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Abstract—In local area networks (LANs), Ethernet is a widely used layer-2 networking technology due to the low cost and self-configuring
ability. It allows computers and switches to form a broadcast domain to exchange data, which means that many protocols built on Ethernet
rely on sending data to every node. However, as the network grows, the efficiency of Ethernet degrades since the network is flooded with
spam packets caused by broadcast. Even worse, traditional layer-2 switches do not well support multicast protocols but realize them by also
broadcasting packets. To conquer these problems, the paper develops an Adaptive Broadcast and multicast traffic Cutting (ABC) framework
based on software-defined networking (SDN). By taking two Ethernet protocols, ARP and IGMP, as examples, we show how to exploit SDN
to restrain unnecessary traffic to improve Ethernet efficiency via our framework. With Mininet simulations, we verify that the ABC framework
not only greatly reduces spam packets than legacy Ethernet but also saves controller overhead comparing with other SDN-based solutions.
Moreover, we also implement the ABC framework on the campus network to demonstrate its practicability.

Index Terms—broadcast, Ethernet, multicast, OpenFlow, SDN.

1 INTRODUCTION

THERNET achieves a complete triumph in the competition
E of layer-2 networking technologies, and it has been widely
used in many wired LAN systems such as campus networks,
enterprise networks, and data centers. The great success of
Ethernet comes from its low cost and convenience. In par-
ticular, computers can effortlessly join an Ethernet network
almost without manual configuration. Today, the Ethernet
interface card is an essential component of every computer
for communication.

In Ethernet, a set of computers are connected together by
a switch and form one broadcast domain. Many protocols
built on Ethernet thus rely on broadcast traffic for service or
resource discovery [1]. The address resolution protocol (ARP)
is one representative, where a computer uses broadcast to
find out the MAC address corresponding to the IP address
of another computer in the same domain. On the other hand,
since a switch deals with only layer-2 tasks, it cannot well
support Internet group management protocol (IGMP), which is a
layer-3 multicast protocol. Without IGMP snooping, multicast
packets will be also sent to all computers in the broadcast
domain.

The broadcast mechanism of Ethernet functions smoothly
in a small LAN. However, when the number of computers
substantially grows, switches have to be organized hierarchi-
cally to form a single, huge broadcast domain. In this case, the
whole network will be congested with numerous broadcast
packets. We take the campus network in our department as
an example, which has nine class-C subnets ranged from
140.117.168.0 to 140.117.176.255. Table 1 gives the statistics of
data received by each computer during 24 hours. In particular,
both broadcast and multicast traffic occupies more than 95%
and 92% of the number of packets and bytes received by the
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TABLE 1: Statistics of data received by one computer during 24 hours.

type | traffic [[ packets ratio [ bytes ratio

ARP 5,076,350  66.77% | 306,079,820  40.26%

broadcast control 843,772 11.10% | 113,727,980  14.96%
data 172,724 2.27% 10,303,440 1.36%

sum 6,115,867  80.44% | 431,816,038  56.80%

SSDP 592,380 7.79% | 203,116,302  26.72%

multicast LLMNR 408,650 5.38% 34,502,867 4.54%
data 80,813 1.06% 31,326,354 4.12%

sum 1,141,121  15.00% | 272,715,458  35.87%

unicast data 345,570 4.56% 55,643,023 7.33%

Simple service discovery protocol [2].
Link-local multicast name resolution [3].

computer, respectively. Nevertheless, most data of such traffic
are irrelevant to the capturing computer. The phenomenon
shows that Ethernet becomes inefficient in a large-scale LAN,
as each computer actually requires a very small portion of its
receiving data.

Conventional solutions to the broadcast problem are to
partition the network into multiple broadcast domains either
physically by layer-3 routers or logically by virtual LANSs. In
this way, broadcast and multicast packets will be confined to
each small broadcast domain. However, these solutions have
some drawbacks. First, they usually incur a high cost, since
routers are expensive than switches while it involves plenty of
manual configuration in virtual LANs. Second, some protocols
like NetBIOS are not routable at layer 3. Thus, such protocols
may not well operate. Third, without mobile IP, mobility of
computers and migration of virtual machines (e.g., in data
centers) between different broadcast domains is complicated.
We will further discuss this issue in Section 3.1.

Therefore, this paper seeks to conquer the broadcast prob-
lem in a large-scale LAN without partitioning it into multi-
ple broadcast domains. The idea is to exploit the emerging
software-defined networking (SDN) technique [4]. In particular,
SDN logically separates the LAN into control and data planes.
A centralized SDN controller deals with the control plane and
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makes decisions such as how to interpret packet headers and
where to forward them. On the other hand, the data plane
is distributed among switches to take charge of packet trans-
mission. Through this architecture, network administrators
can manage traffic flows in the LAN by setting rules in the
controller.

