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Deploying R&D Sensors to Monitor
Heterogeneous Objects and

Accomplish Temporal Coverage
You-Chiun Wang and Shin-En Hsu

Abstract—A rotatable and directional (R&D) sensor is a wireless device that has sector-shaped sensing coverage and rotatable ability. Such
sensors can periodically rotate to monitor nearby objects in order to achieve temporal coverage. Specifically, an object is said to be δi-time
covered if it can be monitored by R&D sensors for at least δi portion in each period, where 0 < δi ≤ 1. Given a set of heterogeneous objects
with different δi values, the paper formulates a generalized R&D sensor deployment (GRSD) problem. It determines how to use the minimum
number of R&D sensors to accomplish temporal coverage by letting each object be δi-time covered. The GRSD problem is proven to be
NP-hard, and an efficient heuristic is developed based on the locations and coverage demands of objects. Experimental results demonstrate
that the proposed GRSD heuristic significantly reduces the number of deployed sensors compared with existing methods, under various
simulation scenarios.

Index Terms—directional sensor, node deployment, object monitoring, temporal coverage, wireless sensor network.
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1 INTRODUCTION

AWIRELESS sensor network consists of many self-
configurable, small devices (called sensors) that form an

ad hoc network to cooperatively monitor the region of interest.
Sensors are usually considered as omnidirectional, in the sense
that they have disk-shaped sensing coverage used to collect
environmental data. They can be also equipped on mobile
platforms to tactically move to certain locations to conduct
different missions [1]. Recently, wireless sensor networks have
been massively applied to various scenarios, such as animal
tracking, power management, oceanic exploration, pollution
detection, and vehicular safety [2].

Due to their hardware characteristics, some kinds of sen-
sors can monitor data from just one direction. They are gen-
erally called directional sensors, and practical examples include
camera, infrared, light detection and ranging (lidar), sonar, and
ultrasonic sensors. Directional sensors have different coverage
style with omnidirectional sensors in essence [3], because they
can detect only the objects or events located in their sector-
shaped sensing range. However, in some applications such as
searching objects [4], [5], we may ask directional sensors to
collect information from multiple or even all directions. To
achieve this objective, one possible solution is to install a
number of directional sensors on one node, where each sensor
faces to a different direction to collect data [6]. However, this
solution is not cost-efficient, because we have to use a lot of
directional sensors.

An alternative solution is to use some robotic actuators
like stepper motors to let directional sensors ‘rotate’ to detect
their surrounding objects or events [7]. This solution not only
reduces the number of directional sensors, but also provides
spatiotemporal coverage of the environment. In fact, a number
of research efforts exploit such rotatable and directional (R&D)
sensors to develop various applications. For example, the work
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of [8] employs rotatable airborne radars to estimate the wind
velocity. In [5], each robot is equipped with infrared sensors,
and it can identify nearby objects (e.g., another robot) by rotat-
ing the sensors. Through a rotating array of ultrasonic sensors,
the study in [9] proposes a strategy for spatial reconstruction
of orthogonal planes. Wang et al. [10] use infrared and camera
R&D sensors to develop an object surveillance application.

Motivated by the aforementioned applications, this paper
aims at investigating how to accomplish temporal coverage by
adopting R&D sensors. In particular, we consider that the time
axis is divided into repetitive periods. During each period, an
R&D sensor can rotate to monitor objects or target locations
around it. Notice that the traditional spatial coverage model
[11] usually requests sensors to ‘always’ monitor all objects
or target locations. On the contrary, this temporal coverage
model allows sensors to monitor different objects or locations
at different times, which supports more flexibility.

In this paper, we formulate a generalized R&D sensor deploy-
ment (GRSD) problem to formally define the temporal coverage
model in R&D sensor networks. Suppose that each R&D sensor
can rotate 360 degrees, and it spends total (constant) time T to
monitor objects in each period. An object is said to be δi-time
covered, 0 < δi ≤ 1, if it is monitored by R&D sensors for
at least δiT time in every period. Objects are heterogeneous, in
the sense that they can have different δi values (depending on
their importance or the application requirement). Given a set
of such objects to be monitored, the GRSD problem determines
how to use the minimum number of R&D sensors to cover the
objects, so as to satisfy their δi-time covered demands.

We use Fig. 1 as an example to illustrate the GRSD problem.
Suppose that there are two types of objects needed to be 1/2-
time and 1/4-time covered, which are denoted by X and Y
objects, respectively. Both sectors A and B contain only X
objects, so sensor si can rotate to cover them, and stop in each
sector for T/2 time in order to satisfy the coverage requirement
of each object. On the other hand, because sector C contains
one X object while sectors D and E contain only Y objects,
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Fig. 1: Achieve temporal coverage by R&D sensors, where X and Y objects
need to be 1/2-time and 1/4-time covered, respectively.

sensor sj should spend T/2, T/4, T/4 time to stay in sectors
C , D, and E to monitor their objects, respectively. In this case,
the coverage requirement of Y objects in sector C can be also
met.

In this paper, we prove that the GRSD problem is NP-
hard, and develop an efficient heuristic to solve it. The idea
is to first compute a set of disks to cover all objects. Then, our
heuristic iteratively selects a disk based on the locations and
δi values of its objects, and places R&D sensors to monitor
the objects in that disk. Finally, the deployment result is
further improved by exploiting the residual monitoring time of
R&D sensors and allowing them to ‘cooperatively’ cover some
sectors. Therefore, we can find out potential redundant sensors
and remove them accordingly. Extensive simulation results
verify that our GRSD heuristic can use a smaller number of
R&D sensors to provide temporal coverage of heterogeneous
objects compared with other deployment methods. This paper
contributes in 1) defining a temporal coverage model by R&D
sensors, 2) formulating an R&D sensor deployment problem
that considers heterogeneous objects, 3) verifying the NP-hard
property of the deployment problem, and 4) developing an
efficient heuristic to reduce the network deployment cost.

The rest of this paper is organized as follows: The next
section gives related work. Section 3 formulates the GRSD
problem, and our heuristic to the problem is presented in
Section 4. Section 5 evaluates the performance of different
deployment methods by simulations. Finally, the conclusion
is drawn in Section 6.

2 RELATED WORK

Traditional sensor coverage problems usually aim at providing
spatial coverage for a sensing field or a long-thin barrier [11].
Therefore, in this section we focus our discussion on temporal
coverage by omnidirectional sensors. Then, we survey the cov-
erage and deployment schemes in directional sensor networks.

2.1 Temporal Coverage by Omnidirectional Sensors

Several studies consider how to achieve temporal coverage by
static, omnidirectional sensors. For example, the work of [12]
activates only a small number of sensors at any time to monitor
the sensing field. These active sensors can form an active zone
to monitor objects. As time goes by, the active zone will move
along a certain trajectory to conduct the monitoring job. Liu
and Cao [13] partition the sensing field into multiple subareas.

They define a spatial-temporal coverage metric for each subarea,
which is the product of the subarea’s size and the period that
the subarea is covered. Then, the objective is to turn on a subset
of sensors at different times, such that the metric sum of all
subareas can be maximized.

