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Abstract—Owing to the rising awareness of environmental protection and health, people put a high premium on air pollution in their living
environment. It thus draws considerable attention on air quality monitoring in cities. The paper suggests using a vehicular sensor network
(VSN) to tactically monitor metropolitan air quality, and develops an efficient data gathering and estimation (EDGE) mechanism on VSN.
EDGE has an objective to adaptively change data sampling rates of cars, such that the tradeoff between monitoring accuracy and
communication cost is balanced. The monitoring accuracy is measured by the formal air quality index (AQI), whereas the communication
cost considers the amount of sampling data and the monetary reward given to drivers. To do so, EDGE proposes dynamic grid partition
based on the variation of pollutant concentration, and computes the sampling rate by consulting car traffic in each grid. With the help of
probabilistic reporting, it allows cars to collect air quality on more different positions and alleviate potential network congestion. Furthermore,
EDGE applies the Delaunay triangulation to infer AQls of the positions without any sensing data. Through simulation of urban mobility
(SUMO) and industrial source complex (ISC3), simulations are conducted based on practical metropolitan traffic and pollutant dispersion
models. Experimental results demonstrate the significant effectiveness of the EDGE mechanism, under various scenarios.

Index Terms—air quality, data gathering, ISC3, SUMO, vehicular sensor network.

1 INTRODUCTION

IR pollution is caused by gaseous pollutants harmful to

humans and ecosystem. Based on the report by World
Health Organization [1], air pollution has been the biggest
environmental health risk. The governments put much effort
on monitoring such pollution, and define the air quality index
(AQI) to evaluate pollution degree and communicate to the
public. If AQI increases, air pollution becomes more severe
and may cause adverse health effect or disease to people.

Air quality monitoring is usually done by placing a few
monitoring stations on dedicated sites in a city [2]. How-
ever, this scheme has two limitations. First, it provides only
coarse-grained monitoring, where the spatial resolution of air-
pollution samplings is poor. Second, the scheme lacks flexi-
bility. When the weather changes or the city develops, some
old sites (e.g., displaced plants or new parks) may become
unnecessary. To relax the limitations, some studies suggest
using vehicles (e.g., cars or bikes) to carry sensors, which are
called vehicular sensor network (VSN) [3], to provide flexible
monitoring. Since vehicles have GPS navigation and they may
roam through the city, VSN can tactically collect data from
different locations at different times. Moreover, sensors in
a VSN are able to conduct stable, long-term monitoring, as
vehicles can give them an abundant supply of energy.

By using VSN to monitor air quality, this paper aims
at efficiently collecting sensing data from cars and inferring
absent data. We consider a set of cars equipped with gas
sensors, GPS receivers, and wireless interfaces (e.g., Wi-Fi or
LTE-A). They roam in the city, and periodically report sensing
data along with positions to a remote server. Drivers can get
monetary reward based on their reports. However, they cannot
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control the sampling rates of their cars. Instead, the rates are
controlled by the server. Under this architecture, our objec-
tives are to increase monitoring accuracy while decreasing the
communication cost by dynamically adjusting sampling rates
of different cars. We evaluate monitoring accuracy by the dif-
ference between real and estimated AQIs. The communication
cost has two definitions: 1) the amount of data transmission to
report air quality and 2) the monetary cost to reward drivers.

To get a good balance between the monitoring accuracy and
communication cost, we keep three design considerations in
mind. First, data sampling rates should be adaptively changed
by referring to environmental factors like the variation of
pollutant concentration and car traffic. Second, since sensing
data collected on the positions in close proximity usually
exhibit spatial correlation [4], [5], we should prevent cars from
sampling data on nearby positions at similar time. Third, it is
infeasible to collect data from all positions in the monitoring
region, as there may exist obstacles (e.g., buildings). Thus, we
need to estimate AQIs of such positions by exploiting sensing
data that the server has received. Apparently, such estimation
will affect monitoring accuracy.

Based on these considerations, this paper proposes an
efficient data gathering and estimation (EDGE) mechanism. It
employs a region quadiree to flexibly partition the monitoring
region into heterogeneous grids and calculate data sampling
rates. Then, cars adopt a probabilistic reporting method to avoid
submitting similar data collected from close positions, which
helps reduce wastage of sensing reports while alleviate net-
work congestion. Moreover, we define various packet formats
for cars to report their sensing data, so as to save data transmis-
sion. After gathering reports, EDGE finally uses the Delaunay
triangulation [6] to infers missing data.

To evaluate EDGE’s performance in a large-scale environ-
ment, we conduct simulations on practical models. We use
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the simulation of urban mobility (SUMO) [7] to generate car
traffic in a city. SUMO is a popular traffic-simulation suite
that supports sophisticated modeling of intermodal traffic
systems such as vehicles, public transport, traffic lights, and
pedestrians. We also apply the industrial source complex (ISC3)
method [8] to simulate air pollution. ISC3 is a mature tech-
nique widely used to model pollutant diffusion from a wide
variety of sources. Through different experimental scenarios,
we show that EDGE can greatly save the amount of data
transmission and monetary cost, while keeping monitoring
accuracy. This paper contributes in developing an efficient,
adaptive data gathering and estimation method for VSN to
monitor metropolitan air quality, and verifying its outstanding
performance via simulations considering real-life situations.

We organize the paper as follows: Section 2 introduces
AQI, SUMO, and ISC3. Section 3 surveys related work, and
Section 4 defines our problem. We propose EDGE in Section 5,
and study simulation results in Section 6. Section 7 then draws
a conclusion and discusses future work.

2 PRELIMINARY

This section gives three models in the paper. We introduce
AQI to evaluate air pollution, and discuss SUMO to simulate
car traffic, followed by ISC3 to model pollutant dispersion.

2.1 Air-pollution Evaluation Model: AQlI

We employ AQI defined by U.S. Environmental Protection
Agency (EPA) [9] to evaluate air quality. It has six levels of
air pollution in Fig. 1(a), each with one dedicated color:

e Good (green, AQI <50): Outdoor air is safe to breathe.

e Moderate (yellow, AQI:51-100): Unusually sensitive
people may reduce prolonged or heavy outdoor exer-
tion.

o Unhealthy for sensitive groups (orange, AQI:101-150):
Sensitive people (e.g., children, old people, outdoor
workers, and patients with lung disease like asthma)
need to reduce prolonged or heavy outdoor exertion.

o Unhealthy (red, AQI:151-200): Sensitive people should
avoid prolonged or heavy outdoor exertion. Everyone
else has to reduce prolonged or heavy outdoor exertion.

o Very unhealthy (purple, AQI:201-300): Sensitive people
should avoid all outdoor exertion. Everyone else has to
reduce outdoor exertion.

e Hazardous (maroon, AQI > 301): Everyone should avoid
all outdoor exertion.

EPA adopts six types of gaseous pollutants to evaluate AQI:
ozone (O3), particulate matter (i.e., PM 2.5 and PM 10), carbon
monoxide (CO), sulfur dioxide (SO2), and nitrogen dioxide
(NOy2). For each pollutant, its index I}, is computed by

o Ihigh - Ilow
Bhigh — Biow

where Byign is a breakpoint > (Y, Biow is a breakpoint <
C, and Inigh / liow denote the AQI value for Bhigh / Biow. The
suggested values of these parameters are given in [9].

In Eq. (1), C, is the average concentration of pollutant k in
an observing period. Based on the EPA standard, the period
length is 1hour for O3, SOz, and NOg, 8 hours for O3 and CO,
and 24 hours for PM 2.5 and PM 10 [9]. Then, the overall AQI is
the maximum value of I} among all pollutants. In this paper,
we use AQI to assess monitoring accuracy and determine the
reward given to a driver.

Iy, X (Crx — Biow) + Tiow, (1)
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Fig. 1: Three models considered in the paper.