SDN gives a flexible manner to adjust the LAN’s trans-
mission behavior on the fly. Based on SDN, we propose an
Adaptive Broadcast and multicast traffic Cutting (ABC) framework
to eliminate spam packets. Specifically, the controller analyzes
each incoming packet and learns the status of the ongoing
protocol. Then, it spontaneously sets transmission rules to
prevent switches from forwarding unnecessary broadcast or
multicast packets that will be generated by that protocol.
We use both ARP and IGMP to demonstrate how the ABC
framework operates, which are two fundamental protocols in
Ethernet. Our contributions are threefold. First, unlike other
SDN-based approaches, the ABC framework helps the con-
troller intelligently convert ARP addresses instead of making
the controller act as a proxy to process every ARP packet.
Therefore, it can greatly alleviate the burden of the controller.
Second, the design of our framework considers the issues of
backward compatibility and multicast, which are rarely dis-
cussed in the literature. Simulation results show that the ABC
framework can significantly reduce ARP broadcast comparing
with existing work in a LAN where traditional and OpenFlow
switches coexist. Finally, the ABC framework is implemented
on our campus network, and the experimental results verify
its outstanding performance than legacy Ethernet.

We organize the rest of this paper as follows. Section 2
gives an overview of SDN. Section 3 surveys related work.
In Section 4, we discuss our ABC framework. Section 5 eval-
uates system performance. Finally, we draw a conclusion in
Section 6.

2 SDN OVERVIEW

OpenFlow [5] is a popular implementation for SDN. It re-
places traditional switches by OpenFlow switches that can
receive and execute commands from the controller. Specifically,
OpenFlow defines the communication interface between an
OpenFlow switch and the controller, and also the operations
of OpenFlow switches. Each OpenFlow switch maintains a
flow table to deal with every incoming packet, which contains
flow entries that specify matching rules and actions. Once
receiving a packet, the OpenFlow switch finds a flow entry
whose matching rule is satisfied and then performs the entry’s
action. However, if no entry can be found, the OpenFlow
switch triggers an event of table miss, which sends a Packet_In
message with that packet’s information to the controller. Then,
the controller will return a new flow entry to tell the OpenFlow
switch how to handle the packet by sending a Packet_Out
message. Thus, the controller can easily manage OpenFlow
switches and regulate the transmission of packets in the LAN.

On the other hand, Ryu [6] is a popular open-source frame-
work to carry out the controller. It can well support OpenFlow
and provides a set of application program interfaces (APIs) in
Python to help users develop their own SDN applications. In
particular, a user can implement his/her application by regis-
tering related input events along with the handling function.
Then, Ryu employs an event queue to dispatch these events
to the corresponding functions in a first-in-first-out (FIFO)
manner. Moreover, Ryu allows users to acquire packet headers
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Fig. 1: Solutions to the broadcast problem in legacy Ethernet.

and compose packets through a packet-handling mechanism.
Therefore, we will use Ryu to realize our ABC framework in
the controller.

3 RELATED WORK
3.1 Solutions in Legacy Ethernet

Traditional solutions to the broadcast problem in a large-scale
LAN are to intuitively divide it into many small broadcast
domains. One approach is to replace some switches with more
sophisticated routers, where each router is responsible for
one subnet (i.e., broadcast domain), as shown in Fig. 1(a).
However, this approach puts restrictions on the allocation of
IP addresses, as a router will check the legality of a computer’s
IP address in its subnet by doing the AND operation with the
subnet mask. Moreover, it is infeasible to support mobility of
computers among different subnets. Fig. 1(a) gives an example,
where a computer A with IP address 10.0.1.3 cannot move into
subnet 2 with network segment 10.0.2.0/24, because the router
in subnet 2 will drop all of its packets.

Another solution uses virtual LANs defined by IEEE
802.1Q [7]. It adds a 4-byte label in the Ethernet header to let
an 802.1Q switch know which port should be used to relay the
packet. Thus, the 802.1Q switch can logically divide its child
switches into different virtual LANs, each corresponding to
a broadcast domain, as shown in Fig. 1(b). Comparing with
the solution by routers, virtual LANs can support mobility
of computers. Fig. 1(b) gives an example, where computer A
wants to move to virtual LAN 2. In this case, switches S; and
S2 have to support IEEE 802.1Q and be reconfigured to make
computer A become a member of virtual LAN 2. Obviously,
it requires the administrator to manually configure multiple
switches, which is not efficient and flexible.

