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Abstract—Many operators offer long term evolution–advanced (LTE-A) service for broadband wireless access, where they deploy diverse

base stations to form a heterogeneous network (HetNet). It is critical to manage downlink resource to improve LTE-A performance. The paper

studies the issues of energy saving and dynamic pricing in resource scheduling, and proposes an Energy-efficient Pricing and resource

Scheduling (EPS) framework. It considers a HetNet scenario where picocells are densely deployed in each macrocell, and divides users into

three classes for charge. EPS clusters picocells into groups, and selects a coordinator to arrange the service in each group, so as to share

loads of picocells and save energy of base stations. Then, it adopts a two-layer scheduling strategy to allot resource to each flow based on

its user class, channel quality, and packet delay. By using peak and off-peak rates, EPS adaptively adjusts the amount of money charged to

each user to balance between operator profit and network utilization. Simulation results verify that EPS keeps high profit and throughput, and

also saves more energy in LTE-A HetNets.

Index Terms—energy saving, heterogeneous network (HetNet), LTE-A system, pricing, resource scheduling.

✦

1 INTRODUCTION

MOBILE phones have become our main communication
and computing devices today. Apart from voice calls,

people also access the Internet via mobile phones, especially to
use high data rate applications like multimedia streaming or
video downloads [1]. This demand promotes the development
of long term evolution–advanced (LTE-A), which is the chief pro-
tocol for current mobile networks. LTE-A divides its downlink
resource into units of physical resource blocks (PRBs). Based on
the channel quality of each user equipment (UE) to a PRB,
the PRB can send different amount of data. PRBs are usually
exclusive1, which means that no two UEs can share the same
PRBs. Since LTE-A does not specify how to allocate PRBs to
UEs, various resource scheduling methods are developed to
improve system performance [2].

The current trend is towards heterogeneous network (HetNet)
for operators to deploy systems, where large macrocells give
seamless service coverage while small picocells enhance sig-
nals in hotspots (e.g., stores or airports). To serve a growing
number of UEs, operators prefer deploying many picocells in a
macrocell to mitigate its load [3]. However, the density of UEs
fluctuates over different times. For example, there are many
UEs in a downtown office area on workdays, but it is nearly
empty on weekends [4]. In this case, most picocell eNBs2 are
idle but still keep active. In fact, [5] shows that 80% energy of a
wireless system is spent by eNBs. Thus, the key issue of green
communications is to save energy of picocell eNBs.

The pricing policy, on the other hand, decides the amount
of profit earned by an operator, which can be static or dynamic
[6]. A static pricing policy asks users to pay a fixed rate
for the service. It is easy for the operator to manage the

The authors are with the Department of Computer Science and Engineer-
ing, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan. Email:
ycwang@cse.nsysu.edu.tw; ooosss945@gmail.com.

1. The case holds when UEs adopt SISO (single-input single-output) or
SU-MIMO (single-user multiple-input multiple-out) techniques to receive
data.

2. In LTE-A, a base station is called an Evolved Node B, which is usually
abbreviated as eNB.

billing mechanism but some users may overuse the service,
causing network congestion and eroding the profit. A dynamic
pricing policy charges each user depending on the amount
of service actually consumed. In general, when the usage
amount exceeds a threshold, the user will be asked to pay more
money. Thus, the dynamic pricing policy allows the operator
to increase its profit when the network load grows.

The issues of energy saving and dynamic pricing have great
impact on resource scheduling. Many solutions view each cell
as independent one and schedule resource cell by cell [2]. In a
HetNet, it is better to schedule resource on a macrocell along
with its picocells. Specifically, we can transfer the service of
some picocell UEs to nearby cells and make idle eNBs sleep,
thereby reducing energy consumption. Moreover, according
to the supply and demand theory [7], the charge for a service
has a large influence on its usage amount. Thus, when the
network is saturated, we can request the users with large
demands for higher fees to avoid them congesting the network,
which facilities the resource scheduling process. However,
how to integrate both energy saving and dynamic pricing with
resource scheduling is not well addressed in the literature.

Therefore, we propose an Energy-efficient Pricing and re-
source Scheduling (EPS) framework that considers a common
HetNet scenario in crowded cities [8], where picocells are
densely deployed in each macrocell. Based on most pricing
policies [6], we also divide users into gold, silver, and bronze
classes, where high-class users pay more money but they are
given precedence to use resource. Then, EPS contains three
modules. The eNB controlling module divides picocell eNBs
into groups, and selects one eNB as the coordinator (CR) to
manage UEs in each group. When a picocell eNB has a heavy
load, the CR transfers some of its UEs to other picocells in
the group for load balance. If only few UEs are in a picocell,
the CR asks nearby picocell eNBs in the same group to take
over these UEs. Thus, the picocell eNB can be turned off to
save energy. Then, the scheduling module adopts a two-layer
scheduling strategy. The UE-based scheduler refers to the user
class and channel quality of a UE to decide the number of
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PRBs given to it. The flow-based scheduler further allots these
PRBs to the UE’s flows by their delay demands to provide QoS
to real-time flows. Finally, the billing module computes the fee
charged to each user based on his/her class and usage amount
of resource. It offers both peak and off-peak rates depending
on the network load. So, we can increase service utilization and
alleviate congestion, which improves network throughput.

The contribution of this paper is to manage resource effi-
ciently in an LTE-A system by addressing both energy saving
and dynamic pricing. In the literature, a few studies (e.g., our
previous work in [9]) also jointly consider resource schedul-
ing and pricing policy. However, there are some differences
between our EPS framework and existing solutions. First,
while most solutions schedule resource in a single cell, EPS
aims at the HetNet scenario by grouping picocells and asking
each CR to arrange UEs in its group. Thus, EPS can balance
loads of picocells and also let idle eNBs sleep to save energy.
Second, EPS gives precedence to urgent flows to get resource to
reduce their packet dropping. Moreover, it fairly allots PRBs
to non-urgent flows (by their demands) to avoid some flows
starvation. These designs are peculiar to EPS. Third, EPS uses
a peak rate to mitigate network congestion and gives an off-
peak rate to attract people using resource when the network
load is light. This idea of differentiating charges does not ap-
pear in existing solutions. Through simulations, we show that
EPS outperforms other methods in terms of operator profit,
network throughput, and energy consumption of eNBs.

We outline the paper as follows: Section 2 sketches LTE-A
and Section 3 surveys related work. We present our network
model in Section 4, followed by the design and discussion of
EPS in Section 5. Section 6 then gives simulation study. Finally,
we conclude the paper in Section 7.

2 OVERVIEW OF LTE-A SYSTEMS

An LTE-A system can be split up into back and front ends.
The back end is a core network that handles jobs of system
management such as connecting to exterior networks (e.g.,
Internet), finding routing paths, sending control signals, and
supporting UEs’ mobility. The policy and charging rules func-
tion (PCRF) plays a key role in policy enforcement and user
charging [10]. It refers to the application function to check if
a UE obeys the subscription to transmit data. Besides, PCRF
provides offline and online charging mechanisms. The offline
mechanism gathers charging statistics in each session. When
the usage amount of a UE reaches the upper limit, the online
mechanism allows PCRF to cut off its service.

The front end contains cells controlled by eNBs, which can
exchange information with X2 interfaces. Each eNB allocates
resource based on PRBs, where a PRB has 0.5ms duration and
180kHz bandwidth. LTE-A divides time into transmission time
intervals (TTIs), and there are 6, 15, 25, 50, 75, and 100 PRBs
available in a TTI (=1ms) when the channel’s bandwidth is
1.4, 3, 5, 10, 15, and 20MHz, respectively. Each UE renders
its channel condition via a channel quality indicator (CQI) to
the eNB to decide the modulation and coding scheme (MCS)
for the PRBs [11]. When a UE has a larger CQI (i.e., better
channel quality), it can use PRBs with a more complex MCS
that transmit more data bits. Otherwise, a simpler MCS is used
to provide robust data transmission in a lower speed.

To define the QoS demand of a flow, LTE-A uses QoS class
identifier (QCI) that includes its delay budget and loss rate
[12]. The delay budget gives the maximum tolerable latency

of packet transmission. When the delay of a packet overtakes
the budget, it is dropped due to invalidity. The loss rate is the
maximum tolerable ratio of dropped packets to total packets
of the flow. With QCI, LTE-A divides flows into guaranteed-
bit-rate (GBR) and non-GBR groups. GBR flows support real-
time services with stringent delay demands like VoIP and live-
streaming video. TCP-based services with loose deadlines are
supported by non-GBR flows. Thus, GBR flows could have
smaller QCIs and delay budgets than non-GBR flows.