2.2 Metropolitan Traffic Model: SUMO

SUMO is an open-source package to model real roads and car
traffic, which involves high level of detail and realism [10].
It provides microscopic road imitation, including speed limit,
road width, main street, minor lane, traffic light, etc. Each
car is independently defined by multiple parameters such as
identifier, departure time, velocity, and route. The mobility of
cars is also delicately described. Specifically, cars stop with
braking speed when meeting a red light, and resume moving
with acceleration if the traffic light turns to green. With these
parameters, SUMO can separately simulate the behavior of
each individual car in a dynamic way. Besides, a car can be
assigned to one pollutant or noise emission class to simulate air
pollution or noise emitted by cars. Moreover, SUMO considers
the effect of adjacent cars. For example, when two cars meet
at a crossroad without traffic lights, one car will stop until
another car leaves. If two cars collide, SUMO waits for a period
and then removes the cars to imitate a traffic accident.

Fig. 1(b) shows the construction of traffic model by SUMO.
It has two modules: street building (SB) and traffic-flow setting
(TS). The SB module gets the street map of a city from Open-
StreetMap [11], and decides locations and red/green time of
traffic lights. We can use ‘netconvert’, SUMOQ’s road-network
importer, to build streets and lanes on the map. The TS
module defines path information for each car, including start-
ing/terminal points, starting time, acceleration, and braking
speed. Then, we use the ‘duarouter’ function to generate car
traffic. The outputs of both modules are fed into SUMO to
simulate the status of each car in the city.

HBEFA (handbook emission factors for road transport) [12]
provides emission factors of gaseous pollutants for cars, which
helps SUMO simulate air pollution generated by cars. It de-
fines more than 20 vehicle emission classes to model pollutant
emission of cars for a wide variety of traffic situations. Through
HBEFA, SUMO can model the emission of different pollutants,
including CO,, CO, NO, NOy, PM2.5/10, and hydrocarbon



EFFICIENT DATA GATHERING AND ESTIMATION FOR METROPOLITAN AIR QUALITY MONITORING BY USING VSNS 3

(HC).

2.3 Pollutant Dispersion Model: ISC3

ISC3 is a steady-state Gaussian plume model used to imitate
diffusion and sedimentation of pollutants in the air. It describes
many features of gaseous pollutants, including 1) point, line,
area, and volume sources, 2) division of point sources, 3) dry
deposition and settling of particles, 4) down-wash, and 5) lim-
ited terrain adjustment. ISC3 computes pollutant concentration

at a 3D position (z,y, z) by
2
exp [1 () } SG)
2\ 1y

QWVD »

2T Ty T
where () is the pollutant discharge rate (in g/s), W converts
the output to concentration, V' is the reflection in vertical
direction (used in earth surface and atmosphere’s inversion
layer), D is a coefficient for disintegration (when pollutants
have a half-life period, e.g., SO2), s is wind speed (in m/s),
and 7, and 7, are coefficients of diffusion in horizontal and
vertical directions, respectively. We can compute parameter V'

in Eq. (2) by
12+ H\?
Sl ” o

2
V =exp [—1 <Z_H)
2 T,
where H is the pollutant’s height.

Fig. 1(c) shows ISC3, where the diamond denotes a pollu-
tant source and wind blows along the z axis. The pollutant
spreads in horizontal and vertical directions depending on
7y and 7., respectively. The gray area indicates the region
affected by the pollutant. The coefficients in Egs. (2) and (3)
are decided by weather and temperature, and [8] gives the
suggested values. The minimum observing period of ISC3 is
1hour, so we use Eq. (2) to update concentration in each hour.

We adopt ISC3 to model pollutant dispersion due to three
reasons. First, it was considered as the most commonly used
model to support various air pollution regulations by U.S.
EPA [13]. Second, the accuracy of ISC3 is analyzed in large-
scale geographic regions like Colombia [14] and Delhi [15].
These studies show that there exists high correlation (> 0.73)
between the result computed by ISC3 and actual values mea-
sured by monitoring stations, which verifies that ISC3 can
precisely describe the main factors affecting pollutant disper-
sion in a region. Third, ISC3 has been widely used to assess
pollutant concentration from a variety of sources associated
with an industrial complex. Thus, we can use ISC3 to simulate
air pollution emitted from industrial zones or factories in a city.

ISC3 operates in both long-term and short-term modes. In
our simulations, we use the short-term mode to imitate air
pollution in the environment. Moreover, cars will also generate
gaseous pollutants (by SUMO), which further improves the
simulation’s similarity to real scenarios.

Clz,y,z) =

+ exp

3 RELATED WORK

Many studies aim at monitoring air quality in a city, which
are classified into two categories. One uses fixed devices (e.g.,
monitoring stations and static sensors) to gather environmen-
tal data. The other adopts mobile devices (e.g., smart phones
and VSN) to dynamically collect air quality.

3.1 Monitoring Schemes by Fixed Devices

Using monitoring stations to measure air quality is a tradi-
tional solution, where each station provides delicate detection
of gaseous pollutants. However, there are limited stations in a
city, and air quality is affected by various factors like weather,
car flow, people mobility, street canyons, and industrial instal-
lations [16]. To infer missing data, Zheng et al. [17] analyze
past air quality by two methods. One is based on an artificial
neural network to find spatial data correlation on different
positions. Another uses a linear-chain conditional random field
to evaluate temporal data dependency on a position.

Comparing to monitoring stations, wireless sensor network
(WSN) provides more fine-grained monitoring of air quality.
The work [18] uses a static WSN to monitor air pollution and
proposes an auto-calibration method to improve data accuracy.
Sensors compare the measured pollutant concentration with
the data collected by their neighbors and nearby monitoring
stations, so as to correct their measurement. Wang et al. [19]
adopt static sensors to monitor CO and PM. To extend lifetime,
sensors are powered by solar batteries, and enter the sleeping
state in a suspended period. The study [20] installs sensor
suites at multiple sites in a city to monitor NO3, CO, SO,
PM, and hydrogen sulfide (H3S). Sensing data are mapped
to a rank of AQI following the data quality objective regulated
by European Directive [21]. Brienza et al. [22] develop a
cooperative sensing system. People set up gas sensors on their
houses to monitor air quality in the surroundings, and share
the monitoring data via social networking.

However, the monitoring accuracy of WSN highly relies
on sensor deployment [23]. Due to their small sensing range,
we need to deploy a huge number of sensors to cover a
large metropolitan area. Moreover, it lacks flexibility to use
static WSN to collect air quality. When the monitoring mission
changes (e.g., the area of interest alters), the originally installed
WSN will be difficult to participate in the new mission.

3.2 Monitoring Schemes by Mobile Devices

With the popularization of smart phones, some studies use
web-based frameworks or mobile applications (APP) to let
people collect air quality and share data. Mun et al. [24]
design a platform on mobile phones to record the impact of
CO,, PM 2.5, and smog exposure. Sensing data are uploaded
to a server, which exhibits the analytical result via a web
interface. In [25], participants wear air-pollution sensors and
carry smart phones throughout one day, especially during
rush-hour commutes. Each phone provides an APP to display
recent measurement of air quality. Also, [25] develops a web-
based framework to help participants report sensing data and
provide access to the map overlaid with historical data. The
work [26] connects a smart phone with the O3 sensor to detect
air pollution. To improve monitoring accuracy, it exploits the
O3 data collected from monitoring stations to calibrate sensors,
and analyzes the effect of mobility on the accuracy of sensor
readings. Cheng et al. [27] propose a cloud-based system to
monitor PM 2.5, where sensors report data to a cloud server
via Ethernet or mobile phones. They use the artificial neural
network and Gaussian process to respectively calibrate sensing
data and infer data on the positions without sensors.