Mobile, omnidirectional sensors are also widely used to
support temporal coverage. A lot of research addresses how
to dynamically move sensors to cover different sensing fields.
Both [14] and [15] imagine that sensors can exert virtual forces
on each other to move. Thus, they can be uniformly distributed
over the sensing field. Given the initial (random) deployment
of sensors, the studies of [16], [17] use Voronoi diagrams to
find out coverage holes, and then move sensors to eliminate
these holes. The work of [18] proposes a two-phase strategy
to maneuver mobile sensors to cover a sensing field. The first
phase computes where sensors should be placed in the sensing
field. Then, the second phase dispatches sensors to the above
locations, such that they can spend less energy on movement.
In [19], Wang and Tseng develop a distributed solution to
move sensors, so as to provide k-coverage of a sensing field.

Some research efforts tactically dispatch mobile sensors to
visit event locations. The work of [20] assumes that events only
appear in certain positions and their arrival/departure time
distribution is known in advance. Then, the work deals with
the problem of using the minimum number of sensors (and
calculating their moving trajectories) to reduce the event loss
probability. On the other hand, Wang et al. [21] consider that
events could arbitrarily appear in the sensing field. Given the
locations of event occurrence, they investigate how to dispatch
mobile sensors to visit these locations, such that the lifetime of
mobile sensors can be maximized. The work of [22] assumes
that mobile sensors have multiple capabilities, so they can
analyze different types of events. Then, the work develops an
energy-efficient algorithm that dispatches mobile sensors with
different capabilities to visit the locations of heterogeneous
events.

Chang et al. [23] consider a mobile sensor network with a
large coverage hole, but the number of sensors is not sufficient
to fill that hole. Then, they move a subset of sensors to make
the hole ‘migrate’ in the sensing field. Therefore, every location
can be eventually covered by sensors for a threshold time.
Given a set of points, the work of [24] periodically moves
sensors to cover them. A point is called ti-sweep covered if it
is covered by a sensor in each sweep period ti. Then, the work
solves the min-sensor sweep coverage problem, which asks how to
use the minimum number of sensors to make every point be
ti-sweep covered.

We can observe that a variety of temporal coverage is-
sues have been addressed in omnidirectional sensor networks.
However, they have not been well investigated in directional
sensor networks. Therefore, it motivates us to study temporal
coverage by R&D sensors in this paper.

2.2 Coverage and Deployment Schemes in Directional
Sensor Networks

A number of research efforts address the coverage issue by
using directional sensors. Given a set of objects, Ai and
Abouzeid [25] formulate an integer linear programming that
uses the minimum number of directional sensors to cover the
maximum number of objects. Then, a greedy-based solution
is developed to schedule the wake-up period of sensors. Cai
et al. [26] organize directional sensors into multiple cover sets
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according to their facing directions, where the sensors in a
cover set can monitor all objects in the sensing field. Then,
they investigate how to activate only one cover set of sensors
in different periods to extend the system lifetime. The study
of [27] considers that objects have different requirements of
coverage quality. It then organizes the directions of sensors
into a group of non-disjoint sets, each being able to meet the
coverage quality of all objects. Obviously, these studies have
different objectives with our work.

How to deploy static, directional sensors is also discussed
in the literature. Han et al. [28] propose two deployment prob-
lems for directional sensors. The connected region-coverage prob-
lem asks how to use the minimum number of directional sen-
sors to cover an infinite plane. It can be solved by continuously
placing sectors in a hexagon-like fashion on the plane. Then,
the connected point-coverage problem determines how to use the
minimum number of directional sensors to cover a given set
of point-locations. It can be solved by searching the sectors
anchored by one, two, and three point-locations that cover the
most point-locations, and then greedily deploying sensors to
cover them. On the other hand, the work of [29] models the
sensing field by a set of points on which directional sensors can
be deployed. Given a set of critical points, the work adopts the
integer linear programming to compute the minimum number
of directional sensors to monitor all critical points. Tao and Wu
[30] survey the solutions of different barrier coverage problems
by using directional sensors. Nevertheless, the aforementioned
studies cannot support temporal coverage, because directional
sensors are fixed after deployment.

Some work exploits the rotatable ability of R&D sensors.
The study of [31] assumes that R&D sensors can rotate within
a limited angle. In addition, the sensing field contains some
anchor sensors with known positions. Then, the work solves
the localization problem by calibrating the positions of non-
anchor sensors. Specifically, each of such sensors measures
the relative ranges from neighboring anchor sensors. Then,
the sensor compensates the confined field of view by rotat-
ing. Obviously, this work does not aim at the deployment
issue. On the other hand, the study of [10] proposes an R&D
sensor deployment problem that asks how to use the minimum
number of R&D sensors to guarantee that every object is δ-
time covered, where 0 < δ ≤ 1. Two deployment methods
are developed to solve the problem. The maximum covering
deployment (MCD) method iteratively places an R&D sensor
to cover more objects, while the disk-overlapping deployment
(DOD) method places R&D sensors to cover the joint sectors
of overlapped disks formed by the rotation of sensors. In fact,
this R&D sensor deployment problem is a special case of our
GRSD problem, because it assumes that all objects have the
same δ value. Compared with [10], our work formulates a
more ‘generalized’ R&D sensor deployment problem by taking
object heterogeneity into account. Through simulations, we
will also compare our GRSD heuristic with both MCD and
DOD methods in Section 5.

3 THE GENERALIZED R&D SENSOR DEPLOYMENT

(GRSD) PROBLEM

Given a set of fixed objects Ô = {o1, o2, · · · , om}, our objective
is to deploy R&D sensors to support temporal coverage for
them. Each sensor has the sensing range modeled by a sector
with an opening angle of θ ∈ (0, π) and a radius of rs. Besides,
its communication range is modeled by a disk with a radius

of rc. Sensors are homogeneous, in the sense that they have the
same θ, rs, and rc values. However, the relationship between
rs and rc is arbitrary. We adopt the binary sensing model, where
an object is assumed to be covered by a sensor if it is inside
the sensing coverage of that sensor. However, our deployment
result can be easily applied to the probabilistic sensing model by
giving a threshold detection probability pth. Specifically, the

probability that an object oi ∈ Ô can be detected by a sensor
sj is formulated by [18]:

Pr(oi, sj) =

{

e−ξ·l(oi,sj) if l(oi, sj) ≤ rs
0 otherwise,

where ξ is a parameter used to represent the physical charac-
teristics of a sensor, and l(·, ·) denotes the distance function. To
let every object be detected by a sensor with the probability no
less than pth, we can ‘shrink’ the sensing distance rs by

Pr(oi, sj) = e−ξrs ≥ pth ⇒ rs ≤ −
ln pth
ξ

. (1)

Each sensor has 360 degrees of freedom to rotate, and it
can stop to monitor objects during rotation. Assume that all
sensors keep rotating in the same direction (e.g., counterclock-
wise), and the rotation speed is a constant, say, v degrees per
second. Then, the time axis can be divided into multiple periods
with length Lp, during which a sensor finishes rotating 360
degrees. In particular, we have

Lp = tmonitor
j +

360

v
,

where tmonitor
j is the total time that a sensor sj stops to

monitor the objects in a period. Since every sensor has the
same Lp and v values, tmonitor

j should be fixed for all sensors.

Thus, we replace tmonitor
j by a constant T . Then, we define

that an object oi ∈ Ô is δi-time covered if oi can be monitored
by R&D sensors for at least δiT time in every period, where
0 < δi ≤ 1. Fig. 1 gives an example, where the objects in
sectors A, B, and C are 1/2-time covered, and the objects in
sectors D and E are 1/4-time covered.