3 LITERATURE SURVEY

In this section, we survey LTE-A scheduling methods and
pricing policies. Then, we discuss the studies which jointly
consider resource scheduling and pricing. Finally, we present
existing solutions to save energy of eNBs.

3.1 Scheduling Methods in LTE-A

There are a few basic scheduling methods in LTE-A [2]. MT
(maximum throughput) serves UEs in sequence of their chan-
nel quality. PF (proportional fair) addresses user fairness [13]
by selecting a UE with the maximum ri/ri value to get PRBs,
where ri and ri are the UE’s current and past data rates,
respectively. M-LWDF (modified largest weighted delay first)
adds a weight wi and packet delay di to PF to support real-
time services. EXP-PF (exponential proportional fair) adopts
an equation of exp((widi − dM )/(1 +

√
dM )) to improve PF,

where dM is the mean packet delay. LOG-RULE and EXP-
RULE consider spectral efficiency si of each UE. They give
each PRB to a UE with the largest (si · log f1) and (si · exp f2)
values, where f1 and f2 are two functions defined by LOG-
RULE and EXP-RULE, respectively.

Some methods are devoted to increasing LTE-A through-
put. Both [14], [15] use utility functions to find satisfaction
degrees of UEs by their throughput. Then, UEs bid for PRBs
via utility values. The work [16] uses a virtual queue to
predict packet arrival, and removes the packets that will miss
deadlines to save bandwidth. It then uses MT to allocate PRBs
to improve throughput. The study [17] divides UEs into good-,
average-, and poor-channel groups, and picks UEs from each
group to get resource to raise throughput and avoid starvation
of UEs.

The fairness issue is also discussed. The work [18] uses a
bankruptcy game to fairly allot resource to UEs, and mends
the scheduling result by EXP-RULE to raise throughput. By
the Nash’s solution, [19] derives a fairness criterion for eNBs
to allocate PRBs, whose goal is to make the result be Pareto-
optimal [20]. The study [21] computes the difference between
the amount of data actually received by a UE and the amount
of resource that it expects to get. With the difference, a credit
value is derived to decide the priority of each UE to get PRBs
for the purpose of keeping fairness.

Some studies aim at reducing packet delay. Liu et al. [22]
modify PF by first sending packets with the earliest deadline.
The study [23] divides flows into urgent and non-urgent ones.
Urgent flows are GBR flows whose packets will be dropped
soon, so they can get PRBs with a top priority. The work
[24] uses MT to find the number of PRBs given to UEs. It
then makes non-urgent flows return some PRBs, and reassigns
them to urgent flows to reduce packet dropping. In [25], a
cooperative game is used to allot PRBs, whose goal is to lower
dissatisfaction of GBR flows in terms of packet dropping.
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A few studies handle video transmissions. In [26], the eNB
decides resource allocation along with coding of a video flow
based on its data rate, delay, and distortion to play it smoothly.
The work [27] estimates the amount of data that a video flow
should send to support QoS, and uses PF to allocate PRBs
to the flow. The study [28] develops a scheduling method to
reduce delays of video flows and also a handoff method to
keep service continuity when a user moves between cells. We
can observe that none of the above studies consider integrating
resource scheduling with dynamic pricing and energy saving.

3.2 Pricing Policies in Cellular Systems

There have been various pricing policies developed in GSM,
GPRS, and UMTS systems3 [29]. In metered charging, each user
pays a fee for network connection and also a fee based on the
service time. In fixed price charging (also called flat-rate pricing),
users are charged for a fixed rental rate despite their usage
amount of service. Packet charging counts packets sent in each
session and charges the user accordingly. In expected capacity
charging, the operator charges users by a usage profile, which
gives the amount of capacity that they expect to get. It requires
a network filter to tag excess traffic. In Paris-metro charging,
users select their preferred classes with different prices and
service quality, just like travel classes in public transport
systems. Market-based reservation charging is an auction-based
method, where the operator refers to the preference profile and
bid of each user to route packets.

As LTE-A materializes its resource by PRBs, many pricing
policies for LTE-A charge users based on the number of PRBs
consumed, and they usually classify users into gold, silver, and
bronze. The static pricing policy [30] computes the fee charged
to a user with class ξi by Mi = CP(ξi) · ni, where CP(ξi)
is the cost per PRB depending on ξi and ni is the number
of PRBs spent by the user. The network-load based pricing (NLP)
policy [31] adjusts the price based on the network load L, which
charges a user with QoS level x by

Mi = [CV(ξi)× (ê− ê−αx)L]× ni, (1)

where ê ≈ 2.71828 is the Euler’s number, α is a coefficient,
and CV(ξi) is a variable charge based on a threshold δ. When
L > δ, CV(ξi) changes with ξi, so different classes of users are
charged diversely to raise operator profit when the network
load is heavy. Otherwise, users are charged fairly by setting
CV(ξi) to a constant CF. The subscriber class based pricing (SCP)
policy [32] works the same with the static pricing policy as
L ≤ δ. Otherwise, it asks users to pay different fees:

gold users: Mi = [CP(ξG) + CE]× ni, (2)

silver users: Mi = [2CP(ξG) + CE]× ni, (3)

bronze users: Mi = [2CP(ξG) + CP(ξS) + CE]× ni, (4)

where ξG and ξS are gold and silver classes, respectively. Here,
CE = β/(nA − nG) is an extra charge, where β is a constant,
nA is the number of total PRBs, and nG is the number of PRBs
reserved for gold users. Obviously, the above pricing policies
ask users to pay more money to increase operator profit under
a heavy network load. However, they do not lower the price to
attract people using more resource as the network has a light
load. It motivates us to propose off-peak rates in our billing
module, which distinguishes EPS from existing work.

3. GSM: global system for mobile communications, GPRS: general
packet radio service, UMTS: universal mobile telecommunications system

3.3 Joint Consideration of Scheduling and Pricing

A number of studies jointly address the issues of resource
scheduling and pricing. The work [33] assumes that an eNB
provides multiple carriers, where it has a price to use each
carrier per unit bandwidth. Each UE selects a carrier to be its
primary carrier and others will be secondary carriers. Then,
the problem is how to allocate resource to UEs with carrier
aggregation to maximize throughput, such that the charge for
their allocated resource will be the minimum. Obviously, [33]
deals with a different problem with ours.

In [34], a gradient-based scheme is used to allocate resource
to UEs. When a UE is served, its gradient reduces and vice
versa. The objective is to make all UEs have some common
gradient (i.e., keeping user fairness). Thus, the eNB computes
a load metric for each UE based on the PF method. In addition,
to fairly charge users, the load metric of each UE is scaled
by a weight that depends on its user class (e.g., gold, silver,
and bronze). However, [34] aims to charge users based on
their usage amount of resource in a fair manner, instead of
increasing operator profit and system utilization. Therefore, it
has a different objective with our EPS framework.

The study [35] proposes an auction-based method for re-
source allocation and pricing. Each UE has a utility function
to depict its QoS demand, and it sends a bid to the eNB to
ask for the desired rate (based on the utility value). Then, the
eNB replies a shadow price to the UE to make it revise the
bid. The procedure is repeated until the difference between
two bids is below a threshold. Then, the eNB grants the UE’s
rate and its user has to pay the shadow price. However,
this method requires many rounds of negotiations for pricing
between every UE and the eNB, which incurs a high message
overhead. Besides, [35] considers only one macrocell, and the
result cannot be directly applied to an LTE-A HetNet.

Our previous work [9] proposes a pricing-aware resource
scheduling (PARS) framework. It applies a price-based weight
to MT and M-LWDF to allocate resource, so high-class UEs are
given precedence to get PRBs. However, when a low-class UE
has good channel quality, it can borrow PRBs from high-class
ones to improve throughput. For the pricing policy, PARS adds
an extra charge CE to NLP, and modifies Eq. (1) by

Mi = [(ê− ê−y)L]× [CV(ξi)× ni + CE × n′
i], (5)

where y is the QoS level, ni is the number of PRBs given to a
UE, n′

i is the number of extra PRBs that the UE borrows from
others. In Eq. (5), PARS sets the QoS level y to the QCI index
of a flow (referring to Table 3) and keeps y in [1, 9]. When the
QCI index is above 9, y is directly set to 9. As discussed in
Section 1, our EPS framework improves PARS by considering
the HetNet scenario and saving energy of eNBs. Moreover, EPS
favors urgent flows to reduce packet dropping and also offers
differentiating charges to give flexibility in its pricing policy.
Simulation results in Section 6 will show that EPS outperforms
PARS on profit, throughput, and energy.

