round, where mi is no larger than
B, otherwise buffer overflow must occur at some sensors.

Based on [34], we make some assumptions on the MS.
First, the location of each sensor is known, so the MS can
be aware of its tour. Second, the MS moves with a constant
speed of v. Third, comparing with the MS’s traveling time, the
communication time that the MS spends to receive data from
the visiting nodes can be ignored. Finally, RPs will receive all
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TABLE 1: Summary of common notations.
Notation Definition

S the set of sensors, where |S| = n

R the solution set of RPs
F the set of checking nodes
C the set to record the information of RP candidates
Vi the set of sensors which will send their data to a node si
Uj the set of deputies for an RP rj
r0 the BS where the MS can offload its data
mi the number of packets produced by sensor si in a round
ai the accumulative number of packets
B the capacity of a buffer (in packets)

Ĥ(·, ·) the hop count between two nodes

D̂(·, ·) the Euclidean distance between two nodes

P̂ (·, ·, ·) the length of a path to visit three nodes in sequence

data from non-RP sensors before the MS comes to visit them,
so the MS need not wait at RPs to get data.

3.2 Energy Model

Suppose that a sensor si transmits a packet with y bits to
another sensor sj , and their Euclidean distance is denoted by

D̂(si, sj). Then, the amount of energy consumed by si on data
transmission can be calculated as follows [35]:

ETx(si, sj) = (ψ1 + ψ2[D̂(si, sj)]
ε)× y, (1)

where ψ1 and ψ2 indicate the amount of power required by
the transmitter and amplifier circuits to send out one bit,
respectively, and ε is an exponent for path loss, which ranges

from 2 to 4 (usually set to 2). In Eq. 1, ψ2[D̂(si, sj)]
ε is the

amount of energy spent by the amplifier for one bit. On the
other hand, sj also consumes some energy to receive the
packet, which is measured by

ERx(sj , si) = ψ3 × y, (2)

where ψ3 gives the amount of power taken by the receiver
circuit to get one bit. We will use Eqs. 1 and 2 to evaluate the
amount of energy spent by sensors on communications.

3.3 Path Planning Problem

Given S and r0, the path planning problem asks how to find a
set of RPs R = {r0, r1, r2, · · · , rk}, where {r1, r2, · · · , rk} are
picked from S , and decide a traveling path for the MS to start
and finish its journey at r0 and visit each of other nodes in R
once, such that 1) the length of traveling path is minimized,
2) the amount of energy spent by sensors to send their data to
the MS is minimized, and 3) the number of packets dropped
by RPs due to buffer overflow is minimized. Note that each
non-RP sensor has to send its data to the nearest RP to satisfy
the second objective. Thus, all data forwarding paths of sensors
will constitute a forest, where each tree is rooted at an RP. Fig. 1
shows an example.

Below, we formulate the path planning problem as a deci-
sion problem in Definition 1 and prove that it is NP-complete
by Theorem 1. Table 1 summarizes our notations.

Definition 1. Given S and r0, the path planning decision (PPD)
problem asks whether there exists a traveling path with length of L
for the MS to collect data from all sensors in S such that the energy
consumption of sensors is E and the number of packets discarded by
RPs is X .

Theorem 1. The PPD problem is NP-complete.

Proof: We first show that the PPD problem belongs to
the NP class. Given a PDD problem instance and a traveling
path of length L, we can verify whether the path meets the
requirements of energy consumption E and packet loss X in
polynomial time. Thus, the part is proved.

Then, we reduce an NP-complete problem, the minimum
Hamiltonian cycle problem, to the PDD problem. Given a set
of n points, the minimum Hamiltonian cycle decision (MHCD)
problem asks whether there is a cycle with length L that passes
each point once. We construct a PPD problem instance by
considering a WSN with n sensors. Suppose that two adjacent
sensors si and sj both produce B/2 packets. Except for si and
sj , each sensor produces B packets. Then, the PDD problem
instance asks whether we can find a traveling path whose
starting and ending points are at r0 such that the amount of
energy consumed by sensors is

E = E′
RxB/2 + (n− 1)E′

TxB, (3)

and there is no packet loss by RPs (i.e., X = 0), where E′
Tx and

E′
Rx denote the amount of energy consumption to transmit

and receive a packet, respectively. Assume that sj is closer
to r0 than si in terms of hop count. Obviously, to avoid the
occurrence of packet loss, the only way is to let every sensor
(except for si) to be an RP, and si forward its data to sj . In
this case, sj spends energy of E′

RxB/2 to receive all packets
from si, and totally n − 1 RPs each spends energy of E′

TxB
to send its data to the MS. Thus, Eq. 3 will be the amount of
energy consumed by sensors on communications. By setting
the round time T = L/v, the PDD problem instance will ask
to find a Hamiltonian cycle with length of T × v = L to visit
n points (specifically, n− 1 sensors and r0), which is identical
to the MHCD problem. The above reduction takes polynomial
time, so the PPD problem is also NP-complete.

3.4 Practical Issues

We address three issues arisen in the path planning problem:

• How to implement its solution in a real WSN?
• What are the extra overheads for communications?
• How to decide the round time T ?