Since cars move longer distances than pedestrians, using
VSN to monitor air quality is more flexible. Ma et al. [28]
combine VSN with a static WSN to detect air pollution. Static
sensors are deployed in a grid-based manner, and act as the
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backbone to relay sensing data collected by cars. The work
[29] develops a VSN to collect urban CO» concentration. Each
car regularly reports its sensing data along with position via
GSM short messages. The monitoring result is displayed on
Google Maps to visually show CO, distribution. In [30], cars
are equipped with gas sensors to analyze air pollution (e.g.,
CO, NO3, and O3) in Sydney. A mobile APP is developed for
drivers to upload their sensing data to a server, whose result
is also shown on Google Maps. The study [31] considers a
VSN architecture for air-quality monitoring, which contains
both public transportation sensing (PTS) and social sensing (SS)
networks. PTS network consists of buses moving along fixed
routes. SS network contains passenger cars, where drivers
report sensing data via mobile phones. Vagnoli et al. [32] use
bikes to carry gaseous sensors to measure CO, CO,, O3, NO,,
and methane (CH,4). Sensing data are sent to a database via
GPRS and shown by a web application. In contrast to the above
studies, our work aims at developing adaptive mechanisms to
gather sensing data and estimate absent data, so as to help
VSN efficiently monitor air quality in a big city.

The work [33] installs mobile agents (i.e., migratory pro-
grams) on some cars to collect air quality. Each agent peri-
odically checks if its car has reached the target area. If not, it
checks whether the car’s route is different from the expected
one or the car is stuck in traffic. If so, the agent then migrates
to another car. Once the agent reaches the target area, it begins
collecting air quality and tries to return to the server. Obvi-
ously, this work has a different goal. Hu et al. [34] use VSN to
monitor COs in cities, and adjust sampling rates of cars to keep
monitoring quality with less communication overhead. They
divide the monitoring region into fixed grids, and propose
both variation-based (VAR) and gradient-based (GRA) schemes to
adjust the sampling rate in each grid by

R; = a; X ¢; + by, 4)

where R; is the expected number of samples, a; and b; are
two constants based on past experience, ¢; is the standard
deviation and gradient difference of CO2 concentration in
VAR and GRA, respectively. Comparing to [34], our EDGE
mechanism flexibly adjusts sampling rates through ‘dynamic’
grid partition and addresses real road conditions, and it also
designs an efficient solution to infer the lost AQI data. More-
over, our simulations adopt SUMO and ISC3 to model the
practical metropolitan traffic and pollutant dispersion, which
are not considered in [34]. Experimental results in Section 6
will show that EDGE greatly saves the communication cost
and improves monitoring accuracy than both VAR and GRA.

4 PROBLEM DEFINITION

Let us consider a monitoring region A in the city which can be
divided into a set U of pixels, where each pixel u;, € U is the
smallest unit area (e.g., 1 m?) used to monitor air quality and
calculate AQI. In other words, the values of AQI measured at
any two positions in a pixel at the same time are viewed as
no difference. We assume that A is fully covered by a wireless
network such as Wi-Fi or LTE-A, so each car moving in 4
can always find a nearby base station (BS) to upload its data
and receive commands. Depending on the given sampling rate,
each car regularly sends out its sensing data for air quality
along with the current time and position to the remote server
(via the wireless network). The car’s driver can be rewarded
with a little money for reporting data. However, the driver
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cannot change the sampling rate and data content. Moreover,
the driver has no idea how or where to move the car to increase
reward. Thus, the car traffic in A is viewed as random (referring
to Remark 1). Besides, we cut the time axis into repetitive
monitoring periods with a length of T, depending on the type of
observing pollutant (referring to Section 2.1). After collecting
data from cars, the server can estimate each pixel’s AQI by
Eq. (1).

Let d® and d¥ be the real AQI and the AQI estimated by
the remote server of each pixel u; € U. Besides, we denote the
set of all reporting packets from cars by P in a monitoring
period T'. Then, our problem asks how to adjust the data
sampling rate of each car and estimate the lost data, such that
the following three objectives can be satisfied:

min Z length (p5), (5)
min Z reward (pj)s (6)

n W Zuieu f

where length(p;) and reward(p;) respectively denote the
length and monetary cost of each packet p; € P, || is the
number of total pixels in A4, and

. R_E
F(dR ) = {1 if [dR — dP| >

0 otherwise,

where § is a tolerable deviation. Eq. (5) indicates to reduce the
amount of packet transmission to report data, so as to save
wireless bandwidth and avoid network congestion. Eq. (6)
means to save the rewards given to drivers, so the monetary
cost can decrease. Here, Egs. (5) and (6) together minimize the
total communication cost by using VSN to monitor air quality.
Then, Eq. (7) improves monitoring accuracy by minimizing the
ratio of pixels whose real and estimated AQIs have a difference
large than the threshold 4.

(d®,dP), @)

®)

Remark 1 (Driving Behavior). The work [35] points out that
moving cars usually exhibit behavior unique to each driver (e.g.,
choosing the moving path). We develop our mechanism based on
this observation, where each car moves depending on its destination,
instead of exterior influence such as the reward given to a driver.
Thus, we can avoid the case where some drivers intentionally move
to or stay at certain locations in order to increase their rewards,
which may substantially change car traffic or even cause congestion.
Moreover, the assumption also makes sure that our mechanism can
perform well under most vehicular mobility models [36]. O

Remark 2 (Rewarding Policy). We aim at adjusting sampling
rates of cars to balance between the communication cost and moni-
toring accuracy. So, the reward is used as a metric to measure the
communication cost in the paper. In Section 6, we will propose two
simple rewarding policies for performance evaluation. How to design
a sophisticated policy to influence the driving behavior (to facilitate
gathering air quality) is out of the paper’s scope, and it also conflicts
with the assumption mentioned in Remark 1. Accordingly, we will
leave this issue for future investigation in Section 7. O

5 THE PROPOSED EDGE MECHANISM

We partition A into K x K grids, whose length is an integer
multiple of pixel length. So, each pixel in I/ belongs to a single
grid. The time axis is divided into monitoring periods with
length of T', during which EDGE is executed, as Fig. 2 shows.
A monitoring period is further composed of three phases.
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Fig. 3: Using a region quadtree to maintain the dynamic grid partition.

Adjusting phase: Based on the sensing data collected in the
previous period, the remote server modifies the grid partition
by cutting a grid that has diverse data, or merging adjacent
grids with similar data. To do so, EDGE uses a region quadtree
to keep ‘dynamic’ grid partition. Then, it recomputes the
sampling rate of each grid, and sends beacons containing the
new partition along with sampling rates to cars via BSs.

Gathering phase: On hearing a beacon, each car decides
its interval between two reports. To avoid some cars simul-
taneously sampling data on close positions, which results in
redundant data, we propose a probabilistic reporting method to
let cars sample data from different positions. Moreover, two
types of packet formats, called standard and differential reports,
are designed to provide flexible reporting for cars. As shown
in Fig. 2, each car first sends a standard report to give complete
information, followed by successive differential reports to save
the amount of data transmission.

Estimating phase: After gathering data from cars, the
remote server obeys the guideline in Section 2.1 to compute
each pixel’s AQIL. However, some pixels may have no data due
to lack of cars. Thus, we adopt the Delaunay triangulation to
estimate AQISs for such pixels.

The gathering phase dominates a monitoring period, as
adjusting and estimating phases are done by the remote server
in the background. Each car has to keep track of beacons to
update the grid partition and sampling rate. In case of missing
the beacon, a car sends a probing packet to its BS to get the
necessary information (discussed in Section 5.2.2).

In Fig. 2, T' decides the updating frequency of grid parti-
tion. Hence, we prefer the length of pollutant observing period
to be several times of T' (e.g., 5 or 6 times), so the update
of grid partition can catch the concentration variation in an
observing period. As mentioned in Section 2.1, the minimum
observing period is 1 hour. Thus, we set T' to 10 minutes in the
simulations. Below, we detail our design in each phase.

5.1 Adjusting Phase
5.1.1

We adopt a region quadtree for space indexing. It is a popular
data structure that can easily describe a partition of 2D space
by iteratively decomposing the space into four equal quad-
rants, as shown in Fig. 3. Each tree node either has exactly four

Dynamic Grid Partition

children (i.e., an internal node), or has no children (i.e., a leaf).
We choose to use the region quadtree due to three reasons:

o The region quadtree is suitable to maintain our grid
partition, where the root denotes .4, and each leaf
corresponds to a grid where all cars share the same
sampling rate.

o Let n be the depth of a region quadtree. Then, A can
be divided into at most 2" x 2" grids. Thus, we can
control the number of grids in A by simply adjusting
tree depth.