Suppose that each object oi ∈ Ô is modeled by a point-
location and needs to be δi-time covered. The GRSD problem
then asks how to deploy the minimum number of R&D sensors
and determine their rotation schedules, such that the coverage

requirements of all objects in Ô can be satisfied. An example
is given in Fig. 1, where sensors si and sj have rotation sched-
ules {(A, T/2), (B, T/2)} and {(C, T/2), (D,T/4), (E, T/4)},
respectively. Theorem 1 proves the NP-hard property of the
GRSD problem.

Theorem 1. The GRSD problem is NP-hard.

Proof: To prove that the GRSD problem is NP-hard,
we reduce an NP-complete problem, the geometric disk cover
(GDC) problem [32], to one of its instances. The GDC problem
determines how to place the minimum number of disks to
cover a set of point-locations. Therefore, we construct a GRSD
problem instance as shown in Fig. 2. Specifically, the sensing
field is divided into two parts, where they are separated by a
distance of 2rs. There are two types of objects, say, X and Y
objects that respectively require δX -time and δY -time covered,
where δX = θ/2π, δY = θ/π, and π is divisible by θ. The
left (respectively, right) part of the sensing field contains only
X (respectively, Y ) objects. Then, we prove that the GRSD
problem has a solution if and only if the GDC problem has
a solution.
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Fig. 2: A GRSD problem instance, where X and Y objects require θ/2π-
time and θ/π-time covered, respectively.

Suppose that we have a solution to the GDC problem,

which is a set of disks D̂. Since the two parts of the sensing
field is separated by a distance of 2rs, it is impossible that

there exists a disk in D̂ that can cover the objects in both parts.
Therefore, we can separately discuss the disks in each part. For
the left part, since δX = θ/2π, each R&D sensor can rotate to
cover 2π/θ sectors in every period. Because each sector has
the opening angle of θ, these sectors must form a complete
disk. In other words, an R&D sensor can rotate to cover all
objects in its disk per period. Therefore, for each disk of D̂

in the left part, we can deploy an R&D sensor on its center.
Similarly, for the right part, since δY = θ/π, each R&D sensor
can rotate to cover π/θ sectors in every period. In this case,
two R&D sensors (located at the same position) together can
rotate to cover a whole disk. Therefore, we can deploy at most

two R&D sensors on the center of each disk of D̂ in the right
part. These R&D sensors in both parts constitute a solution to
the GRSD problem, which proves the if statement.

Conversely, suppose that we have a solution to the GRSD

problem, which is a set of R&D sensors Ŝ. Again, we can

separately discuss the R&D sensors of Ŝ in each part of the
sensing field, because it is impossible that there exists a sensor

in Ŝ that can cover the objects in both parts. For the left part,
every R&D sensor can rotate to cover all objects around it,
which forms a disk. We thus place a disk whose center is

located on each R&D sensor of Ŝ in the left part. On the other
hand, there are two cases in the right part. The first case is
that a single R&D sensor can rotate to cover all objects around
it. In this case, we place a disk such that its center is at the
sensor’s location. The second case is that two R&D sensors
are deployed on the same location to cover all objects around
them (here, each sensor can rotate to cover at most π/θ sectors,
which forms a half disk). Therefore, we place a disk whose
center is at the location of both sensors. The above disks in
both parts constitute a solution to the GDC problem, thereby
proving the only if statement.

4 THE PROPOSED GRSD HEURISTIC

Given the locations and δi values of m objects in Ô, Fig. 3
presents the flowchart of our GRSD heuristic. It consists of the
following five steps:

• [Step 1] Finding disks: By taking the locations of
objects as the input, this step will calculate a set of

disks D̂ to cover all objects in Ô, where each disk in D̂

has a radius of rs. However, if the probabilistic sensing
model is considered, we should adjust the value of rs
according to Eq. (1).

• [Step 2] Computing sectors: For each disk in D̂, we cut
it into non-overlapping sectors based on the distribution
of objects in that disk. All sectors have an opening
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Fig. 3: The flowchart of our proposed GRSD heuristic.

angle of θ, and they indicate where R&D sensors should
rotate to monitor objects.

• [Step 3] Placing sensors: We then iteratively place an
R&D sensor to cover a number of sectors in one disk,
until all objects in Ô are covered by sensors. To reduce
the number of sensors used in this step, we should take
the δi values of objects into consideration.

• [Step 4] Removing redundancy: When a disk is placed
with multiple R&D sensors, we can check whether these
sensors have residual monitoring time. If so, we can ask
two or more sensors to cooperatively cover a sector by
combining their residual monitoring time. In this case,
some sensors will become ‘redundant’, if they no longer
cover any sector. Therefore, we can remove them to
further save the network deployment cost.

• [Step 5] Connecting nodes: The aforementioned R&D
sensors may not necessarily form a connected network.
In this case, we have to add relay nodes to maintain the
network connectivity.
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TABLE 1: Summary of notations.
notation definition

Ô the set of m objects that need to be monitored, where each object oi ∈ Ô is a point-location

D̂ the set of disks that can cover all objects in Ô, where each disk dj ∈ D̂ has a radius of rs
D̂L the subset of disks that have objects with the largest δi values

δi the coverage requirement of an object oi in Ô, where oi should be covered for δiT time in a period, and 0 < δi ≤ 1

δsumj the sum of δi values of all objects in a disk dj
δmax
i the largest δi value of objects covered by a sensor
δsci the largest δi value of objects in a sector
To

i the occupied monitoring time of a sensor si
T r

i the residual monitoring time of a sensor si

o1

o2

o3

o4

o5

rs

2rs
rsrs

Rule 1 Rule 2 Rule 3

Fig. 4: Three rules to find a set of disks D̂ to cover all objects.

Next, we discuss the detailed design of each step. Table 1
summarizes the common notations used in the GRSD heuristic.

4.1 Step 1: Finding Disks

The objective of this step is to efficiently find a set of disks D̂

to cover the objects in Ô. To do so, we develop three rules to

calculate the set D̂ based on the GDC scheme in [32]:

• Rule 1: If l(oi, oj) < 2rs, where oi and oj ∈ Ô, we place
two disks such that their peripheries intersect at both oi
and oj .

• Rule 2: If l(oi, oj) = 2rs, we place one disk such that
its periphery passes both oi and oj .

• Rule 3: If l(oi, ok) > 2rs for any ok ∈ {Ô − oi}, which
means that oi is isolated, we place one disk whose center
is at oi’s position.

Fig. 4 gives an example to illustrate the above three rules. Here,
we may calculate two disks according to each pair of objects in

Ô (by rule 1), so the maximum number of disks in D̂ will be

|D̂| = 2 · C(m, 2) =
2 ·m!

(m− 2)! · 2!
= m(m− 1) = O(m2).

Obviously, |D̂| is much larger than the number of objects

in Ô (i.e., m). It indicates that a lot of disks in D̂ are actually
unnecessary. Thus, we only select at most O(m) candidate disks

in D̂ and remove others. In particular, a candidate disk should
have two properties:

1) The disk covers the maximum number of objects.
2) The disk can cover more objects with larger δi values.

To do the selection, we set the status of each object in Ô to
unchecked. Let us denote by

δsumj =
∑

{δi | object oi is unchecked and in disk dj ∈ D̂}.