For the first issue, given the sensing rate ri of each sensor
and the round time T , the BS (i.e., r0) can find the set of
RPs by a path planning solution (e.g., our EARTH/eEARTH
algorithms). Since all sensors in S and the BS form a connected
network, the BS can announce the information of which nodes
should serve as RPs to the WSN. Thus, non-RP sensors will
forward their sensing data to the nearest RPs. Besides, as
the MS initially locates at r0, the BS can directly tell it the
set of RPs along with the traveling path. Then, the MS will
move along the path and come back to the BS to offload
its collected data. The path planning problem is critical to
the WSNs used in long-term monitoring applications, where
sensors regularly produce sensing data for a long time [36]. To
save their energy, the MS will move to visit RPs to collect the
sensing data produced by sensors. Let us take the weather
monitoring application in [36] as an example, where each
sensor produces one 15-byte packet every 10 minutes, which
includes the ZigBee header and weather-related data such as
temperature and humidity. Each RP will cache these packets
produced by itself and collected from nearby sensors, and wait
for the MS to retrieve them.
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For the second issue, there are two extra communication
overheads for sensors. One is the RP-announcement overhead,
where the BS has to notify sensors of the set of designate
RPs. However, this overhead is ‘constant’ in the sense that any
solution to the path planning problem will incur this overhead
when a new set of RPs are found by the BS. The other is called
the rate-adjustment overhead, where the BS will send messages
to certain sensors to change their sensing rates based on the ap-
plication requirement. Specifically, in many WSN applications
[37]–[39], the BS can ask some sensors to increase their sensing
rates in case of event occurrence, or decrease the rates to save
sensors’ energy. Therefore, the BS actually knows the sensing
rates of sensors beforehand without querying them. Obviously,
the rate-adjustment overhead is also viewed as a constant for
any path planning solution, because the overhead is not caused
by the solution itself. Since both RP-announcement and rate-
adjustment overheads will be the same for any path planning
solution, we will not evaluate their effects in Section 5. Instead,
we aim to measure the amount of sensors’ energy spent on
sending/receiving sensing data due to the selection of RPs by
different solutions.

For the last issue, most of the RP-finding methods dis-
cussed in Section 2.3 also dispatch the MS to collect data
from sensors in a round-by-round manner. They assume that
each sensor produces the same number of packets in a round,
which may not be practical. That is why we consider different
sensing rates in our path planning problem. To decide the
round time T , these methods put an upper-bound limitation
Lmax on the traveling path that the MS can move in a round
(e.g., due to its battery capacity). Suppose that the MS moves
in a constant speed v. Then, we can set the default value of T
to Lmax/v. Alternatively, we can also set the round time to the
maximum tolerable delay that the BS should get sensing data
from sensors. In this way, each sensor is expected to produce
at most mi packets in the worst case. To get a more accurate
value of T , we can run a path planning solution (e.g., EARTH
or eEARTH) and measure the actual time that the MS spends
to visit all RPs and go back to r0. In case that we get a smaller
T value, we can use this new value for the following rounds
(until the BS computes a new set of RPs due to the drastic
change of sensing rates). Otherwise, it means that using one
MS is not enough to collect data from all sensors. Thus, we can
divide the WSN into non-disjointed parts and use one MS to
conduct the job of data collection in each part.

4 THE PROPOSED ALGORITHMS

In this section, we present the design and discussion of our
EARTH algorithm, followed by its enhanced version.

4.1 The EARTH Algorithm

The basic idea of our EARTH algorithm is to construct a tree in
the WSN and traverse the tree to quickly identify potential RPs
based on buffer limitation. Among these candidates, we select
RPs by referring to their hop counts, distances, and subtrees.
This procedure is repeated until we have visited all tree nodes.
Then, the traveling path is created by connecting the selected
RPs. In particular, Fig. 2 gives the flowchart of EARTH, which
contains four phases below.

1. Tree construction: We first form a tree to connect all
sensors and add leaf nodes to a set F .

Start

Yes

No

Phase 1: Tree construction

Form an SP tree in the WSN, and add leaf nodes to set F.

Phase 4: Path scheduling

Use a TSP method to find a path to visit nodes in P.

Phase 3: RP selection

Select RPs from C by their hop counts or distances, and    

add them to set P. Then, we update set F.

Finish

F is empty?

Phase 2: Candidate finding

From each node in F, we find candidates along the tree by 

their accumulative data and add them to set C. 

Fig. 2: The flowchart of our EARTH algorithm.

2. Candidate Finding: From the nodes in F , we find RP
candidates along the tree and add them to a set C.

3. RP Selection: We select RPs from the nodes in C, add
them to R, and update F accordingly. If F = ∅ (which
means that all RPs have been found), we go to phase 4.
Otherwise, we return to phase 2 to find new candidates.

4. Path Scheduling: We finally use a TSP method to find a
traveling path for the MS to visit all RPs in R.

4.1.1 Phase 1–Tree Construction

Each sensor in S is associated with a checked flag (initially set to
‘false’), which indicates whether this sensor has been selected
as an RP or chosen one RP to forward its data. Afterwards,
we construct an SP tree rooted at r0 to connect all sensors,
which can be done by the Dijkstra’s algorithm. As mentioned
in Section 3.3, the solution set R of RPs must contain r0, so we
have R = {r0} in the beginning. Remark 1 discusses why we
choose to construct an SP tree.

Then, we check the tree in a bottom-up manner. To do so,
we create a set F of nodes to be checked. When a node si ∈ S
satisfies either of the two conditions, it is added to F : 1) si
is a leaf node or 2) each of si’s children has a true checked
flag. Obviously, F contains merely leaf nodes in phase 1, as
the checked flags of all nodes are false.

Remark 1 (The reasons of using an SP tree). We create an SP
tree to select RPs due to two reasons. First, in a WSN with a static
sink, it is natural to construct an SP tree for the routing purpose
[7], because each sensor can send data to the sink with the minimum
hop count and save its energy accordingly. Moreover, the SP tree
helps us determine the ancestor-descendant relationship between any
two sensors, so as to facilitate the process of selecting RPs. Second,
a number of TSP heuristics or approximation algorithms rely on the
structure of an SP tree to find the traveling path [13]. Thus, using
an SP tree can also increase the possibility of reducing path length.

4.1.2 Phase 2–Candidate Finding

Starting from a node in F , we move towards the root r0 and
accumulate the number of packets produced by the visited
nodes, which is denoted by aj . When we visit a node sj such
that aj = B (i.e., reach the maximum capacity of a buffer), sj
will be an RP candidate. Let us denote by Vj the set of all nodes
visited by the above procedure (excluding sj). Specifically, we
have

aj = mj +
∑

si∈Vj

mi. (4)



6 IEEE TRANSACTIONS ON MOBILE COMPUTING

s2s3

s8

s1 r0

s4

s9
s7

s6

1

2
3

2

1

1

4

2
21

s11

s5

2

s10

Fig. 3: An example of candidate finding, where the number close to each
circle indicates the number of packets produced by the sensor.