3.4 Energy Saving for eNBs

Various mechanisms are proposed to save energy spent by
eNBs. The work [36] finds the sites to place small-cell eNBs to
reduce the transmitted power of macrocell eNBs. With MIMO
beam-forming and multiplexing gain, [37] develops a MAC
protocol to save energy of eNBs. Jin et al. [38] apply cognitive
radio to LTE-A, which allows eNBs to enter the power-saving
state when no packets wait for transmission. In [39], each eNB
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TABLE 1: Summary of common notations.
notation definition
Uj set of UEs served by eNB ej , where |Uj | = Nj

Lj , L ej ’s load and the network load
ζ1, ζ2 two lists of candidate UEs to be removed by ej
ri data rate of UE ui

ξi user class of ui (ξG: gold, ξS: silver, ξB: bronze)
γi,j ui’s SINR from ej
Vi,t amount of GBR data that ui should get in TTI t
εi,k(t) flow fi,k’s data to be sent in TTI t by FLS
ρi,k(t) flow fi,k’s queued data in TTI t
δnum a threshold for Nj

δ
peak

, δ
off

two thresholds of using peak and off-peak rates

δL
load

, δH
load

lower- and upper-bound thresholds for Lj

CE, CF extra and constant charges for a PRB
Cpeak, Coff additional and bonus fees for a PRB
CP(ξi), CV(ξi) fixed and variable charges per PRB based on ξi
m̃U, m̃E, m̃F, m̃P numbers of UEs, eNBs, flows, and PRBs
pe price elasticity
T length of a period (in TTIs)

uses carrier aggregation to send data, and seeks to reduce its
power on some subchannels for energy saving.

Discontinuous transmission (DTX) is a technique to manage
energy expense of eNBs, which allows them sleeping to save
energy [40]. The sleep schedule is critical, which decides when
an eNB can sleep. The work [41] proposes a coordinated sleep
schedule to minimize the duration when adjacent eNBs wake
up to send data. So, it can reduce interference between cells.
In [42], the sleep schedule is formulated by a traffic aware-
ness problem. Given a set of traffic predictions by eNBs, the
problem asks how to maximize successful traffic predictions
(i.e., predicted traffic profile matches with actual traffic). It is
NP-hard and a near-optimal solution by the game theory is
proposed. The study [43] considers a HetNet where femtocells
are deployed in a macrocell. It finds the sleep schedule of
femtocell eNBs by their traffic loads, so as to keep the tar-
get throughput while saving energy of eNBs. The work [44]
addresses a ping-pong effect on DTX, where eNBs may have
on/off oscillations. It models user traffics by a Markov process,
and adds a hysteresis time to the process to handle the effect.
Comparing with prior work, our EPS framework organizes
picocells into groups, and selects a CR to manage UEs in each
group. It can actively transfer UEs among cells to balance loads
of eNBs and also deactivate the eNBs serving just few UEs to
avoid energy wastage.

4 NETWORK MODEL

Let us consider an LTE-A HetNet where there are many
picocells deployed in each macrocell. Since we seek to transfer
UEs among picocells, it is natural to cluster picocell eNBs
close to each other into the same group. To do so, we adopt
the enhanced agglomerative hierarchical clustering (eAHC) scheme
[45], which recursively groups picocell eNBs according to their
positions. It contains three steps:

1. Initially, each picocell eNB ej is viewed as a group gj .
2. We pick two groups gi and gj whose inter-group dis-

tance Z(gi, gj) is the minimum, which is the distance
between two farthest eNBs ex ∈ gi and ey ∈ gj . If
Z(gi, gj) ≤ δg , we merge gi and gj together, where δg
is a threshold to determine the diameter of a group.

3. Step 2 is repeated until no groups can be merged.

Since δg controls the size of each group, its value can depend
on various parameters such as the propagation environment or

eNB controlling module

X2
Phase 1: Decide connections of UEs.

Phase 2: Estimate traffic loads of eNBs.
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PRB
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Fig. 1: The architecture of our EPS framework.

the distribution of UEs. For example, if the environment allows
better propagation of signals, we can set a larger δg value,
as a picocell has a larger propagation range and it becomes
easier to transfer UEs between nearby picocells. Moreover, in
hotspots or urban areas, since the density of picocells may be
very high, we could set a smaller δg value to avoid a group
including too many picocells. Due to the page limit, we leave
the investigation of δg in our future work. Here, we suggest
setting δg as the maximum propagation distance of a picocell
eNB, so the CR can transfer UEs among picocells in its group.

We define three modes to control the operations of eNBs.
In the active mode, an eNB supports regular data transmission
for its UEs. In the sniff mode, an eNB keeps synchronization
with UEs by sending only control messages. In the sleep mode,
an eNB turns off its wireless interface to UEs to save energy.
In each group of picocell eNBs, we select one as the CR to
manage UEs. Other eNBs report their cell statuses (e.g., loads
and UE numbers) to the CR. Then, the CR sends commands to
a member eNB to trigger events such as transferring its UEs to
other cells or switching the eNB’s mode. These commands are
exchanged through the X2 interface, and the detail of message
flows can be found in [46].

Since a CR takes charge of the management job in its
group, it should keep active. Besides, when an eNB is busy
in serving UEs, it is not a good candidate for CR. Based on
the observations, we select the active eNB whose load is the
lightest to be the CR in each group. Specifically, let Lj be the
traffic load of an eNB. We select the CR in a group gi by

argminej∈gi{Lj |Lj ≥ δLload}, (6)

where δLload is a lower-bound threshold on picocell load (as
discussed later in Section 5.1.3). In case that no eNB can be
found from Eq. (6) (i.e., the case occurs when each eNB in gi
has a load below δLload), we select the eNB whose load is the
largest to be the CR.

Without loss of generality, UEs are divided into classes of
gold (ξG), silver (ξS), and bronze (ξB). The class of each UE
decides its priority to get resource, where ξG > ξS > ξB. In
addition, PCRF measures the amount of resource spent by UEs
to charge their users, where gold, silver, and bronze users will
pay high, medium, and low unit prices, respectively. Some
pricing policies in Section 3.2 put a restriction on flows that
each UE can use (e.g., [32] prohibits bronze UEs from using
GBR flows). We relax this assumption for flexibility. Table 1
summarizes our notations.
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5 THE PROPOSED EPS FRAMEWORK

EPS has three modules shown in Fig. 1. The eNB controlling
module arranges UEs in each group of picocells. It decides
initial connections of UEs and estimates the amount of resource
spent in a cell. Then, the CR alleviates congestion in the
picocells with heavy loads by transferring their UEs. When
an eNB serves only few UEs, the CR allows the eNB to sleep
by asking others to take over its UEs. In the module, the CR
exchanges information with other eNBs via X2 interfaces.

The scheduling module helps each eNB assign PRBs to its
UEs, which contains two schedulers. The UE-based scheduler
combines the frame-layer scheduling (FLS) strategy [27] with
a class-based MT method to find the number of PRBs given
to each UE, which refers to its GBR demand, channel quality,
and user class. Then, the flow-based scheduler further allots the
PRBs acquired by a UE to its flows based on their delays and
demands, so as to reduce packet dropping.

Our pricing policy is implemented by the billing module
in PCRF. When the network is saturated, we adopt peak rates
to make users pay more, so as to increase operator profit and
avoid them overly consuming resource. When the network has
a light load, off-peak rates are applied to let users pay less,
so as to encourage them increasing demands to raise service
utilization. In the billing module, we will take user classes and
service types (i.e., QCIs of flows) into consideration.

For ease of management, we divide time into periods of T
TTIs, and conduct EPS in every period. Below, we detail our
design in each module, followed by a discussion of EPS.

5.1 Design of the eNB Controlling Module

We use two parameters to decide the mode of an eNB ej : 1)
traffic load Lj and 2) the number of served UEs Nj . Then, this
module contains three phases. In phase 1, each UE initially
associates with an eNB based on its user class and signal to
interference plus noise ratio (SINR). By the association, phase
2 estimates the amount of resource spent in a cell. Then, phase
3 arranges UEs in each group to balance loads of picocell eNBs
and also turn off unused eNBs to save energy.

5.1.1 Phase 1–Decide Connections of UEs

In general, a UE prefers linking to the eNB that provides the
highest SINR, so it can raise the data rate by using a complex
MCS. Moreover, as picocells are often used to enhance signal
strength in small regions, they could provide better service
quality than the background macrocell. Since high-class users
pay more money, we can help their UEs connect to picocell
eNBs with good SINRs to support QoS. Therefore, we decide
the initial connection of each UE ui as follows:

• If ξi = ξB (i.e., a bronze UE), we always let ui associate
with the macrocell eNB.