In other words, δsumj is the sum of δi values of all unchecked
objects in disk dj . Then, we iteratively select the disk with
the maximum δsumj value as a candidate disk, and mark all
objects in that disk as checked. This iteration is repeated until

all objects in Ô become checked. Here, our idea is based on
the observation that selecting the disk with the maximum

δsumj value can have a larger opportunity that the disk covers
more objects, and these objects also have larger δi values. This
method can help reduce the computation cost. Notice that each
object is included in at most one candidate disk, so we have

|D̂| = O(m). Lemma 1 gives the time complexity of step 1.

Lemma 1. Finding the set of disks D̂ requires at most O(m2)
time.

Proof: We first apply the three rules to find all disks in

D̂. Obviously, these three rules require to check every possible

pair of objects in Ô. Because we have |Ô| = m, it thus takes
O(C(m, 2)) time to do the check. Then, we iteratively select
the disk that has the largest δsumj value to be a candidate disk,
which can be implemented by using a maximum binary heap.

Because the set D̂ can contain at most O(2C(m, 2)) disks,
constructing the maximum binary heap (to maintain all disks

in D̂) will take time of O(2C(m, 2)). In addition, it spends
time of O(lg 2C(m, 2)) to extract the maximum value from the
heap. Since there are m objects in Ô, it is impossible to do more
than O(m) extracting operations from the heap. Thus, finding
all candidate disks requires time of O(m) ·O(lg 2C(m, 2)). By
taking the sum of the above calculation, we can derive the
overall computation time by

O(C(m, 2)) +O(2C(m, 2)) +O(m) ·O(lg 2C(m, 2)) = O(m2).

4.2 Step 2: Computing Sectors

After calculating D̂, we then cut every disk in D̂ into sectors
such that 1) these sectors are not overlapped with each other,
2) they contain all objects in the disk, and 3) the number of
sectors is minimized. Here, each sector actually points out
where an R&D sensor has to rotate to cover the objects in the
corresponding disk. Thus, the above three objectives guarantee
that we can deploy the minimum number of R&D sensors in

each disk of D̂.
The work of [10] proposes a sector cutting (SC) operation

to compute sectors. It starts by arbitrarily indexing an object
as o1, and adds o1 to a cluster 1. Then, the SC operation
scans other non-indexed objects from o1 in a counterclockwise
direction. Once finding a non-indexed object, it is indexed by
o2. Then, the SC operation decides what cluster o2 should
belong to. Specifically, if ∠o1cjo2 ≤ θ, o2 belongs to cluster
1; otherwise, o2 is added to a new cluster 2, where cj is the
disk’s center. Similarly, suppose that an object is indexed by
oi, and it belongs to cluster k. Then, the next non-indexed
object is indexed by oi+1. If ∠oicjoi+1 ≤ θ, oi+1 belongs
to cluster k; otherwise, it is added to a new cluster k + 1.
For example, three clusters are found in Fig. 5(a). Since the
included angle between cluster 1 and cluster 3 (i.e., the last
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Fig. 5: Two schemes to find sectors in each disk: (a) the SC operation in
[10] and (b) our ASF operation.

cluster) is smaller than θ, the SC operation then starts placing
sectors from cluster 3 in a counterclockwise direction. For each
cluster, the SC operation iteratively places a sector whose right
edge passes the uncovered object with the smallest index, until
all objects in the cluster have been covered. Fig. 5(a) gives an
example, where three sectors A, B, and C are calculated by the
SC operation.

However, the SC operation requires two ‘complete’ rounds
to scan all objects in a disk (one is to cluster objects, and the
other is to place sectors), which is complicated. Therefore,
we propose an anchor-based sector finding (ASF) operation to
reduce the computation cost. Specifically, we first find two
adjacent objects, say, oi and oi+1, such that ∠oicjoi+1 > θ.
In this case, oi+1 will be an anchor. In case that we cannot
find such two objects, we randomly pick one object as the
anchor. Starting from this anchor, we place a sector to let its
right edge pass the anchor. Then, the first uncovered object
(in the counterclockwise direction) will be the new anchor,
and we can place a sector accordingly. We repeat this iteration
until all objects in the disk become covered. Fig. 5(b) shows
an example, where three anchors are found to help place
sectors. Comparing with the SC operation, our ASF operation
does not require to index objects. Thus, the ASF operation
is simpler than the SC operation. Theorem 2 proves that the
ASF operation is an optimal solution. In addition, Lemma 2
analyzes the computation cost of step 2.

Theorem 2. The ASF operation can always find the minimum
number of sectors to cover all objects in each disk.

Proof: The SC operation is shown to be optimal in [10].
Thus, we prove that our ASF operation can find the equal
number of sectors with the SC operation. There are two cases
to be discussed:

Case 1: The included angle between any two adjacent objects is no
larger than θ. Thus, there must be only one cluster in the disk. In
this case, because both the SC and ASF operations start placing
sectors from a random object in a counterclockwise direction,
they must calculate the equal number of sectors for the disk.

Case 2: Some adjacent objects have included angles larger than
θ. Thus, there could be multiple clusters in the disk. If the ASF
operation can always select the first object of a cluster (i.e., the
object with the smallest index in the SC operation) as an anchor
to place sectors, then it means that the ASF operation must find
the same set of clusters with the SC operation. Therefore, we
show that the first object of every cluster in the SC operation
must be also an anchor in the ASF operation. Without the loss
of generality, we assume that the included angle between the
first and last clusters is larger than θ.1 We prove this argument
by contradiction. In particular, suppose that oi and oi+1 are
the last and first objects in two clusters k and k + 1 in the SC
operation, respectively, but oi+1 is not an anchor in the ASF
operation. It means that the ASF operation has found a sector
that covers both objects oi and oi+1. However, since oi and oi+1

belong to different clusters, ∠oicjoi+1 must be larger than θ,
which obviously results in a contradiction. So, the first object
indexed by the SC operation in every cluster must be also an
anchor in the ASF operation. Therefore, the ASF operation has
found the same clusters with the SC operation. In addition,
because the SC and ASF operations place the sectors in each
cluster by the same manner, they must calculate the equal
number of sectors in a disk. Therefore, the ASF operation is
an optimal solution.

Lemma 2. It takes no more than O(2m) time to compute the

sectors of all disks in D̂ by the ASF operation.

Proof: The worst case of the ASF operation occurs when
every two adjacent objects in each disk have an included angle
no larger than θ. In this case, the ASF operation will scan all
objects in each disk once, and then randomly pick one object
to be the first anchor. Then, it places sectors in the disk by
scanning all objects in the counterclockwise direction. Thus,
the ASF operation has to scan all objects in each disk twice

in the worst case. Because each object in Ô is included in at

most one disk in D̂ (by step 1), it means that the total number
of objects scanned by the ASF operation (in one time) will be
m. Therefore, it takes O(m + m) = O(2m) time for the ASF
operation to find all sectors in the worst case.

4.3 Step 3: Placing Sensors

In this step, we iteratively place an R&D sensor to cover some
sectors of a disk. Here, the maximum number of sectors that
can be covered by one R&D sensor depends on the largest δi
value of objects in these sectors. Specifically, the R&D sensor
can rotate to cover at most ⌊1/δmax

i ⌋ sectors, where δmax
i is

the largest δi value of objects covered by the sensor. (How to
relax this assumption will be discussed later.) Therefore, we

1. In fact, that is why the SC operation starts placing sectors from the
last cluster. If the first and last clusters have an included angle no larger
than θ, they are treated as the same cluster in the SC operation.
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Fig. 6: An example of step 3 in the GRSD heuristic, where X , Y , and Z
objects require 0.7-time, 0.5-time, and 0.3-time covered, respectively.

should first deal with those disks containing the objects with
the largest δi value, because they are critical in terms of the
number of sectors that can be covered by each R&D sensor.