From Eq. 4, Vj indicates the subtree rooted at sj where the
nodes in the subtree can forward their data to sj under the
constraint of buffer capacity B. Moreover, we also create a
set C to record the information of RP candidates, where each
element of C is a two-tuple (sj ,Vj). Recall that the round
time T is a given input to the path planning problem, so we
can obtain the maximum number of packets that each sensor
produces (i.e., mj) in Eq. 4 before deciding the traveling path
of the MS.

When visiting a node sj , two cases may occur:

• Case I: sj has no or one child. If aj < B, we then check
its parent. When either aj reaches B or sj ’s parent has
a true checked flag, we let sj be a candidate.

• Case II: sj has multiple children. We use the depth-first
search (DFS) to check other children of sj . There are
three subcases. 1) If the procedure ends at any descen-
dant node1 of sj (due to aj ≥ B), we mark sj as a
candidate. 2) If every child of si leads to aj ≥ B, we
then stop the procedure at sj . 3) When we have visited
all descendant nodes of sj but aj is still below B, we
use the rule of case I to continue the procedure.

Fig. 3 gives an example, where B = 6. By phase 1, we have
F = {s5, s9, s10, s11}. Starting from s5, we visit s4 and s3. By
case I, if we visit s2, it leads to a2 = 2 + 1 + 2 + 3 > B, so
s3 is a candidate and V3 = {s4, s5}. Then, starting from s9,
we visit s8 and s7, and find that s7 has multiple children. By
case II, we visit s10 and get a7 = B. Thus, we mark s7 as
a candidate and V7 = {s8, s9, s10}. Similarly, starting from
s10, we visit s7, s8, and s9, and derive the same result of
(s7, {s8, s9, s10}). Finally, starting from s11, we check its parent
s7. If we accumulate the data of either s8 or s10, it leads to
a7 = 4+1+2 > B. So, we stop at s7. Therefore, we obtain that
C = {(s3, {s4, s5}), (s7, {s8, s9, s10}), (s7, {s11})}. Note that a
node (e.g., s7) may be included in multiple elements of C, each
with different Vi sets. It means that the node can collect data
from different sets of sensors, and these elements are viewed
as different cases.

4.1.3 Phase 3–RP Selection

For each candidate node2 si in C, we give it a weight by

wi = min
∀rj∈R

{Ĥ(si, rj)}, (5)

where Ĥ(si, rj) is the hop count between si and rj in the tree.
From Eq. 5, wi is actually si’s hop count to the nearest RP in
R. Then, the node with the largest wi value is selected as an
RP. Fig. 3 gives an example. Since R = {r0}, we have w3 = 3
and w7 = 4. Thus, s7 is selected as an RP.

1. We examine only the descendant nodes with false checked flags.
2. That is, the node in the first tuple of each element in C.

s2

r0

s4

s6

s5

V3
1

V3
2

u3
2

20m

25m

s3

s1

(a)

s2

s1
r0

s4

s6

s5

V3
1

V3
2

22m
30m

s3

(b)

Fig. 4: Examples of RP selection: (a) V1
3 ∩ V2

3 = ∅ and (b) V1
3 ∩ V2

3 6= ∅.

However, if the selected node si has multiple elements in C,
we should find extra RP(s) from its Vi sets, which are denoted
by V1

i ,V
2
i , · · · ,V

k
i . There are two cases to be discussed. In case

of V1
i ∩V2

i ∩· · ·∩Vk
i = ∅, it means that we make si collect data

from disjointed sets of sensors in phase 2. Thus, si can pick
one Vi set of sensors to collect data, and all one-hop neighbors
of si in other Vi sets have to act as RPs to collect data from the
nodes in their Vi sets. To do so, we define a weight ̟h

i for each
Vh
i set by

̟h
i = min

∀rj∈R
{D̂(uhi , rj)}+ (|Ṽh

i | − 1)× σ, (6)

where Ṽh
i is the set of all si’s one-hop neighbors in Vh

i , uhi
is the centroid of all nodes in Ṽh

i (whose coordinates can be
computed by taking the average of coordinates of these nodes),
and σ is a small constant. Remark 2 gives the idea behind Eq. 6.
To reduce the MS’s traveling path, si selects the Vh

i set with the
maximum ̟h

i value to collect data, and the one-hop neighbors
of other Vi sets are marked as RPs. We take Fig. 4(a) as an
example, where C = {(s3, {s4}), (s3, {s5, s6})} and σ = 5.
Thus, s3 is an RP and we have V1

3 = {s4} and V2
3 = {s5, s6}.

Since V1
3 has only one node, the centroid is the node itself.

Then, we can obtain weights ̟1
3 = D̂(s4, r0) = 20 and ̟2

3 =
D̂(u23, r0)+5 = 30. Thus, s3 picks the V2

3 set (i.e., s5 and s6) to
collect data, and s4 acts as an RP accordingly.

Otherwise, these Vi sets have some overlapped nodes, and
we use VO

i to denote the set of such nodes. Obviously, no
matter which Vi set that si chooses to collect data, si must be
able to get data from the nodes in VO

i . Thus, we have to select
extra RPs from the nodes not in VO

i . To do so, we define a
weight ̟h

i for each Vh
i set by

̟h
i = min

∀rj∈R
{D̂(sl, rj)}, (7)

where sl ∈ Vh
i −(Vh

i ∩V
O
i ) such that Ĥ(sl, si) is the minimum.

Similarly, si selects the Vh
i set whose weight is the maximum.

Then, for each of other Vi sets, we select the node sl /∈ VO
i that

has the minimum hop count to si as an RP. Fig. 4(b) shows
an example, where C = {(s3, {s4, s5}), (s3, {s5, s6})}. So, we
have V1

3 = {s4, s5}, V2
3 = {s5, s6}, and VO

3 = {s5}. In this
case, ̟1

3 = D̂(s4, r0) = 22 and ̟2
3 = D̂(s6, r0) = 30. Thus, s3

chooses V2
3 to collect data, and s4 will be an RP.