• If ξi = ξS (i.e., a silver UE), we compute ui’s SINR with
each eNB ej by

γi,j =
p̂(ui, ej)

Inoise +
∑

ek∈E,ek 6=ej
Î(ui, ek)

, (7)

where p̂(ui, ej) is ui’s received power from ej , Inoise is

interference from the environmental noise4, Î(ui, ek) is
interference from an eNB ek, and E is the set of eNBs.
Then, ui connects to the eNB with the largest γi,j value.

4. The noise is a Gaussian white noise. We can compute its value by tak-
ing the product of noise figure, spectral density, and channel bandwidth.

TABLE 2: Required SINR [51] and MCS of each CQI.
CQI SINR MCS CQI SINR MCS

1 -6.936 dB QPSK 9 8.573 dB 16QAM
2 -5.147 dB QPSK 10 10.366 dB 64QAM
3 -3.180 dB QPSK 11 12.289 dB 64QAM
4 -1.253 dB QPSK 12 14.173 dB 64QAM
5 0.761 dB QPSK 13 15.888 dB 64QAM
6 2.699 dB QPSK 14 17.814 dB 64QAM
7 4.694 dB 16QAM 15 19.829 dB 64QAM
8 6.525 dB 16QAM

• If ξi = ξG (i.e., a gold UE), we also use Eq. (7) to find
its SINR from each eNB ej . However, if ej is a picocell
eNB, we add a small bias ϕ to SINR γi,j to increase the
possibility that ui can associate with a picocell eNB.

Our design borrows the notion of traffic offloading [47], [48]
and cell range expansion [49], [50] in HetNets. However, differ-
ent from these methods, we let each UE join a cell by referring
to its SINR and also user class. Thus, we can differentiate
between UEs by eNB association based on their classes and
provide different QoS support to them accordingly.

5.1.2 Phase 2–Estimate Traffic Loads of eNBs

Once deciding the UEs in a cell, we can estimate the traffic load
of its eNB (in terms of PRBs consumed). Given SINR of a UE,
we find its CQI by Table 2. Based on CQI, the LTE-A standard
[52] gives three tables to compute the number of data bits to
be sent to the UE in a TTI. The CQI-MCS translation table maps
the CQI value to an MCS index. Then, the MCS-TBS translation
table uses the MCS index to find the index of TBS (transport
block size), which indicates the number of data bits carried by
one PRB. Finally, given the TBS index and the number of PRBs,
the TBS-bit translation table returns the number of data bits that
the UE can receive from these PRBs. For convenience, we use a
function fT(γi,j , ni,j) to denote the translation of three tables
along with Table 2, where ni,j is the number of PRBs that eNB
ej gives to a UE ui. Suppose that ui has a demand of data rate
ri (in bps). Then, we can calculate the minimum number of
PRBs to satisfy its demand as follows:

nmin
i,j = argmin

ni,j

{

fT(γi,j , ni,j)× T ≥ riT

1000

}

. (8)

The term fT(γi,j , ni,j) × T gives the number of data bits that
these ni,j PRBs can carry, while the term riT

1000 indicates the
number of data bits that ui expects to receive. With Eq. (8), we
calculate the traffic load of an eNB ej by

Lj =

∑

ui∈Uj
nmin
i,j

ñjT
, (9)

where Uj is the set of UEs served by ej and ñj is the number
of PRBs offered by ej in a TTI (referring to Section 2).

5.1.3 Phase 3–Transfer Services of Some UEs

In each group, only active eNBs report their Lj and Nj param-
eters to the CR. For each active eNB ej , we decide its mode by
three cases5:

• Lj ≥ δLload: We let ej keep active, as its load is above
the lower-bound threshold. If Lj > 1 (i.e., it does not
have enough resource to serve all UEs), ej sends an
load-balance request to the CR for UE arrangement.

5. We can set δL
load

≥ 1/4 and δnum to 1/3 of the average number of
UEs in each picocell.
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• Lj < δLload and Nj < δnum: Since ej has a pretty light
load and serves just few UEs (i.e., below the threshold
δnum), it sends a sleep request to the CR.

• Lj < δLload and Nj ≥ δnum: As ej is nearly idle but
there are more UEs to be served (i.e., each UE has a
small demand), it then changes to the sniff mode.

Note that we do not make an eNB sleep in case 3, since some
UEs may raise their demands later (and cause loss of service).
Besides, these sniffing eNBs can help share loads of nearby
eNBs. The sniff mode is temporary. After the CR arranges UEs,
these eNBs will switch to the active or sleep modes.

In case 1, when ej overloads (i.e., Lj > 1), it decides two
lists of candidate UEs ζ1 and ζ2 to be removed from its cell.
List ζ1 gives a set of UEs such that after ej removes them, it
can decrease the load to Lj ≤ δHload, where δHload > 1 is an
upper-bound threshold on picocell load (e.g., we can set δHload
to 5/4). List ζ2 includes a set of UEs such that if ej further
removes them, it can decrease the load to Lj ≤ 1. Note that
when Lj < δHload, ej generates only list ζ2. We then use two
rules for ej to iteratively find out candidate UEs: 1) Select the
UE with the lowest user class. 2) If there are multiple choices,
the UE with minimum CQI will be selected. Then, ej appends
ζ1 and ζ2 to its load-balance request. Remark 1 discusses the
reason why we adopt the threshold δHload.

On getting parameters and requests from member eNBs,
the CR first handles overloading eNBs. For each UE ui in list
ζ1 of a load-balance request, the CR uses four rules in sequence
to choose an eNB to take over ui:

R1. If ui is covered by an active eNB ea such that La ≤ 1
after ea serves ui, ea can take over ui. If there is a tie,
we pick the eNB with the smallest La value to serve ui.

R2. If ui is covered by a sniffing eNB es such that Ls ≤ 1
after es serves ui, es can take over ui. If there is a tie,
we pick the eNB with the largest Ls value to serve ui.

R3. If ui is covered by a sleeping eNB ez , it is added
to a pending list ζp of ez . In case that ui is covered
by multiple sleeping eNBs, we choose the eNB whose
pending list contains the most number of UEs.

R4. The macrocell eNB will take over ui.

For each sleeping eNB ez whose pending list ζp is non-empty,
if Lz ≥ δLload when ez serves all UEs in ζp, the CR will send ez
an awaking command along with ζp to wake it up to serve these
UEs. Otherwise, the CR asks the macrocell eNB to take over
the UEs in ζp.

The CR then uses rules R1 and R2 to transfer each UE in
list ζ2 to other eNBs. In case that ζ2 is not empty but no eNB
can take over the UEs in ζ2, the CR notifies the eNB which sent
the load-balance request of the residual UEs in ζ2, so the eNB
should still serve these UEs.

Afterwards, for each eNB which sent a sleep request, the
CR uses rules R1, R2, and R4 to transfer all of its UEs to other
cells, and sends a sleeping command to turn off the eNB. Note
that the sleeping eNB will wake up on the next period.

The CR finally handles sniffing eNBs. For each sniffing eNB
that need not take over any new UE, the CR transfers all of
its UEs to other cells and lets it sleep. Then, the CR sends
awaking commands to residual sniffing eNBs to make them
active, which includes a list of new UEs that each eNB should
serve. Remark 2 discusses the idea behind these transfer rules.
Lemma 1 then analyzes the computation complexity of the
eNB controlling module.

Remark 1 (Threshold δHload). The idea behind using δHload is
to distinguish excessively overloaded eNBs (i.e., Lj ≥ δHload)
from slightly overloaded eNBs (i.e., 1 < Lj < δHload). When
an eNB ej is excessively overloaded, we should ask sleeping
eNBs or the macrocell eNB to help offload its traffic (if rules
R1 and R2 fail), so as to alleviate serious congestion in ej ’s cell.
However, when ej is slightly overloaded, it is not economic to
wake up a sleeping eNB to share ej ’s load, since the sleeping
eNB may only need to serve just few UEs. Similarly, it is also
uneconomic to ask the macrocell eNB to take over ej ’s UEs,
as the macrocell eNB may be burdened with a heavy load
(if many slightly overloaded eNBs ask it to do so). In fact,
when an eNB is slightly overloaded, we can use the scheduling
module in Section 5.2 to efficiently distribute PRBs among UEs
in its cell and still support QoS for GBR flows.