To do so, we set the status of each object in Ô to unchecked

again. Then, we select the subset of disks D̂L ⊆ D̂ that have
unchecked objects with the largest δi value. For each disk dj in

D̂L, we calculate the maximum number of unchecked objects
that can be covered by one R&D sensor, which is denoted by
uj . In particular, if dj has more than ⌊1/δi⌋ sectors, we sort all
sectors of dj by the number of unchecked objects and their δi
values in a decreasing order. Thus, uj will be the number of
unchecked objects in the first ⌊1/δi⌋ sectors. Otherwise, uj is
the total number of unchecked objects in dj . We then select the

disk dj in D̂L that has the largest uj value, and deploy an R&D
sensor at its center to cover the sectors accordingly. When there
is a tie, we select the disk that contains the maximum number
of uncovered objects with the largest δi value. Suppose that
the R&D sensor covers k sectors in the disk, where k ≤ ⌊1/δi⌋.
Then, the sensor has to monitor each sector for T/k time in
every period. Also, we set these covered objects to checked.

The above iteration is repeated until all objects in Ô become
checked.

We use the example in Fig. 6 to illustrate the operation in

step 3. Suppose that D̂ = {d1, d2, d3} and the sensing field
contains X , Y , and Z objects, where δX = 0.7, δY = 0.5, and
δZ = 0.3, respectively. By using the ASF operation, there are
11 sectors (denoted by A to K) found in the disks. Then, we
place R&D sensors according to the following iterations:

1) We first check those disks containing X objects, so

D̂L = {d1, d2}. In this case, only sectors A and F have
X objects, and a sensor can cover ⌊1/δX⌋ = ⌊1/0.7⌋ =
1 sector. Since sector F has three objects, but sector
A has two objects, we thus place a sensor s1 on c2 to
cover sector F .

2) Because only d1 remains in D̂L (for X objects), we thus
place a sensor s2 on c1 to cover sector A.

3) We then check the disks containing Y objects, so

D̂L = {d2, d3}. In this case, a sensor can rotate to
cover ⌊1/δY ⌋ = ⌊1/0.5⌋ = 2 sectors. For d2, a sensor
can cover sectors E and G, which totally have three
objects (i.e., u2 = 3). For d3, there are three cases that
a sensor can cover the maximum number of objects
(where u3 = 6):

• Case 1: sectors H and I , with three Y objects.
• Case 2: sectors H and J , with one Y object.
• Case 3: sectors I and J , with four Y objects.

Because u3 > u2, we only consider the three cases
in d3. Here, we choose case 3, because the sensor can
cover the maximum number of Y objects. Therefore,

we place a sensor s3 on c3 to cover both sectors I and
J .

4) Since D̂L = {d2}, we thus place a sensor s4 on c2 to
cover both sectors E and G.

5) We then check the sectors containing Z objects, so
D̂L = {d1, d3}. In this case, a sensor can rotate to
cover ⌊1/δZ⌋ = ⌊1/0.3⌋ = 3 sectors. For d1, a sensor
can rotate to cover sectors B, C , and D, which have
totally three objects (i.e., u1 = 3). On the other hand,
although only two sectors H and K remain in d3, they
contain totally five objects (i.e., u3 = 5). Thus, we place
a sensor s5 on c3 to cover both sectors H and K .

6) Since only d1 remains in D̂L (for Z objects), we finally
deploy a sensor s6 on c1 to cover sectors B, C , and D.

In this example, we totally place six R&D sensors. Besides,
their rotation schedules are presented as follows:

s1 : {(F, T )}, s2 : {(A, T )}, s3 : {(I, T/2), (J, T/2)},

s4 : {(E, T/2), (G,T/2)}, s5 : {(H,T/2), (K,T/2)},

s6 : {(B, T/3), (C, T/3), (D,T/3)}.

We then analyze the time complexity of step 3 in Lemma 3.

Lemma 3. Placing R&D sensors in step 3 spends time of
O(m lgm) in the worst case.

Proof: To iteratively select one disk to be placed with
an R&D sensor, we can construct a maximum binary heap to

maintain all disks in D̂. Each disk dj ∈ D̂ is sorted (in the
heap) based on a two-tuple value (δmax

j , uj), where δmax
j is

the largest δi value in dj , and uj is the maximum number of
uncovered objects in dj that can be covered by one R&D sensor.
A disk di is ‘larger’ than another disk dj if 1) δmax

i > δmax
j or

2) δmax
i = δmax

j and ui > uj . Recall that the set D̂ contains no
more than O(m) disks. Therefore, it takes O(m) time to con-
struct the heap. In addition, the time to extract the maximum
value (i.e., a disk) from the heap will be O(lgm). Since there

are totally m objects in Ô, we will execute no more than O(m)
times of the above extracting operations. Therefore, running
step 3 takes at most O(m)+O(m) ·O(lgm) = O(m lgm) time.

4.4 Step 4: Removing Redundancy

The aforementioned step 3 places R&D sensors based on
the assumption that each sensor can rotate to cover at most
⌊1/δmax

i ⌋ sectors, where δmax
i is the maximum δi value of

objects that the sensor covers. However, this assumption
forces the sensor to waste at least (1 − δmax

i · ⌊1/δmax
i ⌋)T

monitoring time when 1/δmax
i 6= ⌊1/δmax

i ⌋. For example,
supposing that δmax

i = 0.55, then the sensor has to waste
(1−0.55·⌊1/0.55⌋)T = 0.45T monitoring time in every period.
In fact, this assumption restricts each R&D sensor to covering
no more than one sector when δmax

i > 0.5, making its rotatable
ability become useless.2 Therefore, the objective of step 4 is to
relax the above assumption, and exploit the wasting time of
sensors to further save the number of sensors used in each
disk.

In step 4, we check only those disks placed with two or
more R&D sensors, and remove redundant sensors from them.
Our discussion will focus on one such disk, say, da. (Other

2. We will also evaluate the relationship between δmax
i and such wasting

time in Section 5.3.
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Fig. 7: An example of step 4 in the GRSD heuristic, where X , Y , and Z
objects should be 0.8-time, 0.6-time, and 0.55-time covered, respectively.

disks will be handled in the same way.) Suppose that the ASF

operation has found a set of sectors Ŝa in da. We use the

notation ρj to denote whether a sector scj ∈ Ŝa is covered
by a sensor si, where ρj = 1 if scj is covered by si, and ρj = 0
otherwise. Also, let us denote by δscj the maximum δi value of
objects in scj . Then, the occupied monitoring time of si, which
is the minimum time that si has to spend to monitor all of its
objects in da during a period, is defined by

T o

i =
∑

scj∈Ŝa

ρj · δ
sc
j · T. (2)

Therefore, the residual monitoring time of si can be easily de-
rived by

T r

i = T − T o

i .

Then, we say that a sensor si is redundant if

T o

i ≤
∑

{T r

k | for each sensor sk 6= si that covers Ŝa}. (3)

In this case, for each sector scj ∈ Ŝa covered by si, we can
‘combine’ the residual monitoring time of some other sensors
in da (excluding si), so that the length of such combined time
is at least T o

i . In this way, si can be removed, because all of its
sectors have been covered by other sensors.