« By assigning each node of a perfect region quadtree’ with
an identification (ID) in sequence, where the root is
given with ID go, the IDs of four children of a node
with ID g; must be 4¢; + 1,--- ,4¢g; + 4. Fig. 3 gives
an example, where the IDs of four children of node g
are gos, - - - , gog. Thus, it is fast to map any grid in A to
the corresponding node in the region quadtree by using
IDs.

As we will mention in Section 5.2.2, using the region quadtree
helps simplify packet formats by avoiding recording too many
positioning data. Moreover, the value of K can be decided by
the depth of the region quadtree, as discussed in Remark 3.

Remark 3 (Determining tree depth and K). To avoid cutting
the monitoring region A into too small grids, we should limit the
maximum depth n of the region quadtree by

Al

g X 2’ﬂ % 2’ﬂ Z vmax X tmln, (9)
where o is a ratio, | A| denotes the area of A, Umax is the maximum
velocity of cars, and tin is the minimum expected time that each
car should stay in a grid. Here, the left part of Eq. (9) computes the
average length of moving paths in the smallest grid. Since roads may
not be necessarily parallel to the grid edge, the grid length must not
be the minimum path in a grid. That is why we multiply a ratio of
o to the grid length to calculate the average length. (Remark 5 will
discuss how to find o.) The right part of Eq. (9) gives the shortest
moving distance that a car is expected to pass through the smallest
grid. By using Eq. (9), we can ensure that a car will averagely stay
in the smallest grid for at least tyiy time to monitor air quality. It
also prevents cars from frequently changing their sampling rates in
a monitoring period when they move fast.

Besides, A is divided into K x K grids in the beginning. We can
set K = 2131 such that the initial tree depth is nearly a half of the
maximum tree depth. It could thus help fast adjust the grid partition
of A in the initial stage. O

Definition 1. Let I,Is,---,I; be AQIs of sensing data
{s1,82, -, sk}, respectively. Then, s1,82,--- sy are called \-
similar if 1) I, Is,- - , Iy belong to the same AQI level in Sec-
tion 2.1 and 2) max;—1. x{I;} — minj—1 x{[;} <\ |

Given the grid partition, cars in each grid can report their
sensing data following the sampling rate in that grid. Then,
based on the data collected from the previous monitoring
period, EDGE adaptively adjusts the grid partition by the four
cases blow. Fig. 4 also gives an example to show these cases,
where we have seven grids g1, g2, 94, 917, 918, 919, and gap.

Case of no-change: If all sensing data sampled in a grid g;
are \-similar, it means that the pollutant concentration remains

1.1t is a region quadtree tree in which all internal nodes have four
children and all leaves have the same depth.
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Fig. 4: Four cases to adjust the grid partition, where there are two groups
of A\-similar data (marked by crosses and circles), and the IDs in brackets
indicate that the corresponding grids do not appear in the current grid
partition.

TABLE 1: Detection range and sensitivity of gaseous sensors.

pollutant | detection range sensitivity  reference
O; 10-1000 ppb 15 37]
Cco 30-1000 ppm 0.13 [38]
SO2 1-200 ppm 3 [39]
NO2 50-5000 ppb 6 [40]
PM25/10 | 0-999 ug/m> 5% (error) [41]

ppb: parts per billion, ppm: parts per million

steady in g;. So, there is no need to modify such a grid. Grid
g1 in Fig. 4 shows this case.

Case of dividing: When some child grids of a grid g;
contain sensing data that are not A-similar, the pollutant con-
centration would significantly vary in g;. Therefore, we should
divide g; to get a more fine-grained observation. Grid g in
Fig. 4 gives an example. Since its child grids g9 and gi2 have
non-A-similar data, g» should be further partitioned.

Case of merging: It is a special condition of the case of no-
change. In particular, a grid g; and its three sibling grids (i.e.,
they share the same parent in the region quadtree) contain only
A-similar data. This case implies that the current grid partition
is too narrow. Thus, we merge g; with its three sibling grids.
Fig. 4 presents an example, where grids gi7 ~ g0 will be
merged into a large grid g3 due to their similar data.

Case of marking: It is a special condition of the case of
dividing. Specifically, a grid g; contains non-A-similar data, but
each of its child grids has only A-similar data. Grid g4 in Fig. 4
shows an example, where it has two groups of A-similar data,
but its child grids g3, 914, 915, and gi6 each has only one group
of data. However, if we simply divide the grid, each subgrid
will satisfy the case of no-change but all subgrids share the same
sampling rate. Obviously, such division is useless. Thus, we
‘mark’ g; (without dividing it) and increase its sampling rate
accordingly (discussed in Section 5.1.2).

Since EDGE aims at long-term monitoring, we amend the
region quadtree smoothly and iteratively. Thus, each grid is
examined once in a monitoring period. In this way, the depth
of the region quadtree is either increased/decreased by one
(due to the cases of dividing and merging) or has no change in
every period. Besides, if a grid satisfies the case of dividing but
its tree depth reaches the maximum threshold by Eq. (9), we
apply the case of marking to that grid to avoid generating too
small grids (as discussed in Remark 3). Remark 4 comments
on the four cases and .

Remark 4 (Four cases and \). When the pollutant concentration
of a grid is steady, there might exist little fluctuation in sensor
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readings.> Also, due to sensor calibration or some circumstances
(e.g., temporarily following a truck), it may be difficult to find a grid
whose sensing data are the same. Thus, if we simply decide whether
to keep or split a grid by checking if all of its sensing data have
an ‘equal” AQI, the cases of no-change and merging would never
occut. Besides, the case of dividing may frequently happen, making
A be partitioned into many small grids. To solve the problem, we use
Definition 1 by allowing a small tolerance X\ on the AQI values of
sensing data. Thus, the occurring probability of cases of no-change
and merging can be substantially increased.

To find N's value, we refer to past statistics of pollutant concentra-
tion from monitoring stations, and take 3% of concentration range,
for instance, to be A. We take Kaohsiung city as an example, where
the minimum and maximum Og concentration is 4.77 and 72.96 ppb,
respectively [42]. Thus, we set A = (72.96 — 4.77) x 3% =~ 2ppb.
When more sophisticated sensors are used, we can lower \'s value
accordingly (e.g., taking 1% of concentration range). O

5.1.2 Calculating data sampling rates

After deciding the grid partition, EDGE finds the sampling rate
7; of each grid g; by

Fi= e x B (gz) ’

F(g:) * tavg(9:)
where e controls data-sampling speed, B(g;) is a baseline for
the number of sensing data to be collected in g;, F(g;) is car
traffic in g;, and ta.g (g;) is average time that cars stay in g;.
Here, B(g;) is a constant depending on the application, so #;
is affected by other parameters. We set coefficient ¢ as follows:

5:{;/2

The design consideration behind Eq. (11) is to adaptively ad-
just the sampling rate based on the data variation in each grid.
Specifically, when the pollutant concentration remains steady,
it is unnecessary to collect many similar data in the grid. Thus,
we halve the sampling rate by taking £ = 1/2. On the contrary,
when there is significant variation in concentration, we should
double the sampling rate (by taking ¢ = 2) to capture such
high variation. Fig. 4 gives an example. We slow down the
sampling rates of grids g1, g3, gi0, and gi1, as they cover the
area where the pollutant concentration keeps stable. For grids
94, g9, and g12, we speed up their sampling rates to react to the
significant change in concentration.

In Eq. (10), F(g;) is defined by the number of cars in g;
during unit time, which is estimated by the number of sensing
data collected in the previous monitoring period. When g; has
large car traffic, we can slow down its sampling rate because
more cars help collect g;’s air quality, and vice versa. To
alleviate the effect of extreme situations (e.g., g; contains very
few cars or traffic congestion occurs in g¢;), making #; become
unreasonably large or small, we use two thresholds Fi,i, and
Finax to limit the range of F'(g;). When F'(g;) < Fiin, We set
F(g;) = Fuin- Once F(g;) > Fax, we set F(g;)) = Fnax-
To determine F),i, and Fihax, We can gather statistics of car
traffic in .4, and take the average of smallest and largest 20% of
past data to be the values of Fi,in, and Fiyax, respectively. For
example, by using SUMO to imitate car traffic in Kaohsiung
city, we set Fi,in, = 5 and Fihax = 20 in our simulations.