After selecting si and some nodes in its Vi sets as RPs, we
conduct the following four actions: 1) Add these nodes to the
solution set R. However, if r0 is si’s parent, we need not add
si to R, as si can directly forward its data to r0. 2) Mark the
checked flags of si and each node in its Vi sets as ‘true’. 3)
Remove each element whose first tuple is si from C. 4) Update
F based on the rules defined in phase 1. In case of F = ∅,
which means that the checked flag of every node is true, we
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go to phase 4 to compute the traveling path. Otherwise, we
return to phase 2 to find more RP candidates.

Remark 2 (The reasons of using a centroid). In Eq. 6, we estimate

the length of traveling path for the MS to visit all nodes in Ṽh
i (if

si does not collect data from Vh
i ). Let us consider the example in

Fig. 4(a). Assume that s3 selects V1
3 to collect data, so s5 and s6

(in Ṽ2
3 ) have to act as RPs. Thus, the traveling path is r0 → s3 →

s6 → s5 → r0. On the other hand, when s3 selects V2
3 to collect

data, the path will be r0 → s3 → s4 → r0. Comparing with these
two paths, the differences are s6 → s5 → r0 and s4 → r0. Thus,
the objective of Eq. 6 is to measure (and compare) the relative length
of such a differential path in each Vh

i set. However, it incurs a high
cost to compute an accurate length of the path, as we have to find the

shortest path between every node in both R and Ṽh
i and then use a

TSP method to find a shortest path to visit all nodes in Ṽh
i . To solve

the problem, we measure the distance between the centroid of Ṽh
i and

each node in R. In fact, given a set Ṽh
i of nodes, some clustering

methods such as K-means have verified that if we want to compare

the relative distances from two nodes si and sj to Ṽh
i , it is efficient

and accurate to directly compare the distances from Ṽh
i ’s centroid

respectively to si and sj [40]. Therefore, the correctness of Eq. 6 in
terms of distance comparison is justified. Besides, Eq. 6 also considers

the number of nodes in Ṽh
i . In other words, when Ṽh

i contains more
nodes, the MS has to use a longer path to visit them. In this way, we
can greatly save the computational cost of Eq. 6. Note that each node

in Ṽh
i is a one-hop neighbor of si, so the distance between any two

nodes in Ṽh
i is limited by 2lc, where lc is the communication range

of a sensor. Thus, we suggest setting σ = lc in Eq. 6.

4.1.4 Phase 4–Path Scheduling

In the last phase, we adopt a local-search-based TSP heuristic
to find a traveling path for the MS to visit RPs in R. The
heuristic takes computational time of O(|R|3) and its detail
can be found in [41].

We give a complete example in Fig. 3. Let us denote by
Q the set of nodes whose checked flags are false. Then, the
example has three iterations below.

Iteration 1: All tree nodes are included in Q. In this
case, we can derive that F = {s5, s9, s10, s11} and C =
{(s3, {s4, s5}), (s7, {s8, s9, s10}), (s7, {s11})}. Thus, the solu-
tion set is R = {r0, s7, s11}.

Iteration 2: Since Q = {s1, s2, s3, s4, s5, s6}, we have
F = {s5, s6} and C = {(s3, {s4, s5}), (s2, {s3, s6})}. In this
iteration, we add s3 to R.

Iteration 3: Q = {s1, s2, s6} and F = {s6}. So, we obtain
that C = {(s1, {s2, s6})}. However, as r0 is the parent of s1,
we do not add s1 to R. Thus, the final solution set R will be
{r0, s3, s7, s11} and the path is r0 → s11 → s7 → s3 → r0.

4.1.5 Discussion

We give the rationale of our EARTH algorithm. Phase 1 uses
an SP tree to quickly find out RP candidates. In phase 2, two
issues are addressed when selecting candidates. First, we want
to better utilize the buffer of each RP without the occurrence
of packet loss. Second, to reduce the traveling path, we prefer
choosing the candidates close to r0 (i.e., with fewer hop counts
to the BS). Thus, we visit tree nodes in a bottom-up fashion
and accumulate packets until ai reaches buffer capacity B.
Moreover, we also consider the combination of subtrees by
DFS for each candidate to collect data. That is why the same
candidate may have multiple elements in C (e.g., s7 in Fig. 3).

Then, phase 3 picks RP(s) from C based on the hop count
or distance of each node to the closest RP in R. In general,
when a node si has a larger hop count to the closest RP,
it implies that the sensors in si’s subtrees (i.e., Vi sets) may
have to relay their data to other RP(s) via more hops once
si is not selected as an RP, thereby consuming more energy
on multihop communications. Besides, Eqs. 6 and 7 select
extra RPs closer to existing RPs in R. Thus, there is a good
possibility to reduce the traveling path, since the selected RPs
have shorter distances between each other. Note that we pick
just one candidate from C in each iteration of phase 3 (and go
back to phase 2 to recompute candidates). The reason why we
do not repeat phase 3 to select all RPs from C (until C = ∅)
is that when we identify RP(s), it actually conducts the action
of tree pruning and changes the tree’s topology. In this case,
some candidates may have new subtrees to collect data. Thus,
we return to phase 2 to find out these subtrees and change
the set C to provide the updated information of RP candidates.
Theorem 2 analyzes the time complexity of EARTH.

Theorem 2. Given n sensors in S , the EARTH algorithm requires
computational time of O(n3) in the worst case.

Proof: The EARTH algorithm has four phases. Phase 1
uses the Dijkstra’s algorithm to find an SP tree to link all
sensors in S , which spends O(n2) time. In phase 2, we start
from each node in F to traverse the tree, until aj ≥ B. The
worst case occurs when each sensor produces one packet, so
we need to visit either B or n nodes (the latter case occurs
when B > n). Although phase 2 may be repeated multiple
times, we observe that given the same starting node, we
always get the same element(s) in C. Thus, a smart design of
phase 2 is to give a flag for each node in F to indicate whether
we have used it to find candidates in C. In this way, the worst
case is that we use every node of S once as the starting node in
the procedure of phase 2. Thus, the maximum time taken by
phase 2 is |S| ×O(min{B,n}) = O(n×min{B,n}).