A number of research efforts aim at dealing with the
broadcast problem in legacy Ethernet. Myers et al. [8] use
special hardware to let switches support high-layer protocols,
and convert broadcast traffic into unicast trafficc. However,
each switch has to record the information of all computers in
the LAN. Thus, Kim et al. [9] adopt a hash table to conquer
this problem by distributing computers’ information among
different switches. EtherProxy [10] deploys a gateway on the
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entrance to each broadcast domain to record all passing pack-
ets. Then, it tries to change the broadcast address to unicast ad-
dress(es) to avoid unnecessary broadcast traffic. By borrowing
the idea of network address translation (NAT), EtherAgent [11]
cuts a broadcast domain into internal and exterior parts, so that
the amount of broadcast traffic can be reduced. Nevertheless,
the effect of EtherAgent is similar to the traditional solution by
routers.

3.2 SDN-based Solutions

A few studies employ SDN to solve the broadcast problem.
Cho et al. [12] try to diminish ARP traffic in a large-scale
data center network by implementing the SDN controller as
an ARP proxy. Network administrators set up both IP and
MAC addresses of data centers to the controller in advance.
Then, all ARP requests are sent to the controller and the
controller unicasts ARP replies to the destination computers.
Except for the ARP proxy, both studies [13], [14] also make
the controller become a DHCP (dynamic host configuration
protocol) server [15]. Whenever a new computer joins the
network, the corresponding OpenFlow switch will relay its
DHCP discovery packet to the controller in order to find
an unused IP address. Jehan et al. [16] use an independent
DHCP server to deal with the IP address assignment, while
the controller solely serves as the ARP proxy. However, all
DHCP packets are still forwarded to the controller. Obviously,
the above studies ask the controller to play the role of ARP
proxy or DHCP server to deal with such broadcast traffic.
However, they do not take advantage of SDN’s property to
adaptively determine the paths to route packets. Instead, these
studies simply send all broadcast packets to the controller,
which imposes a heavy burden on the controller.

The work of [17] considers alleviating ARP and DHCP
traffic in a hybrid LAN consisting of wired and wireless
networks. Rather than implement the ARP proxy and DHCP
server on the controller, it asks each OpenFlow switch to relay
ARP and DHCP packets to two destinations. One is the con-
troller and the other may be the DHCP server, a computer, or
flood (i.e., broadcast). Thus, the controller has the information
of all computers and the DHCP server, so it can command
OpenFlow switches to forward packets on the designate ports
accordingly. However, since an OpenFlow switch has to send
a copy of each broadcast packet to the controller, this work
also puts a heavy load on the controller. Also, [17] does not
consider backward compatibility. When there are traditional
switches in the LAN, they still use broadcast to deal with ARP
and DHCP traffic.

Comparing with existing SDN-based solutions, our ABC
framework not only significantly diminishes the load of the
controller by forwarding only required packets to it, but also
addresses how to deal with multicast traffic. Moreover, simu-
lation results in Section 5 will show that the ABC framework
substantially reduces ARP broadcast in a LAN containing
traditional switches, which demonstrates that it can support
good backward compatibility with legacy Ethernet.

4 THE PROPOSED ABC FRAMEWORK

Fig. 2 illustrates the system architecture of our ABC framework
based on SDN. We aim at the design of control plane (i.e., the
controller) to make OpenFlow switches reduce broadcast and
multicast traffic in the data plane. Each OpenFlow switch has a
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Fig. 2: System architecture of the ABC framework.

flow table to decide how to forward incoming packets. In case
that it cannot find any entry from the table whose rule satisfies
the incoming packet, the OpenFlow switch sends a Packet_In
message with the packet’s information to the controller. Then,
the controller specifies the new rule and action to deal with
that packet by replying a Packet_Out message. In particular,
the ABC framework contains four major components to learn
network status and generate necessary rules/actions:

o Dispatcher: It takes charge of discovering and inter-
acting with OpenFlow switches. When capturing a
Packet_In message, the dispatcher will relay the mes-
sage to the corresponding handler.

e Ethernet-handler: This handler gives a preliminary
analysis of Packet_In messages and records the infor-
mation of computers in the LAN.

e ARP-handler: We develop the handler to cope with
ARP traffic, whose packets occupy more than 60% of
all broadcast packets (referring to Table 1).

e IGMP-handler: This handler allows OpenFlow switches
to well support multicast, so as to avoid sending multi-
cast packets to those irrelevant computers.

The ABC framework is modularized, so it is easy to support
other types of traffic by adding corresponding handlers. Below,
we detail our design of each component.

4.1 Design of Dispatcher

The dispatcher has two major missions. One is to discover new
OpenFlow switches in the LAN. To do so, when an Open-
Flow switch starts to operate, it builds a TLS (transport layer
security) connection with the controller to trigger an initial
handshake, as shown in Fig. 3. This connection makes both the
OpenFlow switch and the controller enter the “THELLO_WAIT”
state and exchange a Hello message with each other, which in-
dicates the supported OpenFlow version. Then, the OpenFlow
switch and the controller will agree to use the lowest version
and finish the initial handshake procedure.