Remark 2 (Transfer rules). Rule R1 borrows the notion of
packet fair queuing [53], which always picks the eNB with
minimum load to take over a new UE. Thus, we can ensure
that each active eNB in a group can have a similar load in
long term (i.e., achieving load balance). On the other hand,
rule R2 prefers using fewer sniffing eNBs to take over UEs,
so as to make more sniffing eNBs sleep to save energy. That
is why we choose a sniffing eNB with maximum load in rule
R2. Then, rule R3 is used to wake up some sleeping eNBs to
help offload the traffic of those active eNBs that have excessive
loads (i.e., Lj ≥ δHload). Since it is not energy-efficient to wake
up a sleeping eNB in order to serve UEs with just small
demands, the CR only sends awaking commands to those
sleeping eNBs whose pending lists satisfy the condition of
Lz ≥ δLload. Obviously, rule R3 will not be used to transfer UEs
of an eNB that will go to sleep. Finally, rule R4 is to cope with
the cases when nearby picocell eNBs cannot cover the UEs of
an eNB ej or they do not have enough resource to share ej ’s
load. Thus, we have to ask the macrocell eNB to take over ej ’s
UEs. This rule will not be used to transfer UEs in list ζ2, as
discussed in Remark 1.

Lemma 1. Given m̃U UEs and m̃E eNBs, the eNB controlling
module takes time of O(m̃Um̃E) in the worst case.

Proof: Phase 1 decides initial connections of UEs. When
a UE is bronze, it is assigned to the macrocell. Otherwise,
we find the UE’s SINR from each eNB by Eq. (7). The worst
case occurs when there are no bronze UEs, so phase 1 spends
O(m̃Um̃E) time. Then, phase 2 uses Eq. (8) to find the number
nmin
i,j of PRBs to meet a UE’s demand, where we use four tables

(i.e., Table 2 and three LTE-A tables) to compute fT(γi,j , ni,j).
Each table-finding operation takes constant time. Then, we
estimate load Lj of each eNB by Eq. (9). As each UE links
to one eNB and there are m̃U UEs, phase 2 will check every
UE once in Eq. (9). Thus, this phase spends O(5m̃U) time.
Finally, phase 3 uses three cases to decide the mode of each
eNB (by checking its Lj and Nj values), which spends O(m̃E)
time. It takes O(m̃U) time to find lists ζ1 and ζ2 of eNBs
by checking each UE. For the transfer rules, the worst case
occurs when only rules R1 or R2 are adopted. We can use
both minimum and maximum heaps for the two rules. It takes
O(m̃E) time to build a heap. When selecting an eNB by rules
R1 or R2, we conduct one deletion and one insertion on the
heap, where each operation takes O(lg m̃E) time. As each UE
is transferred at most once, the arrangement of UEs spends
time of 2O(m̃E)+2O(lg m̃E)× m̃U = O(m̃U lg m̃E). Thus, the
total complexity is O(m̃Um̃E)+O(5m̃U)+O(m̃E)+O(m̃U)+
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O(m̃U lg m̃E) = O(m̃Um̃E).

5.2 Design of the Scheduling Module

After arranging UEs by the above module, if an eNB ej has
load of Lj ≤ 1, it means that ej has enough resource to
meet each UE’s demand. Thus, we directly use the MT method
discussed in Section 3.1 for ej to allocate PRBs to its UEs.

Otherwise, each eNB follows three guidelines to schedule
resource: 1) GBR flows are served first to support QoS. 2) UEs
are prioritized by their user classes to get resource, where
ξG > ξS > ξB. 3) The UEs with good channel quality are
given precedence over others for resource allocation to raise
throughput. Thus, we propose a two-layer scheduling strategy
for the eNB to allot PRBs to GBR flows in its cell. As shown
in Fig. 1, the UE-based scheduler combines the FLS and class-
based MT methods to decide the number of PRBs given to
each UE that has GBR flows. The flow-based scheduler further
deals out these PRBs to the UE’s GBR flows based on their
packet delays and traffic demands. Then, if the eNB still has
PRBs left, the eNB allocates them to non-GBR flows by the
class-based MT method. Below, we detail the two schedulers.

5.2.1 UE-based Scheduler

Given a GBR flow fi,k of UE ui, we use FLS to estimate the
amount εi,k(t) of fi,k’s data that ui should get in TTI t to
support QoS. Let us denote by ρi,k(t) the amount of fi,k’s
data queued by the eNB in TTI t. Then, we can compute the
amount of fi,k’s queued data in TTI (t + 1) by ρi,k(t + 1) =
ρi,k(t) + λi,k(t) − εi,k(t), where λi,k(t) is the amount of data
produced by fi,k in TTI t. After a bit of algebra, we can derive
that

εi,k(t) = λi,k(t) + ρi,k(t)− ρi,k(t+ 1). (10)

To keep the bounded-input, bounded-output (BIBO) stability6 of
ui’s queue, [27] defines a control law for ρi,k(t) by

ρi,k(t) = µi,k(t) ∗ λi,k(t), (11)

where ‘∗’ is a discrete-time convolution and

µi,k(t) =
∑T

x=0
ci,k(x)φ(t− x). (12)

In Eq. (12), φ(t − x) is the Kronecker pulse [54], whose value
is either 0 or 1, and ci,k(x) should meet two conditions:

0 ≤ci,k(x) ≤ 1 x = 0, 1, 2, · · · ,
ci,k(x) ≥ ci,k(x+ 1), x ≥ 1 with ci,k(x) ∈ R. (13)

By applying Eq. (12) to Eq. (11), we obtain that

ρi,k(t) =
∑T

x=0
ci,k(x)λi,k(t− x). (14)

By combining Eqs. (10) and (14), we finally derive that

εi,k(t) =λi,k(t) +
∑T

x=0
ci,k(x)λi,k(t− x)−

∑T

x=1
ci,k(x)λi,k(t+ 1− x). (15)

6. If a system is BIBO stable [54], its output must be bounded in am-
plitude by giving a bounded input. Since the demands of flows are finite
(i.e., bounded input), the eNB will not consume an infinite bandwidth (i.e.,
bounded output).

In EPS, we set ci,k(0) = 0 and ci,k(x) =
1

2x−1 , where x ≥ 1, to
satisfy both conditions in Eq. (13). Specifically, it is clear that
0 ≤ 1

2x−1 ≤ 1, for all x ≥ 1. Besides, we can derive that

ci,k(x)− ci,k(x+ 1) =
1

2x−1
− 1

2(x+1)−1
=

1

2x
> 0.

Therefore, the correctness of our setting for ci,k(x) is justified.
Then, the amount of GBR data that UE ui expects to receive in
TTI t can be calculated by

Vi,t =
∑

{εi,k(t) | ∀fi,k of ui}. (16)

However, an eNB ej may not have enough resource to send
out the Vi,t amount of GBR data for every UE in its cell. Thus,
we develop a class-based MT method for UEs to bid for PRBs,
which considers their user classes and channel quality. Let ri
be the data rate of a PRB for UE ui (depending on its CQI,
which is discussed in Section 5.1.2). Then, ej uses Eq. (17) to
select a UE (with GBR flows) to get each PRB:

ui = argmaxui∈Uj
(ŵC

i × ri). (17)

Here, ŵC
i is a weight based on ui’s class, which is defined by

ŵC
i =

CV(ξi)

CV(ξG) + CV(ξS) + CV(ξB)
, (18)

where ξi ∈ {ξG, ξS, ξB}. When a UE obtains enough PRBs to
satisfy its Vi,t amount of GBR demand, it is removed from
Uj in Eq. (17) to avoid getting too much resource. The above
procedure is repeated until Uj = ∅ or ej runs out of PRBs. We
remark that since CV(ξG) > CV(ξS) > CV(ξB), a high-class
UE can increase its opportunity to get PRBs by using a large
weight ŵC

i in Eq. (17), and vice versa.

5.2.2 Flow-based Scheduler

Suppose that a UE ui is given nR
i PRBs by the above scheduler

and it has a set Fi of GBR flows. Then, this scheduler aims
to allot the nR

i PRBs to all flows in Fi. To do so, we propose
a delay-aware proportional allocation (DAPA) strategy with three
steps below.

Step 1: We find out urgent flows from Fi and let them get
PRBs first. Here, a flow is urgent if its packets will expire and
be dropped in the next TTI. Thus, we iteratively give a PRB
to each urgent flow by round robin and deduct one from nR

i ,
until no urgent flow will drop its packets. If nR

i = 0, DAPA
terminates as all PRBs have been allocated.

Step 2: We then compute a priority for each flow in Fi. In
M-LWDF [2], UE ui is assigned with a priority to get PRBs:

pi = −di logαi

τi
× ri

ri
, (19)

where di is the head-of-line packet delay of ui, and αi and
τi are ui’s packet loss rate and delay budget defined by it QCI
(referring to Section 2), respectively. However, since every flow
of ui has the same values of ri and ri (i.e., ui’s current and past
data rates, respectively), we thus compute the priority of a flow
fi,k ∈ Fi by

pi,k = (−di,k logαi,k)/τi,k. (20)

For a urgent flow, its di,k value will be the delay of the first
packet that will not expire in the next TTI.

