
IEEE TRANSACTIONS ON MOBILE COMPUTING 1

A Two-Phase Dispatch Heuristic to Schedule the
Movement of Multi-Attribute Mobile Sensors in a

Hybrid Wireless Sensor Network
You-Chiun Wang

Abstract —The paper considers a hybrid wireless sensor network with static and mobile sensors, where each static sensor can detect only one
attribute of event while a mobile sensor can analyze multiple attributes of events. Static sensors monitor the environment and report where
events appear. Mobile sensors then move to these event locations to conduct more in-depth analysis. A critical issue is how to schedule
the traveling paths of mobile sensors so as to extend their lifetime. We formulate this issue as a multi-round multi-attribute sensor dispatch
problem and prove it to be NP-complete. Then, we develop a two-phase dispatch heuristic that adopts the concepts of Pareto optimality and
spanning-tree construction. Our heuristic allows arbitrary numbers of mobile sensors and event locations and tries to reduce and balance the
energy consumption of mobile sensors in each round. Through simulations, we verify the effectiveness of our heuristic. The paper contributes
in defining a new sensor dispatch problem and developing an energy-efficient solution to the problem.

Index Terms —energy saving, mobile sensor, mobility management, Pareto optimality, wireless sensor network.

✦

1 INTRODUCTION

W ITH the development of MEMS and robotic techniques,
mobile sensors are realized by installing sensing devices

on mobile platforms. Hybrid wireless sensor networks (WSNs),
which consist of such mobile sensors and conventional static
sensors, open new frontiers of WSN research. Static sensors
form a backbone network to support environmental monitor-
ing. Mobile sensors have more powerful sensing and comput-
ing capabilities. They can move to specific locations to carry
out missions such as replacing broken nodes or analyzing
suspicious events. Adding mobility to a WSN significantly
improves its ability and reduces the deployment and main-
tenance costs [1]. Applications using hybrid WSNs have been
proposed in [2]–[4].

In this paper, we are interested in the scenario of dispatch-
ing “multi-attribute” mobile sensors to the locations of events
appearing in the sensing field. Static sensors are responsible
for reporting where suspicious events appear. Mobile sensors
then move to these event locations to conduct in-depth analysis.
Given a set of attributes A, each event reported by static
sensor(s) is associated with one attribute in A. Mobile sensors
are equipped with multiple sensing devices, so each of them
can analyze multiple attributes of events. We thus call them
multi-attribute mobile (MAM) sensors. However, MAM sensors
may have different attributes. When an event of attribute
ai ∈ A is reported by static sensor(s), only the MAM sensors
with attribute ai can be dispatched to analyze that event.

The above scenario has two characteristics. First, MAM
sensors are heterogeneous. Second, concurrent events may arise in
the sensing field. In fact, [5] points out that network and device
homogeneity is an unrealistic assumption in most practical
applications. A number of research efforts also consider hetero-
geneous mobile sensors and concurrent events. For example,
[6] considers two types of underwater vehicles equipped with

Y.-C. Wang is with the Department of Computer Science and Engineer-
ing, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan. E-mail:
ycwang@cse.nsysu.edu.tw

different marine sensors. The first type of vehicles track the
positions and trajectories of unknown underwater objects.
Then, they pass the information to the second type of vehicles
to classify such underwater objects. In [7], N heterogeneous
sensors installed on mobile platforms are used to detect, track,
and pursue M moving targets. This explicitly means that
M concurrent events arise in the network. The work of [8]
considers that a parent mobile sensor pilots a set of child
mobile sensors to visually map an environment, where the
parent sensor is equipped with a laser scanner while each child
sensor has a color camera. These research efforts motivate us to
consider the problem of dispatching MAM sensors in a hybrid
WSN.

Because MAM sensors are battery-powered and moving
energy is critical for them [9], we aim at path efficiency of
MAM sensors to save their energy. Assume that events may
be kept for a while after their occurrence. Since events may
appear anytime and anywhere [10], we suggest dividing time
into rounds and then scheduling the traveling paths of MAM
sensors in a round-by-round manner. Doing it this way may
have two advantages. First, we need not frequently calculate
how to dispatch MAM sensors, so the computation overhead
is reduced. Second, we can develop a sophisticated dispatch
algorithm, rather than designate one MAM sensor to analyze
every fresh event by a greedy (but inefficient) approach.

This paper proposes an MAM sensor dispatch problem, which
determines how to assign MAM sensors to visit event locations
in every round such that the system lifetime is maximum.
Here, the system lifetime is defined by the number of rounds
until some event locations cannot be visited by any MAM
sensor with the correct attribute due to lack of energy. We
prove that even if future event locations can be predicted, the
MAM sensor dispatch problem is still NP-complete. To solve
this problem, we develop a two-phase heuristic whose idea
is to reduce and balance the moving energy spent by MAM
sensors in every round. In particular, phase 1 adopts the Pareto
optimal concept to calculate one-to-one assignments between

2 IEEE TRANSACTIONS ON MOBILE COMPUTING

MAM sensors and event locations. Phase 2 then proposes a
spanning-tree construction algorithm for MAM sensors to visit
unassigned event locations. Simulation results show that our
heuristic can extend the system lifetime compared with other
schemes.