After the initial handshake procedure comes the feature
discovery procedure. The OpenFlow switch turns to the “FEA-
TURE_WAIT” state and sends a Hello message to the con-
troller again to make it enter the same state. In this case,
the controller will send a feature request to the OpenFlow
switch to query its parameters. After returning the feature
reply, both the OpenFlow switch and the controller enters the
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Fig. 3: The procedures of initial handshake and feature discovery.

TABLE 2: Default flow entries installed in each OpenFlow switch.
Matching rules Actions
dl_dst=FF:FF:FF:FF.FF:FF, | actions=CONTROLLER:6633
arp, arp_op=1
igmp, nw_dst=224.0.0.1
igmp, nw_dst=224.0.0.0/3

actions=CONTROLLER:6633, FLOOD
actions=CONTROLLER:6633

“ESTABLISH” state and finish the feature discovery procedure.
Through the above procedures in Fig. 3, the controller can
easily acquire the information of all OpenFlow switches in the
LAN.

The other mission of the dispatcher is to receive Packet_In
messages from OpenFlow switches and assign them to the
corresponding handlers. To let OpenFlow switches transmit
correct Packet_In messages, the controller will set up some
default flow entries in each switch’s flow table, as listed in
Table 2. Specifically, the first entry indicates that every new
ARP request with a broadcast address (i.e., FF:FF:FF:FF:FF:FF)
must be sent to the controller with port 6633. In this way,
the controller can learn the IP and MAC addresses of the
corresponding computer. The second entry deals with a
membership-query packet defined in IGMP, whose IP address
must be 224.0.0.1. We use this entry to let the controller get
the information of a multicast group. However, computers and
routers also require the membership-query packet to obtain the
same information. That is why we add the term “FLOOD” in
the corresponding action. Finally, the last entry is responsible
for processing other packets in IGMP, such as membership
report and group leave. (We will further discuss these packets
in Section 4.4.) Through the entries defined in Table 2, the
controller can acquire necessary packets to cope with both ARP
and IGMP traffic in the LAN.

4.2 Design of Ethernet-handler

The Ethernet-handler takes charge of recording the informa-
tion of computers in the LAN. Therefore, whenever the dis-
patcher obtains a Packet_In message, it has to forward one
copy to the Ethernet-handler. On the other hand, the Ethernet-
handler maintains an Ethernet table to take down the data
path identification (DPID), MAC address, and port number of
each receiving Packet_In message. In OpenFlow, each device
is associated with one unique DPID to help the controller
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Fig. 4: An example of ARP.

distinguish different devices in the LAN. Notice that every
computer has at most one record in the Ethernet table.

Afterwards, the Ethernet-handler transmits a Packet_Out
message to the corresponding OpenFlow switch to make the
switch add a flow entry containing the computer’s information
and indicating how to deal with its packets. The follow-
ing flow entry gives an example: (“dl_dst=00:00:00:00:00:01",
“actions=OUTPUT:1"). It will ask the OpenFlow switch to
relay the packets with destination MAC address equal to
00:00:00:00:00:01 to its port 1. In this way, the computer can
have the privilege to access the Ethernet, as the OpenFlow
switch can know how to process its packets.

4.3 Design of ARP-handler

ARP helps a computer learn the association between an IP
address and a MAC address. To do so, each ARP packet
contains four address fields: sender hardware address (SHA),
sender protocol address (SPA), target hardware address (THA), and
target protocol address (TPA), which indicate the MAC address of
the source computer, the IP address of the source computer, the
MAC address of the destination computer, and the IP address
of the destination computer, respectively.

We take an example in Fig. 4 to explain how ARP works,
where three computers A, B, and C' connect together by a
switch via its ports 1, 2, and 3, respectively. Suppose that
computer A has a packet to be sent to computer C. It deter-
mines that computer C' has the IP address of 10.0.0.3 (e.g.,
through the domain name server). To transmit the packet,
computer A should know computer C’s MAC address. Thus,
computer A first adopts a cached ARP table to search 10.0.0.3
for any existing entry of computer C’s MAC address (i.e.,
00:00:00:00:00:03). If the table returns no result, computer A
sends an ARP request with the destination MAC address
of FF:FF.FF:FF:FF.FF (i.e., broadcast address) and the source
MAC address of 00:00:00:00:00:01. When the switch receives
this ARP request, it broadcasts the request to all its ports.
On the other hand, when computer C gets the ARP re-
quest, it sends an ARP reply with the destination MAC
address of 00:00:00:00:00:01 and the source MAC address of
00:00:00:00:00:03. In this case, the switch will relay the ARP
reply to computer A through its port 1. Afterwards, computer
A will cache this information in its ARP table. Next time when
it wants to send a packet to computer C' again, it broad-
casts an Ethernet frame with the destination MAC address of
00:00:00:00:00:03, containing the IP packet to the LAN.