(10)

if all sensing data in g; are A-similar

otherwise. (11)

2. For example, Table 1 shows the detection range and sensitivity of
practical gaseous sensors. The sensitivity indicates how much a sensor’s
output changes when the input quantity being measured alters, and it
limits the range of fluctuation in sensor readings.
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Fig. 5: The percentage of different moving distances for cars to pass
through one grid, where we take Kaohsiung city as an example.

The sampling rate #; is inversely proportional to tayg (gi) in
Eq. (10). Obviously, if a car stays in g; for longer time, it can
collect more data from g;, and vice versa. The average staying
time tavg(g;) is derived by o x L(g;)/v, where L(g;) denotes
the length of grid ¢g; and v is the average velocity of that car.
Remark 5 discusses how to choose a proper ratio o to find the
average distance required by cars to pass through a grid.

Remark 5 (The choice of o). To find o, we can employ SUMO
to estimate the moving distance of each car to pass through one
grid in A. For instance, Fig. 5 gives the percentage of different
moving distances of cars in Kaohsiung city, and we divide A into
16 x 16 grids. The grid length is 386 meters. Since each grid has
different street topologies and traffic amount, cars spend different
distances to move through a grid. From Fig. 5, we observe that
most cars move a distance of 200 ~ 400 meters to pass through one
qrid, and their average moving distance is 322 meters. Thus, we set
o = 322/386 = 0.834 in the example. For other cities, we can use
the same way to calculate their o values. |

It is worth mentioning that a large F'(g;) value (i.e., higher
car traffic) does not necessarily imply a large tayq(g;) value
(i.e., longer staying time of cars). One example is that many
cars in a grid move through unobstructed highways, so each
car will not stay in the grid for a long time. Another example
is that just few cars in a grid are impeded by a serial of red
lights. In this example, we have a small F'(g;) value but a large
tavg(gi) value. That is why we consider both parameters F'(g;)
and tavg(g;) in Eq. (10).

5.2 Gathering Phase

When the adjusting phase ends, the remote server announces
the new grid partition and the data sampling rate in each grid
to cars via beacons (broadcasted by BSs). Therefore, once a
car enters a new grid g; with sampling rate 7; derived from
Eq. (10), it decides the time interval between two successive
reports in that grid by fr(1/#;), where fr(-) is a translation
function on the basis of slot time. For example, supposing that
7; = 20samples/h and each slot is 1 minute, the time interval
will be fr(1/20) = 1/20 x 60 = 3slots (i.e., minutes). To
conduct sampling, each car in g; keeps a counter initially set to
fr(1/7;). When the counter reaches to zero, the car measures
air quality on the current position, sends its sensing data to
the server, and resets the counter again. This mechanism is
straightforward but it leaves three questions.

RP2
-a-0-a- @ a8
Sampling with
random backoff

RP1 920 919
——> X’s moving trajectory € X’s sampling position
-===>»Y’s moving trajectory @ Y’s sampling position

® Reference point : Coverage range

Fig. 6: Using random backoff to let cars sample data on different positions.

Question 1: Because there could exist traffic lights in a grid
and the velocities of cars may vary, how do we control the
decrement of each car’s counter for such situations?

Question 2: Since cars in a grid share the same sampling
rate, and some cars may move along the same road, how do
we prevent them from collecting data on similar positions?

Question 3: As a grid may contain crowded streets, how
do we avoid network congestion due to the transmission of
overwhelming sensing data?

To solve these questions, we develop a probabilistic report-
ing method for cars to efficiently transmit their sensing data.

5.2.1 Probabilistic Reporting Method

For Question 1, if we simply decrease the counter of a car in a
constant speed, when the car stops due to the red light or other
situations (e.g., traffic congestion), it may sample data on some
positions close to each other. Even worse, the car may collect
multiple (and possibly redundant) data on the same position
when it waits for a long red-light time. Thus, even if the car
sends a lot of sensing data, these data cover a very small part
in the grid. To address this issue, we propose one improvement
as follows:

Improvement 1: We freeze a car’s counter when it stops,
and resume the counter again when the car begins to move.

Since most cars are equipped with GPS receivers, each car
can easily detect its movement and thus start/stop its counter
accordingly. With the above improvement, a car is able to
collect air quality from more different positions in a grid.
Moreover, because all cars in a grid have the same sampling
rate, the number of sensing data reported by a car is inversely
proportional to its velocity. In particular, a slow moving car
can sample more data, while a fast moving car just samples
few data. To balance the amount of sensing data reported by
each car in the same grid, we propose another improvement:

Improvement 2: Each car decreases its counter only when
keeps moving. Instead of constantly decreasing the counter,
we multiply the decreasing speed by a scaling factor v;/vayg,
where v; is the car’s velocity and v, is the average (or
expected) velocity of cars in a grid.

Fig. 6 shows Question 2, where two cars X and Y enter grid
g1 at near time and move along the same road. As they share
the same rate 71, their counters are set equally. Both X and
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Y may sample data on close positions, so their sensing data
would exhibit high correlation [4], [5]. Moreover, it is redun-
dant to sample multiple data on a position simultaneously, as
one report is enough to compute the corresponding AQI. To
solve the question, we set a random backoff time for each car
whenever it moves into a new grid g; by:

tp = fr (rand(0,1)/7;),

where rand(0, 1) is a random value in [0, 1]. The first time to
set the car’s counter becomes fr(1/7;) +tp, and the counter is
reset to fr(1/7;) when countdown completes. Grid g2 in Fig. 6
gives an example. With different ¢ 5 values, cars X and Y can
sample data on different positions in g» even if they move
closely. It helps the remote server obtain sensing data from
more positions in a grid. By Eq. (12), a car defers its sampling
for at most fr(1/#;) time when moving into a grid, so the car
will miss no more than one report in each grid.

Question 3 occurs when a street contains volumes of car
traffic. Though we set F'(g;) = Finax in Eq. (10) to handle the
case, a large number of cars may still sample data in a small
area. It would cause network congestion and waste wireless
bandwidth. To conquer this question, we use a probability
ps to help each car decide whether to sample data when its
counter reaches to zero:

ps :{ fmax/F(gi)

(12)

if F(g7) > Fmax
otherwise.

(13)

In Eq. (13), we use probabilistic sampling only when car traffic
exceeds the threshold Fi, .. In other (normal) situations, each
car still keeps regular data sampling by setting its probability
to one. Remark 6 gives a comment on the design of our
probabilistic reporting method.

Remark 6 (Rationale of probabilistic reporting). The objective of
probabilistic reporting is to make cars sample data from more pixels in
a grid. As we will discuss in Section 5.3, the remote server requires
the collected data to derive AQIs of the pixels without reports. If
we simply let some cars sample data on close or the same pixels,
even though their sensor readings are different, it cannot improve the
accuracy of estimating lost data. Instead, it only causes wastage in
communication, as one report is enough to compute the pixel’s AQI.
Thus, the probabilistic reporting method asks cars in the same grid
to sample data on different pixels by counter decrement and random
backoff. Moreover, it adopts a probability idea to reduce the amount
of data transmission in a small area where traffic jam occurs, thereby
alleviating network congestion. O

5.2.2 Packet Formats in EDGE

We adopt the Internet protocol (IP) to transmit packets, and
skip the IP header in our discussion. When the remote server
decides the grid partition and data sampling rates, it asks each
BS to broadcast a beacon with the following payload:

(Type = 0,RP1,RP2, N¢, GIDy, 7y, - -+ ,GID N, "Ny ),

where Type is an indicator to depict the functionality; RP1
and RP2 are reference points respectively located on A’s left-
down and right-up positions, as Fig. 6 shows. We use the
national marine electronics association (NMEA) format [43] to
describe the latitude and longitude of a position. As the grid
partition may not exactly fit to a BS’s coverage range, we use
field N¢ to record the number of grids covered by each BS.
In the beacon, GID;, and 7, denote the grid ID and sampling
rate of the kth grid covered by a BS, respectively. Fig. 6 gives
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two examples, where BS1 sends a beacon ‘(0, 02228.5000N,
12010.3200E, 02302.8030N, 12085.8030E, 1, 4, 20)’. Thus, the
positions of A’s reference points are (N22°28'50”, E120°10'32”)
and (N23°2780.3”, E120°85’80.3”), and BS1 covers grid g, with
a sampling rate of 20samples/h. BS2 sends a beacon ‘(0,
02228.5000N, 12010.3200E, 02302.8030N, 12085.8030E, 3, 2, 25,
17, 30, 18, 20)". So, it covers grids g¢», g17, and gi5, whose
sampling rates are 25, 30, and 20 samples/h, respectively.