Step 3: We finally allocate PRBs to all flows in Fi propor-
tionally to their demands, and adjust the allocation result by
their priorities. Let us denote by mi,k the number of PRBs
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required to satisfy fi,k’s demand, which can be calculated by
the method in Section 5.1.2. Then, for each flow in Fi, it will be
allocated with a number ni,k of PRBs:

ni,k =

⌈

mi,k
∑

∀fi,h∈Fi
mi,h

× nR
i

⌉

. (21)

However, it is possible that
∑

∀fi,k∈Fi
ni,k > nR

i . In this case,
we sort all flows in Fi by their priorities (from low to high),
and ask each flow to give up one PRB by round robin, until
∑

∀fi,k∈Fi
ni,k = nR

i . Let us consider an example with three

flows Fi = {fi,1, fi,2, fi,3}, where pi,1 < pi,2 < pi,3. Assume
that nR

i = 8, mi,1 = 11, mi,2 = 6, and mi,3 = 2. By Eq. (21),
we have ni,1 =

⌈

11
19 · 8

⌉

= 5, ni,2 =
⌈

6
19 · 8

⌉

= 3, and ni,3 =
⌈

2
19 · 8

⌉

= 1. Since 5 + 3 + 1 > nR
i , we ask fi,1 to give up

one PRB. Therefore, fi,1, fi,2, fi,3 will be allocated with 4, 3,
and 1 PRBs, respectively. Lemma 2 presents the computation
complexity of the scheduling module.

Lemma 2. Given m̃F flows and m̃P PRBs, the scheduling module
has time complexity of O(m̃F(T + lg m̃F) + m̃Um̃P).

Proof: Since the two-layer scheduling strategy domi-
nates computation in this module, the worst case occurs when
all flows are GBR and each eNB overloads (i.e., Lj > 1). For
the UE-based scheduler, [27] shows that Eq. (15) spends T time
to find εi,k(t), so FLS takes O(m̃FT ) time. Finding Vi,t for
each UE by Eq. (16) spends O(m̃F) time. It also takes O(m̃U)
time to find each UE’s weight by Eq. (18). Then, the class-
based MT method takes O(m̃Um̃P) time, as we have to check
each (UE, PRB) pair in Eq. (17). So, the UE-based scheduler
spends time of O(m̃FT ) + O(m̃F) + O(m̃U) + O(m̃Um̃P) =
O(m̃FT ) + O(m̃Um̃P). For the flow-based scheduler, it takes
O(m̃F) time to decide priorities of flows by Eq. (20). Also,
using Eq. (21) to compute ni,k of each flow takes O(m̃F) time.
When

∑

∀fi,k∈Fi
ni,k > nR

i , we sort flows by their priorities,

which spends O(m̃F lg m̃F) time, and ask flows to give up
some PRBs, which takes O(m̃F) time. So, the flow-based
scheduler spends time of O(m̃F) + O(m̃F) + O(m̃F lg m̃F) +
O(m̃F) = O(m̃F lg m̃F). Thus, the scheduling module has
time complexity of O(m̃FT ) + O(m̃Um̃P) + O(m̃F lg m̃F) =
O(m̃F(T + lg m̃F) + m̃Um̃P).

5.3 Design of the Billing Module

The supply and demand theory in [7] shows that the charge

M̂i of a service affects the amount of demand D̂i by a user to
varying degrees. Specifically, given a scaling factor η, we can
estimate a user’s demand for the service by

D̂i = ηM̂−pe

i , (22)

where pe is a coefficient of price elasticity. To find pe, we can

adjust the service’s charge to M̂i′ and measure the change of

user’s demand (from D̂i to D̂i′ ) as follows:

D̂i′

D̂i

=
ηM̂−pe

i′

ηM̂−pe

i

=

(

Mi

Mi′

)pe

⇒ pe =
ln(D̂i′/D̂i)

ln(M̂i/M̂i′)
. (23)

A larger pe value (i.e., D̂i′/D̂i increases or M̂i/M̂i′ decreases)
implies that the decrease of service charge will increase user
demand, so the service is more elastic. The work [31] points
out that an applicable range of pe for 3G and later systems is
between 1.3 and 1.7, and it proposes the NLP pricing policy
by Eq. (1), which computes the service’s charge based on the
network load, QoS levels, and user classes.

However, NLP is not completely fit for our EPS framework.
We need to further tailor Eq. (1) by addressing three issues:

1) How to determine the network load L in a HetNet?
2) How to define the QoS level x in Eq. (1)?
3) How to apply peak and off-peak rates to NLP?

For the first issue, NLP simply defines L by the ratio of the
number of PRBs spent by UEs in a macrocell to the number
of PRBs offered by the eNB. Since EPS considers the HetNet
scenario, we should compute the network load by

L =
1

|E|
∑

ej∈E
min{Lj , 1}, (24)

where E includes one macrocell eNB and all picocell eNBs in
the macrocell. Based on Eq. (9), it is possible that Lj > 1 (i.e.,
the eNB overloads), so we use the term min{Lj , 1} in Eq. (24).
We remark that since the coverage of a picocell is small, it is
not suitable to compute the load L in each single cell, as UEs
may easily handover to other cells due to mobility. Moreover,
the eNB controlling module in Section 5.1 works based on one
macrocell along with its covered picocells. Thus, it is natural
to take the average load of eNBs in E as the network load by
Eq. (24).

For the second issue, we refer to QCI in Table 3 to define
the QoS level. In particular, given the QCI priority y of a flow,
we calculate its QoS level by the following function:

f(y) = 10− ⌈y⌉. (25)

From Table 3, since 0.5 ≤ y ≤ 9, the output of f(y) must
be a positive integer and its value is between 1 and 9. In this
way, we can make sure that the difference between the QoS
levels of any two flows will not be too large (in particular,
no more than 8). Thus, we can avoid the situation where a
user will be charged too much (or less) when he/she uses a
certain flow. Moreover, since GBR flows usually have larger
QCI priorities and the eNB may spend more resource to meet
their QoS requirements (e.g., video flows), we can ask users to
pay more money to increase operator profit by Eqs. (1) and (25)
when they use large-demand GBR applications. Note that the
previous PARS framework [9] directly uses the QCI “index” to
be the QoS level in Eq. (5). Since PARS also limits the QoS level
between 1 and 9, it simply sets the QoS level to 9 when a flow
has a QCI index larger than 9 (e.g., 65, 66, 69, 70, 75, and 79 in
Table 3). In this case, PARS cannot differentiate these flows by
giving them different QoS levels.

For the third issue, we use two thresholds δpeak and δoff on
L to check if the network load is heavy or light, respectively.
Then, we adjust the fee charged to users accordingly. When
L ≥ δpeak, we add an additional fee Cpeak to the charge to reflect
the peak rate, so as to increase operator profit and alleviate
network congestion. On the other hand, when L ≤ δoff , we
deduct a bonus fee Coff from the charge to reflect the off-peak
rate, so as to increase resource utilization.

Based on the above designs, we amend Eq. (1) in the billing
module. Suppose that a user has class of ξi. He/She uses a flow
fi,k with QCI priority yi,k that consumes ni,k PRBs. Then, we
adopt three cases to compute the fee charged to the user:

• Case of L ≤ δoff (i.e., off-peak rate):

Mi,k = [CV(ξi)− Coff ]× [ê− ê−f(yi,k)]Lni,k. (26)

• Case of δoff < L < δpeak (i.e., normal rate):

Mi,k = CV(ξi)× [ê− ê−f(yi,k)]Lni,k. (27)
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TABLE 3: QCI table defined by the LTE-A standard (Release 15) [12].
index flow priority example services

1 GBR 2 conversational voice (e.g., VoIP)
2 GBR 4 conversational video (live streaming)
3 GBR 3 real-time gaming, V2X messages
4 GBR 5 video (buffered streaming)
65 GBR 0.7 MCPTT voice
66 GBR 2 non-MCPTT voice
75 GBR 2.5 V2X messages
5 non-GBR 1 IMS signalling
6 non-GBR 6 video (buffered streaming), TCP-based
7 non-GBR 7 voice, video (live streaming)
8 non-GBR 8 video (buffered streaming), TCP-based
9 non-GBR 9 video (buffered streaming), TCP-based
69 non-GBR 0.5 mission critical delay sensitive signalling
70 non-GBR 5.5 mission critical data
79 non-GBR 6.5 V2X messages

[Note] V2X: vehicle to everything, MCPTT: mission critical push to talk
IMS: IP multimedia subsystem, TCP-based: www, email, chat, ftp, p2p, and so on

• Case of L ≥ δpeak (i.e., peak rate):

Mi,k = [CV(ξi) + Cpeak]× [ê− ê−f(yi,k)]Lni,k. (28)