ARP is easy to use, but it will generate a lot of ARP
requests when many computers query their target MAC ad-
dresses. Even when a computer knows the MAC address of
its target (from the ARP table), it still uses broadcast to send
the packet. Thus, the LAN will be inevitably congested by
spam packets caused by ARP. To conquer this problem, our
idea is to allow the controller to receive ARP packets, so as to
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TABLE 3: The flow entries generated by the ARP-handler based on the
example in Fig. 4.

Matching rules Actions

arp, tpa=10.0.0.1 actions=set_field:00::01->the_dst,
OUTPUT:1

arp, op=2, spa=10.0.0.3, | actions=CONTROLLER:6633,

tpa=10.0.0.1 OUTPUT:1
actions=CONTROLLER:6633

learn the information of computers (e.g., IP/MAC addresses
and ports). Then, it installs corresponding flow entries in
OpenFlow switches to convert ARP broadcast packets into
unicast packets.

In practical implementation, when an OpenFlow switch
receives an ARP request, it first checks whether the ARP re-
quest can be sent to the right computer via unicast by referring
to its flow table. If there is no flow entry relevant to the IP
address indicated in the ARP request, the OpenFlow switch
still broadcasts the ARP request and also sends one copy to
the controller. On the other hand, the controller can learn a
computer’s IP/MAC addresses through its first ARP request
and also the target computer’s IP/MAC addresses through the
corresponding ARP reply. This can be done by extracting both
the SPA and SHA fields from each ARP packet. In this way,
the controller can quickly learn the IP and MAC addresses of
computers in the LAN.

Let us use the example in Fig. 4 again to show how to
generate the corresponding flow entries by the ARP-handler,
as presented in Table 3. Suppose that the controller has re-
ceived the ARP request from computer A that queries the MAC
address of computer C. In this case, the controller can learn
both IP and MAC addresses of computer A. Thus, the first flow
entry indicates that all (ARP) packets with IP address 10.0.0.1
should be transmitted to computer A by unicast through port
1 of the OpenFlow switch. Then, since it is expected that com-
puter C' will send an ARP reply to computer A, the second flow
entry will ask the OpenFlow switch to also forward the ARP
reply to the controller, so as to help it acquire the MAC address
of computer C. Notice that this flow entry is temporary, for
example, with lifetime of five seconds. When the controller
receives the ARP reply later, it can install a new flow entry
below: (“arp, tpa=10.0.0.3", “actions=set field:00::03->eth_dst,
OUTPUT:3") This flow entry asks the OpenFlow switch to
convert all ARP broadcast packets to computer C' into unicast
packets. Finally, all other ARP packets whose IP addresses do
not appear in the flow table (e.g., computer B) will be sent to
the controller for processing.

Our ARP-handler has two special designs. First, unlike
most of existing SDN-based solutions discussed in Section 3.2,
we do not make the controller act as an ARP proxy to deal
with all ARP packets in the LAN. Instead, the ARP-handler
only processes one pair of ARP request and reply for each
unknown computer. Therefore, the load of the controller can
be significantly reduced. Second, once the ARP-handler knows
the IP and MAC address of a computer, it will install a flow
entry to allow the OpenFlow switch to convert the broadcast
address into a unicast address. This design considers the
backward compatibility to traditional switches. In particular,
since the broadcast address has been converted to the unicast
address, such a switch will not send the ARP packet to all its
ports but only forward the packet to the port linked to the
target computer, thereby reducing spam packets generated by
ARP.

TABLE 4: An example of flow entries generated by the IGMP-handler.

Matching rules Actions

igmp, nw_dst=224.0.0.0/3 | actions=CONTROLLER:6633,
OUTPUT:10

ip, nw_dst=233.0.0.1 actions=GROUP:3909091329

4.4 Design of IGMP-handler

IGMP allows computers to manage their multicast group
membership. Routers also use IGMP to discover group mem-
bers. In IGMP, two roles are defined: querier and host. A
querier periodically sends a membership-query packet to get the
information of multicast group. Then, four cases may occur:
1) If it receives a membership-query packet from another with
a smaller IP address, this querier becomes a host. Thus, each
multicast group will have just one querier. 2) If the querier
cannot hear any membership-report packet after a predefined
timeout, it will not forward multicast data packets as there are
no members in the multicast group. 3) If the querier receives
membership-report packets, it starts forwarding multicast data
packets to the group’s members. 4) If the querier receives a
group-leave packet, it stops forwarding multicast data packets.

On the other hand, a host will conduct the following
operations: 1) When receiving a membership-query packet, the
host has to reply a membership-report packet to the querier.
However, if the host has heard membership-report packets
sent from other members in the same multicast group, it need
not reply its membership-report packet. 2) If a computer wants
to join the multicast group, it actively sends a membership-
report packet to notify the querier. 3) A host can directly leave
the multicast group without sending any packet to the querier.
However, if the host is the last one that sent the membership-
report packet, it has to send a group-leave packet to notify the
querier.