Phase 3 uses Eq. 5 to pick a node si from C. Since we have
to find the minimum hop count from si to the nearest RP, it
takes O(c|R|) time, where c is the number of nodes in C. Then,
we find extra RPs from the branches of si’s subtree by Eqs.
6 or 7. Since at most one RP will be found in each branch, it
takes time of O((ζ − 1)× |R|), where ζ is the maximum node
degree in the tree. A better design of phase 3 is to give a flag
for each element in C to indicate whether we have checked
it, and record its values in Eqs. 5, 6, and 7. Since c ≤ n and
|R| ≤ n, phase 3 spends time of O(c|R|) + c × O((ζ − 1) ×
|R|) = O((ζ − 1) × n2). Finally, phase 4 takes O(|R|3) time
as mentioned in Section 4.1.4. The worst case occurs when R
has every node in S except for the only node linked to r0. As
R also contains r0 /∈ S , phase 4 takes time of O((n − 1 +
1)3) = O(n3). To sum up, the time complexity of EARTH is
O(n2) +O(n×min{B,n}) +O((ζ − 1)× n2) +O(n3). Since
ζ < n, we can simplify the equation to O(n3), which proves
the theorem.

As discussed in Section 2.3, some methods like [14], [34]
repeat the TSP method for |R|2 or n2 times. When we apply
the local-search-based TSP heuristic to these schemes, they
inevitably incur very high time complexity of O(n5) in the
worst case. By conducting such a time-consuming operation
just once in phase 4, our EARTH algorithm can substantially
reduce the computational time to only O(n3). Consequently,
when sensors change their sensing rates, EARTH can flexibly
compute a new traveling path for the MS to collect data, as
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Check all 

nodes in R?

Fig. 5: The flowchart of the eEARTH algorithm.

compared with the schemes in [14], [34].

4.2 The Enhanced EARTH (eEARTH) Algorithm

The EARTH algorithm finds a traveling path for the MS to
collect data without packet loss. However, some RPs can be
actually replaced or consolidated to further reduce the path.
Suppose that all RPs in R have been sorted by their visiting
sequence in EARTH. Fig. 5 gives the flowchart of the eEARTH
algorithm, which contains three phases below.

1. Deputy finding: We select three RPs ri−1, ri, and ri+1

from R. Then, for each node sj ∈ S −R, it is a deputy
of ri if we can reduce the path by replacing ri with sj .
We also create a set Ui to store such deputies.

2. RP replacement: We pick a node sj from Ui and check
if buffer overflow occurs at some RPs once we do the
replacement. The above process is repeated until there
is no buffer overflow or Ui = ∅.

3. RP consolidation: Phases 1 and 2 are repeated until every
(original) RP in R is checked. Then, for each node in the
revised set R, if its job can be done by another RP, we
remove it from R to save path length.

4.2.1 Deputy Finding

We define the length of a path to visit three nodes sa, sb, and
sc in sequence by

P̂ (sa, sb, sc) = D̂(sa, sb) + D̂(sb, sc). (8)

Let R = {r0, r1, r2, · · · , rk}. Starting from i = 1, we find a
set Ui of deputies that could replace ri. For each node sj in

S − R, we check if P̂ (ri−1, ri, ri+1) > P̂ (ri−1, sj , ri+1). If so,
it means that the traveling path can be reduced by replacing ri
with sj . Thus, we add sj to Ui. The procedure is repeated until
all nodes in S −R are checked.

In case of Ui = ∅, which implies that ri−1 → ri → ri+1

is an optimal segment in the path, we then check the next
RP3. Otherwise, we sort all nodes in Ui by their values of

P̂ (ri−1, sj , ri+1) in an increasing order and go to phase 2.

4.2.2 RP Replacement

We then pick the first node in Ui, say, sj and check whether
buffer overflow will occur at some RPs if we replace ri by sj .
In particular, we use Eq. 4 to estimate the number of packets
that an RP rk should store, where Vk is the subtree rooted at

3. When i = k, we compute P̂ (rk−1, rk, r0) and P̂ (rk−1, sj , r0).

rk which will forward their data to rk. Then, we consider two
cases below.

• Case A: ri is the original RP of sj .
• Case B: sj and ri’s parent have the same RP.

If there is no buffer overflow, we can replace ri by sj in R.
Otherwise, we check the next node in Ui. The procedure is
repeated until either Ui = ∅ or we find a node in Ui without
buffer overflow. Afterwards, we go back to phase 1.

Next, we discuss the two cases. For case A, if ri is replaced
by sj , then the RP of ri’s parent, say, rk has to collect extra data
from the nodes in the set (Vi − Vj) ∪ {ri}, as ri gives up the
role of RP and the nodes in Vi but not in Vj need to send their
data to rk. Thus, we check whether

ak + ai − aj ≤ B. (9)

When Eq. 9 holds, rk has enough buffer space to store extra
data, and it is safe to replace ri by sj . Note that ri is the original
RP of sj , which means that Vj ⊂ Vi, so sj ’s buffer will not
overflow if it becomes an RP. Case A in Fig. 6 gives an example,

where B = 5 and we check RP s5. Since P̂ (s3, s5, s8) = 19 and
P̂ (s3, s6, s8) = 14, s6 is added to U5. Since s5 is the original
RP of s6 and s4 is the parent of s5, we check whether s4’s RP
(i.e., s3) has enough buffer space by estimating a3 + a5 − a6 =
(1 + 2) + (2 + 2 + 1) − (2 + 1) = 5 ≤ B. Thus, it is safe to
replace s5 by s6 in R.