We discuss the meanings of our pricing functions. All func-
tions have the same term of [ê − ê−f(yi,k)]Lni,k, so the fee is
proportional to the network load L and the number of PRBs
ni,k spent by a flow. Thus, when L increases or the user spends
more PRBs, the fee will be raised accordingly, and vice versa.
Here, the term [ê − ê−f(yi,k)] reflects the price elasticity pe
defined in Eq. (23), where each flow has its elasticity based
on the QoS level f(yi,k). When the flow has a larger f(yi,k)
value (i.e., a higher QCI priority), the value of [ê − ê−f(yi,k)]
increases. It means that the flow is less elastic, and we can raise
the fee as the price has a smaller effect on the user’s demand
for the flow. In other words, the user would not greatly reduce
the flow’s demand if we raise the fee. Observing from Eqs.
(26)–(28), each user is charged with a unit fee CV(ξi) based
on the class ξi. We have CV(ξG) > CV(ξS) > CV(ξB), so
gold, silver, and bronze users will pay high, medium, and low
rates, respectively. To encourage users boosting their demands
as the network utilization is low, we reduce the unit fee to
[CV(ξi)− Coff ] in Eq. (26). When the network is saturated, we
raise the unit fee to [CV(ξi) + Cpeak] in Eq. (28) to avoid users
consuming too much resource, so as to mitigate congestion.
Note that the amount of money that a user should pay is the
sum of fees Mi,k of all flows fi,k owned by the user. Lemma 3
gives the time complexity of the billing module.

Lemma 3. The billing module spends time of O(m̃E + m̃F).

Proof: We first compute the load L by Eq. (24), which
takes O(m̃E) time. Then, each flow is charged based on Eqs.
(26), (27), or (28), which spends O(m̃F) time. Thus, the billing
module requires time of O(m̃E + m̃F).

5.4 Discussion

We discuss the rationale of our EPS framework. As mentioned
in Section 3, many studies view resource scheduling, pricing,
and energy saving as independent issues. However, they do
affect each other in LTE-A HetNets. In particular, we can
save energy of eNBs by DTX on the premise that UEs are
properly assigned to eNBs for resource scheduling. Moreover,
the supply and demand theory shows the correlation between
user demands (for resource scheduling) and pricing.

With this motivation, EPS uses three modules to co-address
these issues, as shown in Fig. 1. The eNB controlling module
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Fig. 2: Effects of different parameters on EPS’s time complexity.

organizes picocell eNBs into groups, and allows each CR to
arrange UEs in its group with two objectives. One is to alleviate
congestion in some picocells to make sure that an eNB never
has an excessive load, so we can facilitate the scheduling
module accordingly. The other objective is to make the picocell
eNBs serving just few UEs become idle, so as to let them sleep
to save energy.

The principle of the scheduling module is to give a high
priority to GBR flows for QoS consideration. To cooperate with
the billing module and improve network throughput, it finds
the transmission amount of GBR data by FLS to meet their QoS
demands, and adopts the class-based MT method to let UEs
with higher classes or better channel quality to get PRBs first.
Then, the DAPA strategy gives precedence to urgent flows to
reduce packet dropping, and allots PRBs to flows based on
their M-LWDF priorities derived by QCIs.

The billing module considers the supply and demand
theory. It tailors the NLP policy by computing the load of a
HetNet, finding QoS levels of flows, and applying both peak
and off-peak rates. In this way, we can increase operator profit
and mitigate network congestion by raising the charge to each
user as the network is saturated. Moreover, when the HetNet’s
load becomes light, the billing module encourages users to
increase their service utilization by reducing the charge. Theo-
rem 1 analyzes EPS’s computation complexity.

Theorem 1. The time complexity of the EPS framework is
O(m̃U(m̃E + m̃P) + m̃F(T + lg m̃F)).

Proof: Based on Lemmas 1, 2, and 3, the time complexity
of EPS is O(m̃Um̃E)+O(m̃F(T + lg m̃F)+ m̃Um̃P)+O(m̃E +
m̃F) = O(m̃U(m̃E + m̃P) + m̃F(T + lg m̃F)).
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Fig. 3: Network topology in our simulations.

Theorem 1 indicates that the computation time of EPS (in
the worst case) depends on the number of UEs m̃U, the number
of eNBs m̃E, the number of PRBs m̃P, the number of flows m̃F,
and period length T . Fig. 2 shows their effects on EPS’s time
complexity. In the experiment, when we vary the value of a
parameter from 10 to 100, the values of all other parameters
are fixed to 10. We can observe that m̃U has the greatest effect,
followed by m̃F. Then, m̃E, m̃P, and T have the same effect.

We remark that operators usually offer a number of pricing
options, where each option is associated with a basic rate and
a limit on data usage. In general, a higher basic rate, a larger
limit on data usage. Thus, these options actually correspond
to different classes of users. When a user consumes resource
more than the limit, the user needs to pay extra charge for
the amount of resource that is over the limit. However, using
a static pricing policy cannot deal with this situation. That is
why we choose to develop a dynamic pricing policy in EPS.
In particular, the operator can refer to our billing module
to calculate the amount of extra fee charged to a user when
he/she spends resource more than the limit, so as to increase
both profit and system utilization.

6 SIMULATION STUDY

We evaluate EPS’s performance by MATLAB. Fig. 3 gives the
topology of eNBs, where the macrocell is cut into nine regions.
Except for region V, there are three picocell eNBs deployed
in each region. The macrocell eNB has cell range of 1500m
and transmitted power of 46dBm. Its channel bandwidth is
20MHz, which offers 100 PRBs/TTI. Each picocell eNB has cell
range of 250m and transmitted power of 30dBm. Its channel
bandwidth is 5MHz, which offers 25 PRBs/TTI. A picocell eNB
can save 50% and 90% amount of energy when it keeps in the
sniff and sleep modes, respectively [55], [56]. Besides, we set
δLload = 30% and δHload = 125%.

There are 60, 180, 300, 420, 540, 660, 780, 900, 1020, and 1140
UEs in the HetNet, and two distributions of UEs are modeled.
In the uniform distribution, UEs are evenly scattered over all
regions in Fig. 3, so each picocell could have a similar number
of UEs. In the hotspot distribution, around 4/9 of UEs locate
in regions III and VII, and the residual UEs are uniformly
distributed over other regions. The ratio of gold, silver, and
bronze UEs is 1:1:1. In addition, we consider three types of
traffic flows: 1) 8.4kbps VoIP flow with QCI = 1, 2) 242kbps
H.264 video flow with QCI = 2, and 3) 12kbps constant-bit-rate
flow with QCI = 6. Each UE produces one or two flows. The
user class and flows of a UE will not change in the simulations.
However, we apply the supply and demand theorem to adjust

the traffic demand of each flow, where the scaling factor η in
Eq. (22) is set to 2× 105 [7].

Based on the specification of LTE-A [52], we model the
environmental noise by a Gaussian white noise whose power
spectral density is -174dBm/Hz. The path-loss effect from eNB
ej to UE ui is estimated by a log-distance model: 128.1 +
37.6 logZ(ui, ej) for a macrocell and 38+ 30 log(103Z(ui, ej))
for a picocell, where Z(ui, ej) is their distance in kilometers.
Besides, LTE-A adopts a zero-mean log-normal distribution to
measure the effect of shadowing fading. Its standard deviation
is set to 10dB and 6dB for a macrocell or picocell, respectively.

We compare EPS with the flat-rate, static pricing, NLP, SCP,
and PARS methods discussed in Section 3.2. According to [9],
[32], [57], we set their parameters as follows: For the flat-rate
method, each user is charged with 2000mus. For the static pric-
ing method, we set CP(ξG) = 11, CP(ξS) = 6, and CP(ξB) = 4.
In NLP, we set CV(ξG) = 0.9, CV(ξS) = 0.7, CV(ξB) = 0.5,
CF = 2.6, and α = 1. In SCP, we set CP(ξG) = 9, CP(ξS) = 8,
CP(ξB) = 4, and β = 520. In PARS, we set CV(ξG) = 0.9,
CV(ξS) = 0.7, CV(ξB) = 0.5, and CF = 2.6. In EPS, we set
CV(ξG) = 0.9, CV(ξS) = 0.7, CV(ξB) = 0.5, CF = 2.6, and
Coff = Cpeak = 0.1. Except for the flat-rate method, the unit of
price is mu/PRB, where “mu” is the abbreviation of monetary
unit. For the flat-rate, static pricing, NLP, and SCP methods,
we use the resource scheduling scheme in PARS to allocate
PRBs. Besides, we apply the DTX technique to these methods.
Specifically, a picocell eNB can be turned off if it has no UE to
serve.