A traditional layer-2 switch will broadcast IGMP and mul-
ticast data packets to all its ports. Thus, such packets may
result in unnecessary load on those computers that do not
join the multicast group, as they have to also process these
irrelevant packets in layer 3. IGMP snooping allows the switch
to use a table to map between ports and multicast traffic, so
as to filter out irrelevant multicast data packets. However, it
relies on the prerequisite that there exists a multicast router to
keep generating membership-query packets, and these packets
must be forwarded by all switches. Besides, IGMP snooping
is a layer-2 optimization for layer-3 IGMP. Not all switches
can fully support IGMP snooping. In IGMP snooping, each
switch has to find out the relationship between its ports and
the received multicast traffic. In contrast to this mechanism,
our IGMP-handler provides a more efficient solution to let
the controller install flow entries learned from IGMP packets
in OpenFlow switches to facilitate filtering multicast traffic.
Below, we discuss how the IGMP-handler deals with different
types of IGMP packets.

Membership query: This packet is sent by the querier, so
the IGMP-handler can acquire its IP and MAC addresses, and
also the port of the OpenFlow switch that connects with the
querier. Consequently, the IGMP-handler can add a flow entry
to the OpenFlow switch to ask it to forward following IGMP
packets to both the controller and the querier. The first flow
entry in Table 4 gives an example. The flow entry commands
the OpenFlow switch to forward all IGMP packets (with a
multicast IP address of 224.0.0.0) to not only the controller
(with port 6633) but also the querier that connects to the
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TABLE 5: An example of the group table.
Group ID Bucket
group_id bucket=actions=set_field:00:01->eth_dst, OUTPUT:1

=3909091329 | bucket=actions=set_field:00:05->eth_dst, OUTPUT:3

bucket=actions=set_field:00:07->eth_dst, OUTPUT:4

switch’s 10th port. In this way, the controller can acquire the
information of the multicast group based on the following
IGMP packets. Besides, the OpenFlow switch can relay IGMP
packets (e.g., membership reports) merely to the querier, which
helps reduce the amount of unnecessary IGMP traffic.

Membership report: Due to the above flow entry, the
controller can also receive the membership-report packet sent
from a member in the multicast group. To let the controller
learn all members, each member has to reply the membership-
report packet for the first time that it receives the membership-
query packet. Then, the controller maintains a group table
to record every member that it has learned. Each group is
associated with one unique group ID, which is converted
from the corresponding multicast IP address. Then, the IGMP-
handler adds a flow entry to direct multicast data packets to
these members. Table 5 shows an example of the group table,
where the corresponding multicast IP address is 233.0.0.1. We
can convert the IP address to an integer of 3909091329 to
be the group ID. The controller learns three group members
with MAC addresses of 00:00:00:00:00:01, 00:00:00:00:00:05, and
00:00:00:00:00:07, which connect to the OpenFlow switch via its
ports 1, 3, and 4, respectively. In addition, the IGMP-handler
adds the second flow entry in Table 4 to ask the OpenFlow
switch to refer to the group table to forward multicast data
packets. In this way, we can make sure that multicast data
packets will be transmitted to only the members in the multi-
cast group.

Group leave: As mentioned earlier, the group-leave packet
is sent by the last member in the multicast group. Conse-
quently, once the controller receives this packet, the IGMP-
handler will remove the corresponding record in the group
table.

In the IGMP-handler, since a multicast address will be
translated to the unicast address of each member in the mul-
ticast group, a switch can forward multicast data packets only
to those ports that connect with member computers. In this
way, we can avoid unnecessary multicast traffic and provide
backward compatibility with legacy Ethernet.

5 PERFORMANCE EVALUATION

This section evaluates system performance of our ABC frame-
work by simulations and practical deployment. We adopt the
Mininet simulator [18] with version 2.2.1, which supports
OpenFlow with version 1.3 and RYU with version 3.29 (for
the controller). Simulation results of both ARP and IGMP
traffic will be investigated. Afterwards, we implement the
ABC framework on our campus network and measure its
performance.

5.1 ARP Experiment by Mininet

In the first experiment, we consider a LAN with 50 comput-
ers. Each computer has an ARP table to cache the mapping
of IP and MAC addresses that it learns from ARP packets.
Following the default setting in Linux, each cached record will
become overdue and be removed from the ARP table every 60
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Fig. 5: Comparison on the number of ARP packets generated per second.

seconds. In addition, two network scenarios are addressed. In
the scenario of one large switch, all computers are connected by
a single switch (with 50 ports). For legacy Ethernet, the switch
is a traditional switch. For an SDN-based method, the switch
is an OpenFlow switch. We use the scenario to simulate large
switches, for example, used in a data center network. In the
scenario of three hybrid switches, the switches are organized
hierarchically, where a root switch links to two traditional
switches, each further connecting with 25 computers. For
legacy Ethernet, the root is a traditional switch. For an SDN-
based method, the root is an OpenFlow switch. This scenario
considers an application where the network administrator
wants to add some OpenFlow switches in a LAN originally
consisted of traditional switches. It also helps evaluate the
degree of backward compatibility of each SDN-based method.