For case B, there are two subcases to be addressed. In
subcase 1, sj is an ancestor node of ri. If we replace ri by
sj , sj has to store the data not only collected by ri (i.e., ai) but
also produced by the sensors in the set Vj−Vi. Thus, we check
whether sj ’s buffer will overflow by estimating

mj + ai +
∑

sk∈Vj−Vi

mk > B. (10)

If not, it is safe to replace ri by sj . Case B in Fig. 6 shows an
example, where we check RP s7 and U7 = {s3, s4}. Here, s3
is an ancestor node of s7, so we compute m3 + a7 + m4 =
1 + 3 + 3 = 7 > B. Thus, we cannot replace s7 by s3 due to
buffer overflow. Subcase 2 occurs when sj is not ri’s ancestor
node. If sj replaces ri, then the RP, say, sk of ri’s parent has
to store ri’s collected data. However, sk need not collect data
from the sensors in Vj , as sj becomes an RP. Thus, we use
Eq. 9 to check if sk’s buffer overflows. Let us continue the
above example, where we check if s4 can replace s7. Since s4 is
not s7’s ancestor node, we check whether the RP of s7’s parent,
which is s2, will overflow its buffer. By estimating a2 + a7 −
a4 = (1+ 1+ 3)+ 3− 3 = 5 ≤ B, s7 can be safely replaced by
s4.

4.2.3 RP Consolidation

Finally, we check if it is possible to ‘consolidate’ some RPs
to save path length. To do so, we pick each RP of R, say,
ri in sequence. Let rk be the RP of ri’s parent. If rk’s buffer
will not overflow once it takes over the job of ri, we can
consolidate both ri and rk by removing ri from R. In par-
ticular, we estimate ak + ai ≤ B to determine whether buffer
overflow occurs at sk. Fig. 7 shows an example, where we
check RP s8. Since s5 is its parent and also an RP, we compute
a5 + a8 = 2 + 2 = 4 ≤ B and thus consolidate s5 and s8.
The above procedure is repeated until every RP in R has been
checked.
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Fig. 6: Examples of RP replacement, where squares indicate RPs in R.
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Fig. 7: An example of RP consolidation: (a) SP tree, (b) before RP consoli-
dation, and (c) after RP consolidation.

4.2.4 Discussion

The eEARTH algorithm seeks to change the solution set R
from EARTH to shorten the traveling path. To do so, eEARTH
selects one RP ri in R, and checks if we can find a non-RP
node sj to replace ri such that 1) path length is reduced and
2) it will not cause buffer overflow at other RPs. Thus, phase 1
uses Eq. 8 to find potential deputies of ri to meet objective 1,
while phase 2 selects the best deputy (to minimize path length)
on the premise of objective 2. When ri gives up the role of RP,
it is possible that the RP of ri’s parent, say, rk will encounter
buffer overflow, as rk is the only RP that should cache data
from ri and its subtree. Thus, we use two cases to examine
rk’s buffer status when doing RP replacement. Both phases 1
and 2 are repeated until we check every RP in R. Then, phase
3 removes some RPs from R to further reduce the traveling
path, where an RP ri can be removed once its adjacent RP
has enough buffer space to collect extra data from ri and its
subtree. Theorem 3 proves that eEARTH can find a shorter

traveling path than EARTH, while Theorem 4 analyzes its time
complexity.

Theorem 3. The eEARTH algorithm must reduce path length if it
changes the solution set R from EARTH.

Proof: Since phases 2 and 3 of eEARTH may change the
solution set R, we separate our proof into two parts. First, we
show that phase 2 must reduce path length if it changes R
by contradiction. Suppose that an RP ri ∈ R is replaced by
a non-RP node sj in phase 2 such that the traveling path is
increased. Let ri−1 and ri+1 be the previous and next RPs of ri
in R, respectively. In eEARTH, we locally modify the path by
replacing the segment ri−1 → ri → ri+1 with another segment
ri−1 → sj → rr+1. As the path increases, we can derive that

D̂(ri−1, ri) + D̂(ri, ri+1) < D̂(ri−1, sj) + D̂(sj , ri+1)

⇒ P̂ (ri−1, ri, ri+1) < P̂ (ri−1, sj , ri+1),

which violates the rule in phase 1. Thus, a contradiction occurs
since sj will not be included in Ui by phase 1.

In phase 3, once the job of an RP ri can be done by
another RP, it will be removed from R. In this case, the
segment ri−1 → ri → ri+1 of the traveling path will be

modified by ri−1 → ri+1. Obviously, we have D̂(ri−1, ri+1) <
D̂(ri−1, ri) + D̂(ri, ri+1) due to the property of triangle
△ri−1,ri,ri+1

. Therefore, phase 3 must also reduce path length
by removing ri from R.

Theorem 4. Given R from EARTH, the eEARTH algorithm takes
computational time of O(pq(B + lg q)) in the worst case, where
p = |R| and q = n− |R|.

Proof: In eEARTH, we find P̂ (ri−1, ri, ri+1) for each RP
ri ∈ R, which takes O(p) time as we have to estimate the
lengths of p edges that form the traveling path by EARTH. In

an iteration of phase 1, we find P̂ (ri−1, sj , ri+1) for each non-
RP node sj . It spends O(2q) time since we should compute

D̂(ri−1, sj) and D̂(sj , ri+1). For an iteration of phase 2, the
worst case occurs when Ui contains all non-RP nodes (i.e., Ui =
q). It thus takes O(q lg q) time to sort Ui. Since ri and rk belong
to R, we can know the amount of their accumulative data (i.e.,
ai and ak) from EARTH. Thus, what we need to find are aj and
Vj in Eqs. 9 and 10, respectively. Fortunately, we need to visit
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at most B nodes to find aj and Vj , since each node produces at
least one packet of sensing data. Thus, each iteration of phase
2 spends time of O(q lg q + qB). Since we check every RP in
R only once, phases 1 and 2 have p iterations. Therefore, these
two phases totally spend time of O(p)+O(p(2q+q lg q+qB)).
Then, phase 3 checks if each RP’s job can be taken over by
another RP. As phases 1 and 2 keep the number of RPs in
R, phase 3 will check p RPs, which spends O(p) time. Thus,
eEARTH has time complexity ofO(p)+O(p(2q+q lg q+qB))+
O(p) = O(pq(lg q +B)).