Thanks to the region quadtree, we need not record much
positioning information in beacons. Instead, we only indicate
the positions of two reference points in .4, and the grid parti-
tion can be quickly obtained by using grid IDs of the region
quaditree. It thus greatly simplifies the beacon format. Also, by
changing the two reference points in beacons, we can easily
change the monitoring region .4 without much effort. Notice
that when a car misses the beacon, it sends a probing packet
with the payload of ‘(Type = 1)’ to its BS. Then, the BS will
unicast the beacon to that car.

To save data transmission, we define two kinds of reports
for cars. Specifically, a standard report has the following format:

(Type = 2, Time, Reading, Latitude, Longitude),

where the Time, Reading, Latitude, and Longitude fields have
lengths of 32, 16, 88, and 88 bits, respectively. Besides, the
format of a differential report is given as follows:

(TYPG = 37 DTime7 DReadinga DLatitudm DLongitude);

where DTime/ DReadingr DLatituder and DLongitude are the dif-
ferences of time, sensing data, latitude, and longitude between
the current and previous reports, respectively. Their length
are 9, 8, 20, and 20 bits®, so a differential report further
saves 167bits. We give an example, where a car first sends
a standard report ‘(2, 184013, 800, 02478.8722N, 12099.8483E)’.
It means that the car samples a value of 800 on 18:40:13 at the
position (N24°78’87.22”, E120°99'84.83”). Then, the car sends
a differential report “(3, 32, -10, 33596, -2559)’, which indicates
that it samples a value of 790 on 18:40:45 at the new position
(N24°8223.18”, E120°99°59.24").

There are four cases that a car should send a standard
report: 1) a new monitoring period starts, 2) the car enters a
new grid, 3) it handovers to another BS, and 4) the difference
between the current and previous sensing values is out of
range [—128,127] (due to the length of DRgeading). Here, case
4) implies that the car locates in an area where the pollutant
concentration significantly varies, so it is better to report the
complete information. Except for these cases, the car can send
differential reports to save the amount of data transmission.

5.3 Estimating Phase

After collecting data from cars, the remote server uses the
scheme in Section 2.1 to compute AQI for each sampling
position. If multiple cars have measured air quality on the
same position, the server takes the report with the largest
timestamp. However, since it is not possible to control the
movement of cars (referring to Remark 1), we may not collect
data for every pixel of U/ in the gathering phase. Therefore, we
need to estimate lost data in the final phase.

Let Ugata and Uess be the sets of pixels with and with-
out sensing data, respectively, so Ugata U Uloss = U and
Udata N Uioss = 0. Our idea is to do triangulation by using

3. DReadings DLatitude, and Dy ongitude €ach contains a sign bit.
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Fig. 7: Estimating the lost data by triangulation.

all pixels in Ugata, and then estimate the data of each pixel in
Uoss based on the triangulation. However, if we use a simple
triangulation on Ugata, it may result in many ‘skinny’ triangles.
In this case, the average distance between any point inside
a skinny triangle to each triangle vertex will become longer,
which increases the inaccuracy of estimation. Thus, we suggest
using the Delaunay triangulation on Uqata, whose definition is
that no pixel in Ugata will locate inside the circumcircle of
any forming triangle. The Delaunay triangulation is able to
maximize the smallest angle of all the angles of the forming
triangles, so it can avoid generating many skinny triangles.
Fig. 7(a) and (b) give an example, where dots indicate the
pixels in Ugata.

To find the Delaunay triangulation, we borrow the concept
from [44]. Given a simple triangulation on Uqata, We check
if every forming triangle meets the definition of Delaunay
triangulation. Let us denote by £ the set of edges found by the
simple triangulation. For each edge, say, %;u; in £, we examine
each of the four vertices of the two triangles sharing u;u;, and
check whether it locates inside the circumcircle of any triangle.
If so, it means that w;u; is illegal and we exchange u;u; by
the ‘opposite” edge in £. Fig. 8 presents an example, where we
check edge uus. Since vertex u4 locates inside the circumcircle
of triangle Aujusug, Uity is illegal. In this case, we replace it
by the opposite edge usts. Thus, the four vertices w1, ua, us,
and w4 all locate on the peripheries of circumcircles. We can
iteratively check (and possibly exchange) every edge in £, and
the final result will be the Delaunay triangulation.

After doing triangulation, we further divide U, into two
non-overlapped subsets UL . and UQ... For each pixel u; in
Uoss, if at least one half of w; is covered by the polygon
formed by the Delaunay triangulation, then u; belongs to U ..
Otherwise, u; belongs to L{gss. Fig. 7(c) shows an example,
where each small square denotes a pixel, and the pixels with
dots belong to Ugata- In Fig. 7(c), the pixels in U, and U2,
are colored by white and gray, respectively.

Then, we apply the technique of triangulated irregular net-
work [45] to estimate AQI of each pixel in UL .. Specifically, let
us consider a pixel u; € UL whose coordinates are (z;,y;).

(b)

Fig. 8: Finding the Delaunay triangulation: (a) checking edge wiuz and (b)
exchanging uiuz by the new edge uzuz.

Here, we take the central point in a pixel to represent its
coordinates. Suppose that u; locates inside a triangle with
three vertices (i.e., pixels) u,, up, and u. whose coordinates
are (g, Ya), (o, Yp), and (x., y.), respectively. In addition, the
AQIs of u,, up, and u, are w,, wp, and w,, respectively. Then,
we compute u;’s AQI by

w; = (—ax; — fy; — @) /v, (14)
where
a = Ya(wp — we) + Yp(We — wa) + Ye(wa — wp), (15)
B =wq(xp — o) + wp(xe — 24) + we(Ta — 1), (16)
Y =Za(Yo — Ye) + To(Ye — Ya) + Tc(Ya — Ub), (17)
® = (—arg — BYa)/(1 + wa). (18)

In this way, we can derive the AQI of each white pixel in
Fig. 7(c). Then, we update Ugata by Udgata U Z/II{)SS.

On the other hand, we use linear extrapolation to infer the
AQI of a pixel u; € Z’{gs - For each such u;, we take two pixels
Uug and up from Ugaia for reference, such that u,, up, and u; all
locate in the same row (or column). Suppose that u;, is closer
to u; than u,. Then, u;’s AQI is calculated by

D (u;,uq)

D (e, w)’ (19)

w; = We + (Wp — W) X
where D(-, ) is the distance between two pixels. Fig. 7(c) gives
an example, where u,, 1y, and u; locate in the same row. Then,
we move u; from U, t0 Udata. The above iteration is repeated
until U2, becomes empty.

5.4 Discussion

We then discuss two issues. First, one may argue that cars also
contribute air pollution. However, as mentioned in Remark 1,
cars move merely depending on their destinations, instead of
exterior influence (e.g., rewards given to drivers). In other
words, our EDGE mechanism works based on ‘original’ car
traffic, so it will not ask cars to move to certain positions
and thus generate ‘extra’ air pollution. Moreover, air pollution
generated by cars should be viewed as an impartible part
of environmental air pollution. Even if monitoring stations
or static WSNs are used, these cars still generate the same
amount of air pollution. Thus, it is unnecessary to distinguish
pollutants caused by cars from environmental pollutants.