Fig. 7 presents an example to demonstrate the benefit of
step 4. Suppose that the disk has three sectors and contains X ,
Y , and Z objects, where δX = 0.8, δY = 0.6, and δZ = 0.55,
respectively. According to step 3, three sensors s1, s2, and s3
should be placed on the disk to cover sectors A, B, and C ,
respectively. In this case, their rotation schedules must be

s1 : {(A, T )}, s2 : {(B, T )}, s3 : {(C, T )}.

Obviously, the rotatable ability of R&D sensors is not well
utilized, because every sensor is allowed to cover at most one
sector in each period. In fact, because

T o

1 = 0.8T

< T r

2 + T r

3 = (T − 0.6T ) + (T − 0.55T ) = 0.85T,

sensor s1 is thus redundant. Therefore, according to step 4,
sensors s2 and s3 can respectively spend 0.4T and 0.45T time
to cooperatively cover sector A. In this case, s1 can be removed,
and the rotation schedules of other sensors are updated by

s2 : {(A, 0.4T ), (B, 0.6T )}, s3 : {(A, 0.45T ), (B, 0.55T )},

which takes advantage of sensor rotation to save the number
of R&D sensors required in the disk. It is noteworthy that two

sensors cannot simultaneously cover the same sector (in other
words, their monitoring time for the same sector cannot have
any overlap). This is to guarantee that the length of combined
residual monitoring time is sufficient to satisfy the coverage
demands of all objects in that sector. To do so, we should
avoid aligning the period boundary of each sensor. Specifically,
suppose that two sensors si and sj cover the same sector sck.
Then, we can allow si to start its period by monitoring sck
first. After si finishes monitoring sck, sj can start its period
by monitoring sck. In this way, we can prevent both si and sj
from simultaneously monitoring sck. For example, Fig. 7 gives
the new rotation schedules of s2 and s3 according to step 4.
Lemma 4 presents the computation cost of step 4.

Lemma 4. Assume that the maximum number of objects in
each disk is α > 1. Then, it takes no more than O(αm)
time to calculate all redundant R&D sensors.

Proof: Step 4 checks only those disks placed with mul-
tiple sensors. The worst case occurs when we have to check

all disks in D̂. Therefore, we assume that every disk contains

α > 1 objects, so D̂ will have m/α disks. For every disk, the
ASF operation cuts it into α sectors (i.e., each sector contains
one object). By step 3, we place at most α R&D sensors in
the disk, where each sensor covers one sector. In this way, it
takes O(α · α) time to calculate the occupied monitoring time
of all sensors in the disk by Eq. (2), because each sensor has to
examine all of the α sectors in the disk. According to Eq. (3),
each sensor will compute the sum of the occupied monitoring
time of other (α − 1) sensors, in order to check whether the
sensor is redundant or not. Thus, the time to find redundant
sensors in one disk will be O(α2 + α(α − 1)). Because there
are m/α disks in D̂, the overall time complexity to calculate
all redundant sensors will be

m

α
·O(α2 + α(α− 1)) = O(αm).

4.5 Step 5: Connecting Nodes

In the above steps, we only deploy R&D sensors to cover all

objects in Ô, but they may not necessarily form a connected
network. Therefore, we have to add additional relay nodes to
guarantee the network connectivity, where a relay node is the
(stand-alone) communication module of a sensor3. Here, we
borrow the idea from [28] to place relay nodes. In particular,
we construct a minimum spanning tree to connect all R&D sen-
sors. Then, for every tree edge whose length, say, qi is longer
than the communication distance rc, we add (⌈qi/rc⌉−1) relay
nodes on that edge, where any two adjacent relay nodes are
separated by a distance of rc. In this way, we can connect the
two R&D sensors located on the both end-points of the tree
edge by using the minimum number of relay nodes. We remark
on the advantages of using relay nodes. First, since a relay
node is cheaper than an R&D sensor, the network deployment
cost can be reduced. Second, our heuristic allows an arbitrary
relationship between rs and rc, because it deals with the
coverage and connectivity problems separately. Lemma 5 gives
the computation cost of step 5, and Theorem 3 presents the
total computation complexity of our GRSD heuristic.

Lemma 5. Adding relay nodes by step 5 takes time of O(m2).

3. This is feasible since many sensor platforms such as MICAz Mote [33]
allow a sensor to be separated into sensing and communication modules.
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Proof: Because |Ô| = m, we will deploy at most O(m)
R&D sensors to cover all objects. To construct a minimum
spanning tree to connect all R&D sensors, we can employ
Prim’s algorithm. It has been shown in [34] that the com-
putation cost of Prim’s algorithm is O(|E| + |V| · lg |V|) by
using Fibonacci heaps, where V denotes the vertex set while
E represents the edge set. By viewing each R&D sensor as a
vertex in V, we have |V| = O(m). Besides, there are at most
m(m − 1)/2 edges by connecting any pair of sensors, so we
have |E| = O(m(m− 1)/2) = O(m2). Therefore, it spends

O(|E|+ |V| · lg |V|) = O(m2 +m lgm) = O(m2)

time to construct the minimum spanning tree. In addition, the
number of edges in the minimum spanning tree will be |V| −
1 = m − 1. Therefore, it means that we have to check at most
(m−1) tree edges (and place relay nodes if necessary). In sum,
the computation cost to add relay nodes in step 5 will be

O(m2) +O(m− 1) = O(m2).

Theorem 3. Given m objects to be covered, the GRSD heuristic
has the computation complexity of O(m2).

Proof: According to Lemmas 1 ∼ 5, we can derive the
computation complexity of GRSD by

O(m2) +O(2m) +O(m lgm) +O(αm) +O(m2).

Since α is the maximum number of objects in a disk, we have
α < m. Therefore, the above equation can be simplified to
O(m2) +O(αm) = O(m2).

5 SIMULATION STUDY

We develop a Java-based simulator to measure the perfor-
mance of our GRSD heuristic in terms of the number of nodes
deployed. It simulates a square-shaped sensing field whose
length is 400. There are three types of static objects, namely
X , Y , and Z objects, which need to be δX -time, δY -time, and
δZ -time covered, respectively. Two δ-settings are applied to the
simulator as follows:

• δ-setting 1: δX = 0.6, δY = 0.5, and δZ = 0.3.
• δ-setting 2: δX = 0.6, δY = 0.3, and δZ = 0.25.

In both δ-settings, we let δX be 0.6, so an R&D sensor can
cover only one sector that contains X objects. In this case,
most existing methods (discussed in Section 2.2) will force
the R&D sensor to stop rotating, and thus the sensor has to
give up 1 − δX = 0.4 portion of its monitoring time. We
use this δX value to demonstrate the benefit of exploiting the
residual monitoring time of R&D sensors (to cooperatively
cover objects) in our GRSD heuristic. Furthermore, we use
lower δY and δZ values in δ-setting 2 to observe whether
smaller δi values of other objects (in the existence of X objects)
can help significantly reduce the number of deployed sensors.
In particular, an R&D sensor can rotate to cover one more
sector containing only Y or Z objects in δ-setting 2 (compared
with that in δ-setting 1).

We also consider two object-placement scenarios to deter-
mine the positions of objects in the sensing field:

• Even object-placement (EOP) scenario: The number of
X , Y , and Z objects are equal. All objects are randomly
placed in the sensing field by using the uniform distri-
bution.