Though a few methods discussed in Section 2.3 also seek
to replace or combine some RPs to reduce the traveling path,
there are two differences between our eEARTH algorithm and
these methods in essence. First, none of them consider various
sensing rates and buffer limitation, so these methods merely
check whether path length can decrease when replacing RPs.
On the contrary, eEARTH carefully checks the buffer statuses
of upstream RPs by Eqs. 9 or 10 when selecting an RP to be
replaced. Thus, it can prevent the upstream RPs from buffer
overflowing. Second, as discussed in Section 4.1.5, several
methods [14], [34] repeat the TSP method whenever doing RP
replacement, which incur high complexity in computation. To
address this issue, eEARTH locally amends the traveling path
by iteratively looking over three adjacent RPs. Based on the
triangle inequality, Theorem 3 proves that eEARTH is capable
of saving path length. Since there is no need to invoke the
TSP method, the time complexity of eEARTH can be greatly
reduced, as presented in Theorem 4. These two differences
distinguish eEARTH from existing methods, and justify its
novelty.

5 SIMULATION STUDY

We develop a simulator in Java to evaluate the performance of
EARTH and eEARTH algorithms. The sensing field is modeled
by a 200 × 200m2 square, on which a number of sensors form
a connected WSN and there is one MS to collect data. The
communication range of a sensor is 20 m. Each sensor produces
[1, α] packets of sensing data in a round, where packet length
is 134 bytes. We use the energy model in Section 3.2 to estimate
energy consumption of sensors on communications, where
ψ1 = 50nJ/bit, ψ2 = 100 pJ/bit per m2, ψ3 = 50nJ/bit,
and ε = 2 in Eqs. 1 and 2. To evaluate buffer utilization of RPs,
we define two metrics:

βavg =

∑
ri∈R

min {ai, B}

|R| ×B
(11)

βsd =

√
1

|R|

∑

ri∈R

(min {ai, B} − βavg)2, (12)

where βavg is the average ratio of buffer utilization, and βsd
is the standard deviation of the number of packets stored in
each buffer. Note that when ai > B, an RP ri can store at most
B packets in its buffer and other packets are dropped. That is
why we use the term min {ai, B} in Eqs. 11 and 12.

We compare our EARTH and eEARTH algorithms with the
CB and WRP methods discussed in Section 2.3, which also
select RPs to schedule the MS’s traveling path. However, both
CB and WRP require to indicate path length Lmax in advance.
Thus, we use EARTH and eEARTH to compute the traveling
paths, and take their lengths as Lmax for CB and WRP, which
are respectively denoted by ‘ E’ and ‘ e’ in simulation figures.
Below, we measure path lengths of EARTH and eEARTH, and
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Fig. 8: Comparison on the average length of traveling path in a round.

then evaluate the effect of sensor number and buffer capacity
on performance. Each experiment is repeated 1000 rounds, and
we take their average.

5.1 Path Length

We first compare the traveling paths computed by EARTH and
eEARTH with the optimal solution. To do so, we use brute
force to search all possible combinations of RPs and select the
best one whose path length is the minimum and there is no
buffer overflow. Since the brute force scheme takes very long
time, we conduct the experiment in a small-scale WSN with
8 to 20 sensors. Fig. 8 gives the experimental result, where
α = B = 5. Obviously, as the number of sensors increases,
we need to pick out more RPs to avoid buffer overflow.
Thus, the traveling path increases accordingly. From Fig. 8,
we observe that EARTH finds a traveling path whose length
is slightly longer than the optimal one, while eEARTH can
further reduce the path. On the average, EARTH and eEARTH
increase around 6.3% and 3.0% of path length than the optimal
solution, respectively, which verifies that they can find shorter
traveling paths for the MS to efficiently collect data in the WSN
without packet loss.

5.2 Effect of Sensor Number

By setting α = B = 5, we investigate the performance of
different methods with 40 to 200 sensors. Fig. 9(a) presents
the result of packet loss, where both EARTH and eEARTH
will not drop any packet. Since eEARTH finds a traveling
path with smaller Lmax value than EARTH, CB e and WRP e
discard more packets than CB E and WRP E, respectively. As
CB arbitrarily groups sensors into clusters and selects RPs
accordingly, it loses more packets than WRP which selects
RPs based on node degree and hop count. From Fig. 9(a), we
observe that even though CB and WRP have the same path
length with EARTH/eEARTH, they still encounter serious
packet loss. This phenomenon becomes more significant when
the number of sensors grows. The reason is that CB and WRP
do not consider diverse sensing rates and buffer limitation, so
these two methods inevitably force some RPs to collect a large
amount of data and thereby overflow their buffers. On the
contrary, our EARTH and eEARTH algorithms check whether
each RP has enough buffer space to cache the collected sensing
data, so they will incur no packet loss.

Then, we study energy consumption of sensors on com-
munications, as shown in Fig. 9(b) and (c). When there are
more sensors, some sensors have to send their data to RPs
via more hops. Besides, most RPs may collect data from more
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Fig. 9: Effect of the number of sensors on the performance of different methods in a round.

sensors. That is why the amount of total energy consumption
increases when the number of sensors grows in Fig. 9(b).
On the other hand, since the area of sensing field is fixed,
the average distance between any two adjacent sensors will
decrease when there are more sensors in the sensing field. By
Eq. 1, a sensor can spend less energy to transmit data to its
neighbor with a shorter distance. Thus, the amount of energy
consumption per sensor slightly decreases as the number of
sensors increases in Fig. 9(c). From the two figures, we observe
that CB makes sensors spend the most amount of energy, as
it may form some large groups of sensors. In this case, some
sensors need to send their data to farther RPs and waste more
energy. By considering both hop count and distance of each
sensor to the nearest RP, EARTH and eEARTH result in energy
consumption quite close to WRP. Moreover, EARTH/eEARTH
further save around 10% of energy than CB, which shows their
high energy-efficiency on sensors’ communications.