We measure the amount of operator profit, network
throughput, energy consumption, energy efficiency, and
packet loss by different methods. Network throughput is
defined by the number of data bits received by UEs in each
second (measured in megabits per second, i.e., Mbps). Energy
efficiency is defined by the ratio of network throughput to
energy consumption of eNBs (measured in kilobits per watt,
i.e., kb/W).

6.1 Uniform Distribution of UEs

We first evaluate performance in the uniform distribution of
UEs. Fig. 4(a) gives the amount of operator profit in 100
seconds, where 1Mmu = 106mus. Obviously, when the number
of UEs grows, the operator can increase its profit. The amount
of profit increase is linear in the flat-rate method, as it simply
keeps the fee regardless of the network load. Comparing with
the static pricing method, NLP, SCP, and PARS allow the
operator getting more profit under a heavy load (i.e., > 900
UEs). On the other hand, EPS adopts off-peak rates to attract
users when the load is light (i.e., < 540 UEs), so its profit is
slightly below the static and SCP methods. However, when
there are more than 780 UEs, EPS changes to use peak rates,
so it helps the operator get the most profit under a heavy
load. The above behavior shows the flexibility of EPS’s pricing
policy.

Fig. 4(b) shows network throughput. As the flat-rate, static
pricing, NLP, and SCP methods adopt the scheduling scheme
of PARS, they have similar throughput. However, SCP gives
low-class users more penalty by Eqs. (3) and (4) under a heavy
load (i.e., > 780 UEs), which discourages them using more
resource (caused by the effect of supply and demand theory).
Thus, SCP’s throughput drops when the number of UEs ex-
ceeds 780. That is why the curve of SCP is non-monotonic.
Our EPS framework always has the highest throughput due
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Fig. 4: Comparison on performance in the uniform distribution of UEs.

to two reasons. First, it reduces the charge to encourage users
increasing traffic demands as the network load is light. Second,
the eNB controlling module arranges UEs to balance loads of
picocells and thus alleviates network congestion.

Fig. 4(c) gives the amount of energy consumed by eNBs
per second. Though the flat-rate, static pricing, NLP, SCP, and
PARS methods use the DTX technique, they fail to save energy
of eNBs. In particular, only when the network load is very light
(i.e., with only 60 UEs) can these methods find out idle eNBs
to turn them off. On the contrary, EPS allows CRs actively
arranging UEs to make the picocell eNBs serving just few UEs
become idle. Thus, it reduces much more energy spent by eNBs
with 60 UEs. Besides, EPS can still save energy of eNBs when
there are no more than 300 UEs.

We then study energy efficiency of different methods, as
presented in Fig. 4(d). Specifically, higher energy efficiency
means that eNBs can better utilize their transmitted power to
send more data. From Fig. 4(c), since each method makes eNBs
consume the same amount of energy when there are more than
300 UEs, the trend of energy efficiency in Fig. 4(d) will be
similar to that of network throughput in Fig. 4(b). Therefore,
the curve of SCP is also non-monotonic. From Fig. 4(d), we
observe that our EPS framework always keeps the highest
energy efficiency, which verifies that it can increase network
throughput while save energy of eNBs.

Fig. 4(e) shows the packet loss rate of GBR flows due to
expiration. When the network load becomes heavy (i.e., > 780
UEs), the loss rate of each method starts growing. However, the
loss rate of SCP drastically increases in this case. The reason
is that SCP forces users with low classes to pay much more
money, which frightens them out of using more GBR services
(and leave many GBR packets to be discarded). On the other
hand, since our scheduling module lets urgent flows acquire
PRBs first, the EPS framework can result in a lower loss rate as

comparing with other methods.

6.2 Hotspot Distribution of UEs

We then investigate performance in the hotspot distribution
of UEs. Since many UEs reside in regions III and VII of the
macrocell, they will cause network congestion in these regions
and get fewer PRBs than that in the uniform distribution. Thus,
except for the flat-rate method, the amount of operator profit
decreases in all other methods in Fig. 5(a) as comparing with
Fig. 4(a). However, our EPS framework still keeps its pricing
flexibility and thus helps the operator get the most profit when
the network load becomes heavy in this distribution of UEs.

Fig. 5(b) gives the amount of network throughput. Com-
paring with Fig. 4(b), all methods result in lower throughput
due to network congestion in regions III and VII. SCP still
encounters significant throughput loss as the number of UEs
is above 900 due to the excessive charge to low-class users by
Eqs. (3) and (4), which makes its curve non-monotonic. Thanks
to the design of three modules, our EPS framework keeps the
highest throughput among all methods, which demonstrates
its throughput effectiveness in LTE-A HetNets.

Fig. 5(c) measures the amount of energy spent by eNBs.
Interestingly, when the number of UEs is 180, each method
can save more energy as comparing with that in Fig. 4(c). The
reason is that only 5/9 of UEs are randomly scattered over
the six regions (except for III and VII). In this case, there is
higher possibility that we can find out more idle eNBs to turn
them off and save energy accordingly. Then, Fig. 5(d) shows
the result of energy efficiency. Again, the curve of each method
in Fig. 5(d) will be similar to those in Fig. 5(b), because each
method results in the same amount of energy consumption of
eNBs when there are more than 300 UEs (referring to Fig. 5(c)).
That is why the curve of SCP is also non-monotonic in Fig. 5(d).
From Figs. 5(c) and (d), we show that EPS can save more
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Fig. 5: Comparison on performance in the hotspot distribution of UEs.

energy of eNBs and result in the highest energy efficiency in
the hotspot distribution of UEs.

Fig. 5(e) compares the GBR packet loss rates of different
methods. Since 4/9 of UEs congregate in regions III and VII,
these UEs cause network congestion in their cells. In this case,
some picocell eNBs may not have enough PRBs to serve their
GBR flows. Such a situation becomes worse as there are more
UEs in the network. That is why the loss rate significantly
increases in each method when the number of UEs is above
780. Since our EPS framework arranges UEs to balance cell
loads and also serves urgent flows first, it can result in the
lowest loss rate as comparing with other methods.

6.3 Daily Traffic Profile in Europe

As the experiments in Sections 6.1 and 6.2 have simulation
time of only 100 seconds, we refer to the daily traffic profile
in Europe [58] to imitate user demands in one day, where the
maximum number of UEs is 1140. Fig. 6(a) presents the amount
of operator profit in each hour. We observe that the off-peak
time is from the 2nd to 9th hours and the peak time is from
the 17th to 24th hours. Even in the peak time, the flat-rate
method cannot greatly increase operator profit, which shows
the necessity of using a dynamic pricing policy. On the other
hand, the operator can obtain the most profit during the peak
time in EPS, which verifies its flexibility in pricing.

Fig. 6(b) shows the amount of data transmission per hour.
As discussed earlier, SCP incurs serious throughput loss in the
peak time, since it asks users to pay more money but does
not provide better services. On the contrary, although EPS
charges users with higher fees in the peak time, it adaptively
distributes UEs over picocells and offers better service quality.
That is why EPS does not encounter throughput loss in the
peak time. Moreover, EPS deducts Coff from the fee by Eq. (26)

in the off-peak time, so it can encourage users increasing their
demands when the network load becomes light.

Fig. 6(c) gives the amount of energy consumed by eNBs in
each hour. Since more eNBs can become idle in the off-peak
time (especially from the 3rd to 8th hours), each method can
turn off unused eNBs and save energy accordingly. Thanks to
the arrangement of UEs by the eNB controlling module, our
EPS framework greatly reduces energy consumption of eNBs
in the off-peak time. This experiment shows that EPS can better
support green communications than others.

7 CONCLUSION

In LTE-A HetNets, the issues of resource scheduling, pricing,
and energy saving have great impact on performance. This
paper thus develops the EPS framework with three modules
to co-address these issues. The eNB controlling module groups
picocells and asks the CR to manage UEs in its group, so as
to balance loads of picocell eNBs and make some eNBs sleep
to save energy. The scheduling module adopts a two-layer
scheduling strategy to serve GBR flows first to meet their QoS
demands, and allots PRBs to other flows via the class-based
MT method. The billing module considers the effect of supply
and demand theory and introduces both peak and off-peaks
rates into the pricing policy. Through simulations by MATLAB,
we show that EPS has better performance on operator profit,
network throughput, energy consumption, and packet loss,
as compared with the flat-rate, static pricing, NLP, SCP, and
PARS methods. For the future work, we will investigate more
sophisticated clustering schemes of picocell eNBs (e.g., varying
δg discussed in Section 4 based on various conditions), and
evaluate their effects on performance.
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Fig. 6: Comparison on performance by the daily traffic profile in Europe.
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