We compare the ABC framework with two SDN-based
methods discussed in Section 3.2: SEASDN (scalable Ethernet
architecture using software defined networking) [16] and ETF
(extensible transparent filter) [17], whose objectives are also to
decrease ARP broadcast traffic in the LAN.

Fig. 5(a) shows the number of ARP packets generated
every second in the scenario of one large switch. Since the
cache timeout is 60 seconds, the number of ARP packets in
legacy Ethernet will gradually decrease before the first 60
seconds and then become relatively stable. For SDN-based
methods (i.e., SEASDN, ETF, and ABC), there is an impulse
in the beginning, because the controller has no information of
computers initially. After the controller knows every computer
in the LAN (around 1-2 seconds), it can ask the OpenFlow
switch to cut out ARP broadcast packets and replace them by
unicast packets. Thus, SDN-based methods can greatly reduce
ARRP traffic.

Fig. 5(b) gives the number of ARP packets generated per
second in the scenario of three hybrid switches. Since the
two traditional switches do not understand the SDN rules
set by the controller, they still use broadcast to send out
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ARP packets. Thus, the number of ARP packets by SDN-
based methods increase accordingly. As mentioned earlier in
Section 3.2, SEASDN forces the controller to act as the ARP
proxy, so it results in almost the same performance with legacy
Ethernet in this scenario. ETF, on the other hand, asks switches
to forward ARP packets to the corresponding ports but the
MAC addresses of these packets are still the broadcast address.
In this case, the traditional switches will broadcast these ARP
packets as usual. Comparing with both SEASDN and ETF, our
ABC framework can adaptively translate the broadcast address
of an ARP packet to the unicast address of the receiving
computer. Consequently, the traditional switches will forward
ARP packets through unicast rather than broadcast, thereby
significantly reducing unnecessary ARP broadcast traffic.

Fig. 6 presents the aggregate number of ARP packets trans-
mitted during 360-second simulation time. We can observe
that broadcast packets occupy a very large portion of ARP
traffic in legacy Ethernet. On the contrary, SDN-based methods
result in almost no ARP broadcast in the scenario of one large
switch. However, when traditional and OpenFlow switches
coexist (i.e., the scenario of three hybrid switches), SEASDN
performs as worse as legacy Ethernet, which indicates that
it cannot well support backward compatibility. On the other
hand, by allowing the controller to adaptively convert the ARP
broadcast address to unicast address(es), our ABC framework
can reduce around 51.2% of ARP broadcast packets even
when there are some traditional switches in the LAN, which
demonstrates its effectiveness and flexibility.

We then evaluate the controller’s overhead by measuring
the number of Packet_In and Packet_Out messages received
by and sent from the controller, respectively, as shown in Fig. 7.
SEASDN makes the controller serve as an ARP proxy, so it uses
Packet_In messages to forward ARP requests to the controller
and Packet_Out messages to forward ARP replies to the desti-
nation computers. Therefore, one ARP procedure will generate
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Fig. 7: Comparison on the number of Packet_In/Out messages.

two Packet_In messages and two Packet_Out messages in
SEASDN. On the other hand, ETF also uses Packet_In mes-
sages to forward ARP packets to the controller, and it generates
two Packet_In messages for each ARP procedure. Therefore,
ETF suffers from lower overhead than SEASDN. In the ABC
framework, the controller requires Packet_In messages to learn
the computers in the LAN and uses Packet_Out messages to
set transmission rules in OpenFlow switches initially, so there
exists an impulse in the beginning (around the 6-9th seconds)
in both Fig. 7(a) and (b). Afterwards, the ABC framework
generates very few Packet_In and Packet_Out messages as
the controller has obtained the IP and MAC addresses of
all computers. Thus, the ABC framework greatly reduces the
overhead comparing with both SEASDN and ETF, as shown in
Fig. 7(c).