Both Fig. 9(d) and (e) evaluate buffer utilization of different
methods. Obviously, a larger βavg value indicates that each
RP can better utilize its buffer to collect data. On the other
hand, a lower βsd value implies that the workloads of RPs are
balanced, so the possibility of buffer overflow could decrease
accordingly. Since CB may group sensors into different sizes of
clusters, it has the largest βsd value and thus would make some
RPs easily overflow their buffers (referring to Fig. 9(a)). On the
other hand, WRP selects RPs based on their weights, and it has
smaller βavg and βsd values than CB. Our proposed algorithms
always have the highest βavg and the lowest βsd values among
all methods, which verifies that EARTH/eEARTH can allow
RPs to well utilize buffers and also balance their workloads.

Afterwards, we measure the computational overhead re-
quired by different methods. In this experiment, we take the
computational time of EARTH as one unit. The computational
time of eEARTH also includes that of EARTH. Fig. 9(f) gives
the experimental result. By Theorem 4, eEARTH takes extra
time of O(pq(B + lg q)) to do the improvement in traveling

path, where p + q = n. Thus, it is expected that eEARTH
increases very less computational overhead. On the other
hand, since CB iteratively groups sensors into clusters and
finds RPs accordingly, it averagely requires 6∼ 10.7 times of
computational overhead than EARTH. For WRP, as it adopts
the TSP method to recompute the traveling path whenever
new RPs are found in each iteration, the computational time
grows very fast when there are more sensors. In particular,
WRP spends 22 to 78.4 times of computational overhead than
EARTH when the number of sensors grows from 40 to 200.
This experiment shows that both EARTH and eEARTH are
computation-efficient and they can thus fast find a new trav-
eling path when the MS’s mission changes (e.g., the sensing
rates of some sensors are changed).

5.3 Effect of Buffer Capacity

We evaluate how buffer capacity B affects the performance
of EARTH, eEARTH, CB, and WRP methods. In the following
experiments, the number of sensors is 100 and α = 7. Fig. 10(a)
shows the number of packets dropped by each method. Obvi-
ously, since each sensor produces [1, 7] packets in a round, all
methods encounter packet loss when B < 7. However, even
though some sensors may produce more packets than buffer
capacity, EARTH and eEARTH seek to find more RPs to store
these packets. Thus, they always result in the lowest packet
loss than other methods. When B ≥ 7, our algorithms can
adaptively select RPs without buffer overflow. Interestingly,
both CB and WRP keep dropping around 60–70 and 30–40
packets when B ≥ 7, respectively, which means that increas-
ing buffer capacity cannot alleviate their packet loss. That is
because these two methods do not take buffer capacity into
consideration when selecting RPs.

Fig. 10(b) and (c) present total and average energy con-
sumption of sensors, respectively. Since the number of sensors
is fixed to 100, their results will be similar, except for the
scale in the y-axis. When buffer capacity increases, each RP is
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Fig. 10: Effect of buffer capacity B on the performance of different methods in a round.

capable of storing data from more sensors. Thus, the number
of RPs may decrease and sensors would have to relay their
data to farther RPs, thereby consuming more energy. That is
why all methods spend more energy when buffer capacity
grows. Similar to Fig. 9(b) and (c), our EARTH and eEARTH
algorithms spend slightly more energy than WRP but can
save nearly 10% of energy than CB, which demonstrates their
effectiveness on energy consumption.

Fig. 10(d) and (e) give buffer utilization of RPs. In general,
βavg decreases while βsd increases when B grows, as each RP
has larger buffer space to store data. Thus, some RPs may leave
more buffer space, which also increases the standard deviation
of buffer utilization. The experimental results show that both
EARTH and eEARTH always result in the largest βavg and the
smallest βsd under different values of B, which verifies that
they can improve buffer utilization and also balance workloads
of the selected RPs.

Finally, we observe how buffer capacity affects the traveling
paths found by EARTH and eEARTH, as shown in Fig. 10(f).
As mentioned earlier, the number of RPs reduces when buffer
capacity increases, since each RP can cache data from more
sensors. In this case, path length will decrease accordingly.
In Fig. 10(f), path length decreases more significantly when
B ≥ 7, because no sensors will produce data more than buffer
capacity. Moreover, eEARTH can find more deputies to replace
RPs found by EARTH as B grows, thereby further shortening
the traveling path. In particular, eEARTH reduces 0.7% to 5.5%
of path length than EARTH, when B increases from 7 to 15.

6 CONCLUSION

WSNs with static sinks are vulnerable to the energy hole
problem due to imbalanced energy consumption of sensors.
Using an MS to visit a set of RPs selected from sensors to collect
sensing data can efficiently conquer the problem. However,
existing solutions usually assume that sensors have an equal

sensing rate and sufficiently large buffer space. In practice,
they will inevitably encounter packet loss caused by buffer
overflow at some RPs when these assumptions are unavailable.
Therefore, we propose the EARTH algorithm to pick out RPs
and schedule the MS’s traveling path with the consideration of
diverse sensing rates and limited buffers. EARTH constructs
an SP tree in the WSN and finds RPs based on the amount
of accumulative data, hop counts, and distances of sensors.
Moreover, an improved version, eEARTH, is also developed
by replacing and consolidating RPs on the basis of triangular
property. Through complexity analysis, we show that both
EARTH and eEARTH require less computational overhead. In
addition, extensive simulation results verify that our proposed
algorithms not only incur less packet loss but also save sensors’
energy on communications and better utilize their buffers, as
compared with both CB and WRP methods.

For the future work, we will study how to adaptively
adjust the round time T . In particular, a short round may
result in the increase of overheads on communication and
computation. On the other hand, a long round could cause
a large delay in the data collection procedure. Therefore, it
deserves further investigation on how to set some factors such
as the MS’s movement speed and the buffer size of each sensor
to get a proper value of T , so as to balance between the
latency of data collection and energy consumption of sensors
on communications.
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