The next issue is data retransmission due to network con-
gestion or temporal failure. However, EDGE works on the ap-
plication layer and data retransmission is the job of underlying
layers (e.g., TCP). Specifically, if a car finds that it fails to send
reports to the associated BS, the car can keep reports in the
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Fig. 9: The monitoring region A in our simulator: (a) street map of
downtown Kaohsiung and (b) dispersion model of CO pollutant generated
by ISC3.

buffer and send them out later (maybe to another BS). This is
done by underlying layers, not EDGE itself. Moreover, based
on the time structure of EDGE in Fig. 2, the report is valid if
it can be received by the remote server during a monitoring
period (even though the report is retransmitted several times).
Besides, the monitoring period (e.g., 10 minutes in simulations)
is much longer than the retransmission duration of underlying
layers (e.g., 75seconds in TCP). In other words, data retrans-
mission would have litter effect on the error rate. Thus, we
do not deal with data retransmission in EDGE but leave it to
underlying-layer protocols.

6 EXPERIMENTAL RESULTS

To evaluate EDGE’s performance, we develop a simulator with
the models discussed in Section 2. It selects the downtown
area of Kaohsiung city* in Fig. 9(a) as the monitoring region
A, where we use VSN to collect air quality and exploit AQI
in Section 2.1 to measure air pollution. As mentioned in
Section 2.2, SUMO is used to generate car traffic in 4. Each
street has a speed limit, which decides the velocity of cars
moving along it. If a car reaches its destination or moves out
of A, it stops collecting air quality. Since new cars will move
into A, we can keep the average number of cars. Also, by
using the HBEFA vehicle emission class, each car generates
different amount of air pollution. Moreover, we adopt ISC3
in Section 2.3 to model the dispersion of CO pollutant in
the environment. Specifically, we pick a number of source
locations in A to emit CO gas (e.g., they may be the sites of
factories). Each source emits various amount of CO gas with a
different duration. Besides, the source locations would change
as time goes by. Fig. 9(b) gives a snapshot of CO dispersion
by ISC3, where colors represent different concentration of CO
gas. Table 2 summarizes the parameters used in our simulator.

We compare EDGE with VAR and GRA schemes in [34],
which rely on Eq. (4) to compute the sampling rate in each
grid. They work on the premise that grid partition is fixed, and
use linear interpolation/extrapolation to estimate lost data.
We divide A into 16 x 16 grids for both schemes. EDGE also
starts from the same partition, but it dynamically amends the
partition via a region quadtree whose maximum depth is 4. In
EDGE, we set A = 5, Fiuin = b and F.x = 20 for car traffic,
and o = 0.834 as discussed in Remark 5.

4. Kaohsiung is the second largest city in Taiwan and has the population
of more than 2.7 millions.
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TABLE 2: Simulation parameters.
Cars’ parameters:
region length
number of cars
speed limit
braking speed
acceleration
air pollution
Pollutant’s parameters:

2,3,4,5, 6km

100, 300, 500, 700, 900, 1100
10, 30, 50, 70, 90, 120 km/h
42~48m/s

20~24m/s

HBEFA (version 3.1)

gaseous pollutant co

pixel size Imx1m
number of sources 25,50, 75, 100
duration of emission 2 ~4hours
amount of emission 250 ~ 750 grams
Other parameters:

monitoring period 600 seconds
initial grid partition 16 x 16
monetary reward $0.05, $1.0, $0.15

According to Section 4, three metrics are used to measure
average performance of each scheme in a monitoring period.

Data transmission: We evaluate the amount of sensing data
sent from cars, which is denoted by ‘(sample)’ in simulation
figures. Moreover, we measure the amount of total data trans-
mitted in the network (including control messages broadcasted
by each BS), which is denoted by ‘(total)’ in figures.

Monetary cost: Two scenarios are considered. Each driver
is given $0.1 for a report in the constant reward (CR) scenario.
The variable reward (VR) scenario classifies AQI in Fig. 1(a)
into three groups: harmless (AQI <100, good and moderate
levels), normal (AQI:101-200, unhealthy sensitive group and
unhealthful levels), and critical (AQI > 201, very unhealthful
and hazardous levels). A driver is given $0.05, $0.1, and $0.15
for each harmless, normal, and critical report, respectively.
Remark 7 comments on both scenarios.

Error rate: Since VAR, GRA, and EDGE contain gathering
and estimating phases, we observe the impact of each phase.
For the gathering phase (denoted by ‘(G)’ in figures), if a pixel
has no car to report sensing data, its value is null. Thus, the
error rate will be the ratio of pixels with null values. For the
estimating phase (denoted by ‘(E)” in figures), the server infers
the sensing data of those pixels whose values are null. We set
0 = 5 and use Eq. (7) to find the error rate.

We also vary the simulation parameters from three aspects.

Car: We adjust car traffic in a monitoring region to observe
the effect of car density. It helps measure system performance
in different types of regions (e.g., suburb or downtown).
Besides, we alter the speed limit to check if car speeds will
affect performance. The result can be also used in various
applications like monitoring in congested roads or highways.

Environment: We vary the regional size to evaluate different
methods in small- and large-scale environments. This aspect is
useful because the monitoring mission may be conducted in
only small regions (e.g., one district of the city) or the whole
metropolitan area.

Pollutant: By changing the number of pollutant sources, we
can measure whether each method is able to save both data
transmission and monetary cost when the pollutant concentra-
tion keeps relatively steady, and lower down the error rate as
concentration changes drastically.

Remark 7 (CR and VR scenarios). In Eq. (6), the monetary cost
is decided by the number of packets in P and reward(p;). In the
CR scenario, minimizing the monetary cost may not be necessarily
equal to minimizing the amount of data transmission due to the
design of different reporting formats in Section 5.2.2. We consider
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Fig. 10: Effect of car traffic on average performance of each scheme.

an example where two methods make cars send the equal number
of reports in P. One method only uses standard reports, while the
other lets cars frequently send differential reports. In this case, both
methods have the same amount of data transmission but they result
in different monetary costs. Consequently, we use the CR scenario to
demonstrate the benefit of using differential reports.

The VR scenario exhibits the concept of ‘differentiating’ sensing
data. As mentioned in Section 2.1, the government uses AQI to
describe the degree of air pollution. It will have more interesting in
the positions with large AQI values, as there may exist abnormal
events (e.g., gas leak). Thus, we prefer giving the drivers who find
such positions (i.e., by sending critical reports) a higher reward. On
the other hand, by giving the drivers who send harmless reports a
lower reward, we can decrease the overall monetary cost when the air
pollination is light. Thus, the VR scenario also gives an example of
adjusting reward(p;) to save the monetary cost. O

6.1 Effect of Car Traffic

We first evaluate the effect of car traffic on different schemes,
where the number of cars in A ranges from 100 to 1100.
Fig. 10(a) gives the amount of data transmission, where sens-
ing data reported from cars dominate all transmission in VSN.
Since EDGE keeps dynamic grid partition, it requires slightly
more control messages (i.e., beacons) to announce the grid
structure. It is shown in [34] that GRA greatly reduces the
amount of data reports than VAR. However, both schemes do
not consider the extreme case where a street is congested by
many cars. Thus, their amount of data transmission signifi-
cantly increases as the number of cars grows. On the contrary,
EDGE not only uses an upper threshold F},,,« to limit car traffic
F(g;) in Eq. (10), but also proposes a probabilistic sampling
method by Eq. (13) to deal with this case. Therefore, it avoids
drastically increasing data transmission when there are more
cars in A. Averagely, EDGE reduces 83.7% and 73.1% of data
transmission than VAR and GRA, respectively. Also, it reduces
88.2% and 80.1% of sensing reports comparing with VAR and
GRA, respectively.