5.2

We then study the performance of our ABC framework on
IGMP multicast traffic. Because SEASDN and ETF cannot cope
with multicast traffic, we do not compare them with the ABC
framework as their performance will be the same with legacy
Ethernet. In this experiment, we consider one multicast server
(i.e., IGMP querier) and six computers connected together by a
switch. The switch will be a traditional and OpenFlow switch
in legacy Ethernet and the ABC framework, respectively. The
server keeps sending IGMP and multicast data packets to a
multicast group with IP address of 233.0.0.1 every second.
On the other hand, each computer has different behavior. For
computers 1 and 4, they join the multicast group with address

IGMP Experiment by Mininet
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of 233.0.0.1 in the beginning and do not leave the group.
Computers 2 and 5 arbitrarily join a multicast group for two
seconds, leave the group, and then stay idle for one second.
The above procedure is repeated. For computers 3 and 6, they
do not join any multicast group.

Fig. 8 gives the number of multicast packets received by
different computers during 300-second simulation time. Since
the traditional switch does not support IGMP snooping, it
simply broadcasts IGMP and multicast data packets to all
computers. In this case, even though a computer does not join
any multicast group (e.g., computers 3 and 6), it still has to re-
ceive and process such irrelevant packets. On the contrary, our
ABC framework can assist the controller in learning the group
members and converting the multicast address accordingly.
Thus, the six computers will have different results. Specifically,
for computers 1 and 4, because they stay in the same multicast
group with the server, the OpenFlow switch only sends them
few IGMP membership queries in the beginning and keeps
relaying multicast data packets from the server. These packets
are transmitted using unicast. For computers 2 and 5, since
they arbitrarily join a multicast group in each short period,
they will receive more IGMP packets. However, as they do
not join the multicast group with IP address of 233.0.0.1, the
OpenFlow switch will not relay multicast data packets from
the server to them. Finally, as computers 3 and 6 do not join
any multicast group, they will not receive IGMP or multicast
data packets.

To sum up, the ABC framework will not send multicast
data packets to those computers that join other multicast
groups. In addition, when a computer does not participate
in any multicast group, it will not be bothered by IGMP or
multicast data packets. Therefore, our ABC framework can
diminish unnecessary multicast traffic and save the network
bandwidth, which helps improve Ethernet efficiency.

5.3 Practical Deployment

We also implement the ABC framework on our campus net-
work mentioned in Section 1 to verify its practicability. To
do so, we use a TP-LINK WR1043NR switch and update
its firmware by OpenWrt [19] to make the switch support
OpenFlow. In addition, we adopt TShark [20] to dump and
analyze network traffic.

Fig. 9 gives the analysis of packets received by two com-
puters during 600 seconds, where one computer connects
with a traditional switch while the other computer links to
our OpenFlow switch. From Fig. 9(a), we observe that each
computer receives around 400-600 packets every second in
legacy Ethernet. However, a lot of packets are spam in terms
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of the receiving computer. In contrast, our ABC framework
eliminates most of such spam packets, so the computer can
efficiently receive only its necessary packets.

Fig. 9(b) shows the number of broadcast packets received
by a computer, where ARP broadcast packets dominate all
broadcast packets. In legacy Ethernet, the traditional switch
sends more than 42,000 broadcast packets to the computer in
600 seconds. On the contrary, the OpenFlow switch cuts them
out and transmits fewer than 30 ARP broadcast packets to the
computer, which saves more than 99.93% of ARP broadcast
traffic. In addition, since the controller can adaptively convert a
broadcast address to the unicast address of the receiving com-
puter, the OpenFlow switch will not send irrelevant broadcast
packets to the computer.

Fig. 9(c) presents the number of multicast packets received
by a computer. Since the computer joins the IGMP multicast
group, it will receive a few membership queries and multicast
data packets in the ABC framework. On the other hand, be-
cause the traditional switch cannot support multicast protocols
such as LLMNR and SSDP, the switch uses broadcast to send
out their packets. In the experiment, since the computer is not
a destination of LLMNR and SSDP senders, the OpenFlow
switch will eliminate these irrelevant packets. That is why
there are no LLMNR and SSDP packets in the ABC frame-
work. Through the experiment, we demonstrate that our ABC
framework can efficiently reduce unnecessary broadcast and
multicast traffic, which significantly improves the transmission
efficiency in a practical LAN.

6 CONCLUSION

Ethernet is the basic technique used in layer 2 but it unavoid-
ably generates a lot of spam packets due to the broadcast
nature. Based on SDN, we propose the ABC framework to
reduce unnecessary broadcast and multicast packets and im-
prove Ethernet efficiency. Through Mininet simulations, we
show that the proposed ABC framework not only reduces
ARP broadcast traffic, especially when there exist traditional
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switches in the LAN, but also saves the controller’s over-
head, as compared with other SDN-based approaches such
as SEASDN and ETE. In addition, the ABC framework can
efficiently decrease IGMP traffic than legacy Ethernet. By im-
plementing the ABC framework on our campus network, we
also demonstrate its effectiveness and practicability. For future
work, we will investigate how to apply the SDN technique to
improve performance of a DVB-H (digital video broadcasting-
handheld) network, which also relies on broadcast to provide
mobile TV services [21], [22].
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