• Uneven object-placement (UOP) scenario: The per-
centages of X , Y , and Z objects are 25%, 25%, and
50%, respectively. The sensing field is cut into two equal
halves. X objects only appear in the left part, while
Y objects only appear in the right part. Z objects are
randomly placed in the whole sensing field by using
the uniform distribution.

For each R&D sensor, we set rs = 15 and rc = 30. The number
of objects and the sector angle θ are varied in the simulator to
measure their effect.

We compare our GRSD heuristic with the MCD and DOD
methods in [10], whose goal is to deploy the minimum number
of R&D sensors to make every object be δ-time covered. Both
MCD and DOD compute a set of disks to cover all objects.
Then, MCD iteratively deploys an R&D sensor in the disk
that contains the maximum number of objects, until all objects
are δ-time covered. On the other hand, DOD seeks to deploy
sensors to cover the joint sectors of overlapped disks. How-
ever, MCD and DOD are designed for homogeneous objects.
Therefore, we also measure the performance of our GRSD
heuristic without the improvement of step 4 for comparison. We
call this method GRSD-FT, where ‘FT’ means ‘fixed (monitor-
ing) time’. Without step 4, each R&D sensor can rotate to cover
only ⌊1/δmax

i ⌋ sectors. Each sector has the monitoring time of
δmax
i · T , where δmax

i is the largest δi value of objects that the
sensor covers. Step 4 relaxes this assumption, and thus allows
sensors to exploit its residual monitoring time to cooperatively
cover some sectors. By comparing GRSD with GRSD-FT, we
can estimate the effect of step 4. In addition, we define the
node saving ratio f(x) of GRSD to an x-method by:

(node # by x-method)− (node # by GRSD)

node # by x-method
× 100%,

where ‘node #’ means the number of deployed nodes, and the
x-method can be MCD, DOD, or GRSD-FT. This ratio helps us
evaluate the performance improvement by GRSD.

5.1 Effect of The Number of Objects

We first measure the effect of different number of objects on
the number of nodes deployed by MCD, DOD, GRSD-FT, and
GRSD. The number of objects is ranged from 100 to 500. We set
the sector angle θ to 30 degrees, and evaluate 1) the number
of sensors required to cover all objects and 2) the total number
of nodes (including sensors and relay nodes) used to construct
the whole network.

Fig. 8(a)–(d) show the number of nodes deployed by MCD,
DOD, GRSD-FT, and GRSD by changing the number of objects
in the EOP scenario. Apparently, all methods require more
R&D sensors when there are more objects. In this case, one
may require more relay nodes to connect these sensors. Since
MCD and DOD consider homogeneous objects with the same
δ value, they have to operate based on δX , which is the largest
δi value of all objects. However, δX is set to 0.6 in δ-settings 1
and 2. This forces an R&D sensor to cover at most ⌊1/0.6⌋ = 1
sector in MCD and DOD. That is why MCD and DOD deploy
the equal number of nodes in both δ-settings. In this case, DOD
works better than MCD, because it can save more sensors by
taking advantage of disk overlap.

On the contrary, GRSD-FT and GRSD break the above
δX restriction, and allow R&D sensors to cover different
number of sectors according to their covered objects. This
property significantly reduces the number of sensors used to
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(a) δ-setting 1, R&D sensors (EOP)
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(b) δ-setting 1, total nodes (EOP)
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(c) δ-setting 2, R&D sensors (EOP)
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(d) δ-setting 2, total nodes (EOP)
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(e) δ-setting 1, R&D sensors (UOP)
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(f) δ-setting 1, total nodes (UOP)
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(g) δ-setting 2, R&D sensors (UOP)
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Fig. 8: Comparison on the number of nodes deployed by MCD, DOD, GRSD-FT, and GRSD by changing the number of objects: (a)–(d) in the EOP
scenario and (e)–(h) in the UOP scenario.

meet the δi-covered requirement of objects. With the help of
step 4, GRSD can combine the residual monitoring time of
multiple sensors to cover the same sector, thereby removing
unnecessary sensors. Therefore, our GRSD heuristic always
requires the minimum number of sensors to cover all objects,
as compared with other three methods. It can be observed
that both GRSD-FT and GRSD save more nodes in δ-setting
2 (than δ-setting 1), because sensors are able to cover more
sectors with Y and Z objects. For GRSD-FT, each sensor covers
at most ⌊1/0.5⌋ = 2 and ⌊1/0.3⌋ = 3 sectors containing Y
and Z objects in δ-setting 1, but it can cover ⌊1/0.3⌋ = 3 and
⌊1/0.25⌋ = 4 sectors containing Y and Z objects in δ-setting 2,
respectively. For GRSD, smaller δY and δZ values in δ-setting 2
mean that sensors can remain more residual monitoring time,
which has a larger opportunity to allow multiple sensors to
cooperatively cover the same sector.

On the average, in δ-setting 1, GRSD saves 30.65%, 27.06%,
and 10.58% of R&D sensors, and 20.27%, 17.86%, and 7.98%
of all nodes compared with MCD, DOD, and GRSD-FT, re-

spectively. In δ-setting 2, GRSD saves 38.18%, 34.97%, and
16.22% of R&D sensors, and 26.45%, 24.23%, and 11.88% of all
nodes compared with MCD, DOD, and GRSD-FT, respectively.
Notice that GRSD/GRSD-FT require more relay nodes than
MCD and DOD.4 The reason is that GRSD/GRSD-FT deploy
fewer R&D sensors than MCD and DOD, and these sensors
may have distances more than rc. In this case, more relay nodes
are used to connect all sensors. Explicitly, a larger rc value can
help reduce the number of relay nodes.

Fig. 8(e)–(h) present the number of nodes deployed by
MCD, DOD, GRSD-FT, and GRSD by changing the number of
objects in the UOP scenario. When there are more objects, each
method requires more nodes to construct the network. Both
MCD and DOD deploy the similar number of nodes in the
UOP scenario compared with that in the EOP scenario, because
they highly depend on the δX value. GRSD-FT and GRSD, on
the other hand, save more R&D sensors in the UOP scenario

4. GRSD and GRSD-FT require the equal number of relay nodes since
step 4 of GRSD only removes redundant sensors in the same disk.
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due to two reasons. First, there are around 33.3% and 50% of
Z objects (which has the smallest δi value) in the EOP and
UOP scenarios, respectively. This allows sensors to cover more
sectors in the UOP scenario. Second, X objects only appear in
the left part of the sensing field in the UOP scenario. In this
case, GRSD-FT and GRSD can use fewer sensors to cover the
objects in the right part of the sensing field.

On the average, in δ-setting 1, GRSD saves 36.02%, 32.37%,
and 10.78% of R&D sensors, and 24.75%, 22.03%, and 7.90% of
all nodes compared with MCD, DOD, and GRSD-FT, respec-
tively. In δ-setting 2, GRSD saves 40.89%, 37.50%, and 11.97%
of R&D sensors, and 28.80%, 26.23%, and 8.61% of all nodes
compared with MCD, DOD, and GRSD-FT, respectively. This
verifies the effectiveness of GRSD in the UOP scenario.