Fig. 10(b) shows the monetary cost, where all schemes have
higher costs in the CR scenario. The reason is that a driver is
given with the same reward (i.e., $0.1) for every report, while
it is possible to give a driver less reward (i.e., $0.05) when the
report falls into the harmless degree. From Fig. 10(a), because
VAR generates the largest amount of data transmission, it
requires the highest monetary cost. Thanks to the dynamic
grid partition, EDGE can result in the lowest monetary cost.
On the average, EDGE respectively saves 66.6% and 43.5% of

the monetary cost than VAR and GRA under the CR scenario.
Besides, under the VR scenario, it saves averagely 67.0% and
46.9% of the monetary cost than VAR and GRA, respectively.

Fig. 10(c) presents the error rate. Although more cars result
in more air pollution, they also help collect more data from .A.
Thus, all schemes have more pixel values to infer lost data, so
their error rates decrease accordingly. When we consider only
the gathering phase, the average error rate of each scheme is
close (i.e., VAR =~ 25.1%, GRA =~ 25.9%, and EDGE =~ 25.9%)°.
Through probabilistic reporting, EDGE prevents cars from
sampling data on too close pixels. Thus, even if cars generate
fewer reports in EDGE, it still has a similar error rate with
others. This demonstrates the benefit of using probabilistic re-
porting to let cars collect data on diverse positions. Moreover,
when we apply the estimating phase, the error rate obviously
reduces. Since EDGE uses sophisticated methods including the
Delaunay triangulation and triangulated irregular network to
infer lost data, as compared with simple interpolation and
extrapolation in both VAR and GRA, it thus has the lowest
error rate. In particular, EDGE improves 31.1% and 34.6%
of monitoring accuracy than VAR and GRA when § = 5,
respectively.

6.2 Effect of Speed Limit

We then measure the effect of different speed limits (from 10 to
120 km/h), where the results are shown in Fig. 11. The speed
limit decides the maximum velocity of cars moving along a
street, but cars may not keep such a velocity due to traffic lights
or road conditions (e.g., cars slow down as traffic congests).
When cars move pretty slowly (i.e., <30km/h), they might
generate more pollution. Thus, both data transmission and
monetary cost become slightly larger when the speed limit is
very low. With flexible grid structure and probabilistic report-
ing, EDGE greatly reduces the amount of data transmission
and monetary cost. Specifically, it saves 87.2%, 91.3%, 78.3%,
and 78.3% of data transmission, sensing reports, CR monetary
cost, and VR monetary cost than VAR, respectively. Comparing
to GRA, EDGE reduces 79.4%, 85.8%, 64.5%, and 66.2% of
data transmission, sensing reports, CR monetary cost, and VR
monetary cost, respectively.

Similarly, when cars move in a low speed, the error rate
lightly increases (due to more pollutant emitted by cars), as

5.In Fig. 9(b), there are around 20% of pixels that cars cannot pass
through. These pixels may contain buildings, parks, or railways. That is
why all methods encounter high error rates when they do not use the
estimating phase.
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Fig. 12: Effect of regional size on average performance of each scheme.

Fig. 11(c) shows. Since the number of cars is fixed to 500, EDGE
results in slightly more pixels with null values than VAR and
GRA when only the gathering phase is adopted. However,
by applying the estimating phase (with § = 5), EDGE can
significantly decrease the error rate. On the average, EDGE
improves 27.5% and 30.8% of monitoring accuracy comparing
with VAR and GRA, respectively.

6.3 Effect of Regional Size

Next, we investigate the effect of A’s size on performance. We
generate car traffic and pollutant dispersion on a 6 x 6km?
area, and select its central part to be A, where the size of 4
increases from 2 x 2 to 6 x 6km?. Fig. 12(a) and (b) show the
communication cost. Apparently, the remote server receives
more sensing reports from cars in a larger region, and thus re-
quires a higher monetary cost. On the average, EDGE reduces
87.0%/91.6% and 70.1%/79.4% of the transmission amount of
total/sensing data than VAR and GRA, respectively. Besides,
it saves 80.6%/77.0% and 52.4%/50.6% of the monetary cost
than VAR and GRA under the CR/VR scenario, respectively.

Fig. 12(c) gives the error rates of VAR, GRA, and EDGE.
Since the conditions of cars (i.e., density, speed limit, air pollu-
tion emitted) do not change, enlarging A will also increase
the error rate. Such a phenomenon is more obvious when
we merely use the gathering phase. In this case, EDGE has a
slightly larger error rate than others. With the help of estimat-
ing phase, EDGE is able to reverse the situation. Specifically,
it further enhances 27.6% and 32.3% of monitoring accuracy
than VAR and GRA when § = 5, respectively.

6.4 Effect of Pollutant Source

Finally, we study the effect of pollutant source, where the
number of sources in A is set to 25, 50, 75, and 100. In this
experiment, the number of cars is kept in 500 and the speed
limit is 50 km /h, so the amount of pollution generated by cars
does not change. Thus, the overall air quality is decided by the
number of pollutant sources, and Fig. 13 gives the simulation
result. Both VAR and GRA observe the difference among the
values of sensing data in a grid, and compute sampling rates
by Eq. (4). However, since the grid size is fixed, they enlarge
the sampling rate in a grid when the number of sources grows.
Thus, not only the amount of data transmission but also the
monetary cost will substantially increase. In contrast, EDGE
uses heterogeneous grids to fine tune sampling rates, so it
increases the sampling rate only when required. Thus, its data
transmission and monetary cost can smoothly increase when
there are more sources in 4. On the average, EDGE saves
85.9%, 89.7%, 72.2%, and 72.9% of data transmission, sensing
reports, CR monetary cost, and VR monetary cost than VAR,
respectively. Besides, comparing to GRA, EDGE reduces 76.7%,
82.5%, 52.9%, and 55.9% of data transmission, sensing reports,
CR monetary cost, and VR monetary cost, respectively.

From Fig. 13(c), we observe that the error rate smoothly
decreases as the number of pollutant sources increases, when
each scheme has only the gathering phase. The reason is that
the monitoring region A and cars’ conditions (e.g., number
and speed) do not change. When there are more sources, all
schemes will prefer increasing the sampling rates of cars. In
this case, more pixels could be monitored by cars, thereby
reducing the error rate. On the other hand, when the estimat-
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Fig. 13: Effect of pollutant source on average performance of each scheme.

ing phase is conducted, all schemes can greatly decrease their
error rates. However, the error rate increases as the number of
sources grows. It is because the pollutant concentration varies
drastically, making the estimation become more inaccurate.
Average speaking, EDGE can reduce 25.8% and 28.9% of the
error rate than VAR and GRA, respectively, when § = 5.

7 CONCLUSION AND FUTURE WORK

Using VSN to monitor metropolitan air quality has received
considerable attention. This paper develops a 3-phase EDGE
mechanism to efficiently gather sensing data from cars and
estimate absent data. The goal is to balance between commu-
nication overhead and monitoring accuracy. EDGE proposes
dynamic grid partition and probabilistic reporting methods to
adjust sampling rates and avoid redundant data, respectively.
Different formats of sensing reports are proposed to save data
transmission. With the Delaunay triangulation, EDGE can infer
lost data more precisely. By using simulations built on SUMO
and ISC3 models and a real street map, we compare EDGE
with VAR and GRA schemes. Experimental results show that
EDGE reduces 79-92% of sensing reports and saves 44-81%
of monetary cost. When only the gathering phase is used,
EDGE has a similar error rate with VAR and GRA. However,
by applying the estimating phase, EDGE further improves 26—
35% of monitoring accuracy.

In Remark 2, we leave an issue of designing the rewarding
policy for future study. When the reward given to a driver
is considerable, the rewarding policy may influence driving
behavior, and could facilitate air-quality monitoring by VSN.
For example, we can give a higher reward to encourage drivers
to collect data on locations where pollutant concentration
changes drastically, while lower the reward when cars report
sensing data with little variation. However, we should deal
with the case where numerous drivers move to the same area
in order to increase the reward, which will cause traffic con-
gestion in that area. Thus, it also deserves further investigation
to conduct real experiments to measure the effect of rewarding
policy for such scenarios.
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