From Fig. 8, we can have the following observations. First,
increasing the number of objects has great impact on the
number of nodes used to construct the network. Our GRSD
heuristic always requires the minimum number of sensors to
cover all objects. Second, the performance of MCD and DOD
are dominated by the largest δi value (i.e., δX ), so changing
other δi values and the placement of objects may have less
effect (when δX does not change). Third, using smaller δY
and δZ values or altering the object placement can significantly
improve the performance of both GRSD-FT and GRSD.

5.2 Effect of The Sector Angle

We then evaluate the effect of different sector angles θ on the
number of R&D sensors deployed by MCD, DOD, GRSD-FT,
and GRSD. There are 200 and 400 objects placed in the sensing
field. Beginning from 120 degrees, θ is gradually decreased by
15 degrees, until it reaches 15 degrees. Since the θ value decides
the number of sectors in each disk, but it does not affect the
number of relay nodes, we only estimate the number of R&D
sensors in this experiment.

Fig. 9 presents the number of R&D sensors deployed by
MCD, DOD, GRSD-FT, and GRSD under different sector an-
gles θ. Obviously, a smaller θ value means that a sensor covers
a narrower range, so fewer objects can be covered. In this case,
all methods require more sensors as θ decreases. Generally
speaking, we have MCD > DOD > GRSD-FT > GRSD in terms
of the number of sensors, which demonstrates that GRSD is an
outstanding deployment scheme compared with other three
methods. In addition, we have the following two observations
from Fig. 9:

1) The node saving ratios f(MCD) and f(DOD) signifi-
cantly grow when the θ value decreases. The reason
is that both MCD and DOD determine the number
of sectors covered by a sensor according to δX . In
this experiment, we have δX = 0.6, so each sensor
is allowed to cover at most one sector. In this case, a
smaller sector angle θ implies that each disk could be
cut into more sectors, thereby making MCD and DOD
deploy more sensors to cover objects.

2) Changing the θ value has slight effect on the
node saving ratio f(GRSD-FT). In the EOP scenario,
f(GRSD-FT) grows when θ diminishes in the δ-setting
1 (referring to Fig. 9(a) and (c)). However, the ratio
decreases as θ decreases in the δ-setting 2 (referring
to Fig. 9(b) and (d)). The reason to cause such phe-
nomenon is that GRSD-FT allows sensors to cover
more sectors containing only Y and Z objects in δ-
setting 2. On the other hand, f(GRSD-FT) grows as
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Fig. 10: Effect of different δi values on the maximum number of sectors
covered by an R&D sensor and its minimum residual monitoring time.

θ reduces in the UOP scenario (referring to Fig. 9(e)–
(h)). In this scenario, there is a higher opportunity that
GRSD can find more redundant sensors in the right
part of the sensing field (because this part contains
only Y and Z objects), and remove them accordingly.

5.3 Effect of δi Values

In MCD, DOD, and GRSD-FT, the maximum number of sectors
covered by one R&D sensor depends on the δmax

i value (i.e.,
the maximum δi value of objects). Besides, the sensor may
remain some residual monitoring time when 1) the sensor
covers fewer than ⌊1/δmax

i ⌋ sectors or 2) ⌊1/δmax
i ⌋ 6= 1/δmax

i .
Fig. 10 shows the effect of different δmax

i values on the
maximum number of sectors covered by an R&D sensor and
its minimum residual monitoring time (when the sensor has
covered ⌊1/δmax

i ⌋ sectors). In this experiment, starting from
δmax
i = 0.1, we gradually increase δmax

i by 0.05, until it
reaches 1. From Fig. 10, we can observe that the maximum
number of sectors covered by a sensor drastically decreases as
δmax
i grows, especially when δmax

i < 0.35. When δmax
i > 0.5,

each R&D sensor can cover only one sector. In this case, R&D
sensors become static, so the performance of MCD, DOD,
and GRSD-FT significantly decreases. Furthermore, except for
certain δmax

i values (specifically, 0.1, 0.2, 0.25, 0.5, and 1), R&D
sensors must have positive residual monitoring time. When
δmax
i = 0.55, a sensor even wastes around half of its monitor-

ing time (i.e., the residual monitoring time is 0.45T ) in every
period. That is why we develop step 4 in our GRSD heuristic
to well utilize such residual monitoring time. By combining
the residual monitoring time of two or more R&D sensors in
the same disk, GRSD can check for redundant sensors, and
remove them to save the overall deployment cost.

5.4 Effect of Sparse Objects

The experiments in both Section 5.1 and Section 5.2 consider a
large-scale scenario, where there are 100 ∼ 500 objects in the

sensing field. In this case, some disks in D̂ may contain a large

number of objects in Ô, so different deployment schemes can
employ fewer R&D sensors to cover the objects in these disks.
In contrast with the previous experiments, we evaluate the
effect of sparse objects on the number of R&D sensors deployed
in this section. Specifically, the sensing field contains only 50
objects. These objects are sparsely distributed over the sensing
field, such that each disk covers 2 ∼ 4 objects. In addition,
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(b) δ-setting 2, 200 objects (EOP)
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(c) δ-setting 1, 400 objects (EOP)
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(d) δ-setting 2, 400 objects (EOP)
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(e) δ-setting 1, 200 objects (UOP)
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(f) δ-setting 2, 200 objects (UOP)
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(g) δ-setting 1, 400 objects (UOP)
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Fig. 9: Comparison on the number of R&D sensors deployed by MCD, DOD, GRSD-FT, and GRSD by changing the sector angle θ: (a)–(d) in the EOP
scenario and (e)–(h) in the UOP scenario.

every object in Ô appears in only one disk, which means that
disks have no overlap with each other.

Fig. 11 presents the experimental result. Because there is
no disk overlap, DOD will work similarly with MCD. Thus,
both methods deploy the similar number of sensors to cover
all objects. Besides, different δ settings have almost no effect
on MCD and DOD, because their performance depends on δX
(whose value is 0.6 in both δ settings). However, in the UOP
scenario, there is a higher possibility that the two methods can
use fewer sensors to cover Y and Z objects in the right part of
the sensing field. Therefore, MCD and DOD can work better in
the UOP scenario, as compared with the EOP scenario. On the
other hand, by considering object heterogeneity, GRSD-FT and
GRSD require fewer R&D sensors to achieve the temporal cov-
erage of objects. Our GRSD heuristic can always have the best
performance even though the objects are sparely located in the
sensing field. The reason is that our heuristic can adaptively
adjust the rotation schedules of sensors by exploiting their
residual monitoring time. From Fig. 11, we can observe that
our GRSD heuristic can further save the network deployment

cost in the UOP scenario and δ-setting 2. This observation is
the same with that in Section 5.1.

6 CONCLUSION

Given a set of heterogeneous objects, this paper formulates a
GRSD problem to determine the positions and rotation sched-
ules of R&D sensors, in order to provide temporal coverage
for these objects. The GRSD problem is proven to be NP-hard,
so we develop an efficient heuristic whose objective is to save
the network deployment cost. Our GRSD heuristic finds a set
of disks to cover all objects, and deploys R&D sensors based
on these disks to meet the δi-time covered demand of each
object. Then, it combines the residual monitoring time of R&D
sensors in the same disk to make them cooperatively monitor
objects. Thus, redundant sensors can be further removed.
Simulation results show that the GRSD heuristic significantly
reduces the number of R&D sensors under different scenarios,
as compared with the MCD, DOD, and GRSD-FT methods.
This demonstrates the effectiveness of the proposed GRSD
heuristic in terms of the network deployment cost.
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