The rest of this paper is organized as follows: Section 2
reviews related work. Section 3 defines the MAM sensor
dispatch problem and gives a divide-and-conquer solution.
Section 4 proposes our two-phase dispatch heuristic. Exper-
imental results are presented in Section 5. We conclude the
paper and outline some future work in Section 6.

2 RELATED WORK

The subject of node mobility in mobile ad hoc networks
(MANETs), multi-robot systems (MRSs), and WSNs have been
widely investigated. Below, we discuss mobility management
in MANETs, task allocation in MRSs, and sensor maneuver in
WSNs. Then, we study the variations of the sensor dispatch
problem in the literature.

2.1 Mobility Management in MANETs

Mobility management has received substantial attention in
MANETs. Many studies [12]–[14] aim at topology control or
network communication under frequent node mobility, where
nodes may move arbitrarily or following some models [15].
Unlike the assumption in these studies, node mobility in
a hybrid WSN could be controllable and even coordinated
[1]. In a delay-tolerant network (DTN), nodes may sometimes
be disconnected, so packets must be delivered passively by
waiting for the opportunity to get connected to the destination
through node mobility. DTN can be viewed as a special case of
MANET and some research efforts [16]–[18] investigate how to
modify the nodes’ trajectories to increase such an opportunity.
Nevertheless, they aim at the communication issue, which is
different from the objective of this paper.

2.2 Task Allocation in MRSs

MRS is one research topic in robots, which adopts multiple
cooperative robots to accomplish a specific task in the uncer-
tain environment [19]. To achieve this goal, several studies
[20]–[22] develop multi-agent reinforcement learning schemes to
train robots to learn the mappings between their statuses and
actions. Obviously, these studies have different objectives from
our paper.

Multi-robot task allocation, on the other hand, considers
assigning multiple tasks to a team of mobile robots. Each task
indicates a target location required to be visited by one robot,
and the objective is to minimize the total cost (for example, the
moving distance of all robots). This problem is shown to be
NP-hard [23] and market-based approaches [24] are widely used
to solve it. Specifically, robots compete in auctions for each task
and the robot that wins the auction can visit the target location.
Two types of auctions are considered. In single-item auctions
[23], [25], [26], each robot submits a bid, and the one with the
highest bid wins the auction. Combinatorial auctions [27], [28]
are more complex, where multiple items are offered and each
robot can bid on any combination of the subsets of these items.
This allows robots to explicitly express the synergy among
items. The multi-robot task allocation problem is similar to the
sensor dispatch problem, and using auctions allows robots to
bid for the target locations in a decentralized way. However,

using auctions may not consider balancing the overall loads
among robots, while our solution keeps the moving distances
of MAM sensors as balanced as possible.

2.3 Sensor Maneuver in WSNs

Several research efforts investigate how to move mobile sen-
sors to adjust the network topology for some purposes. For
example, [29] moves sensors to approximate the distribution
of events and maintain complete coverage of the sensing field.
After identifying coverage holes, [30] discusses how to move
sensors to fill these holes. Both [31] and [32] adopt virtual
forces among sensors to make them evenly distribute over the
sensing field. After computing the locations to place sensors,
[33], [34] investigate how to dispatch sensors to these locations
in an energy-efficient manner. This issue is similar to the sensor
dispatch problem, but they consider minimizing the energy
consumption of sensors in only one round.

Mobile sensors have also been considered to track moving
objects. Given targets in a mobile WSN, [35] addresses how to
move sensors to improve the quality of tracking a target, while
avoid potential breakage of network connectivity and reduce
the loss of sensing coverage due to sensor movement. In [36],
static sensors identify the location of a tracking object and then
multiple mobile sensors will move to that location to provide
more in-depth detection. The accuracy of object detection is
improved by the measurement of mobile sensors that have
higher signal-to-noise ratios after movement. The work of
[37] classifies mobile sensors into leaders and followers, where
leaders are responsible for target localization and pursuit while
followers take charge of maintaining network connectivity and
team formation. However, the above studies aim at increas-
ing the accuracy to detect objects and maintaining network
connectivity, while our paper focuses on reducing the energy
consumption of mobile sensors to extend their lifetime.

2.4 Variations of The Sensor Dispatch Problem

In the literature, some variations of the sensor dispatch prob-
lem have been proposed. The work in [38] considers dis-
patching sensors to some destinations in a one-to-one manner.
When a sensor si is asked to visit a destination lj , it does
not directly move to lj . Instead, si organizes a sequence
(si, sx1

, sx2
, · · · , sxk

, lj) such that cascaded movements, si →
sx1

, sx1
→ sx2

, · · · , and sxk
→ lj , take place to balance

the energy consumption among sensors. In [39], static sensors
detecting events invite mobile sensors to visit them to provide
more in-depth analysis. The mobile sensor which has a shorter
moving distance and more energy, and whose leaving only
causes a smaller uncovered hole, will be invited. The study in
[40] dispatches mobile sensors to improve the sensing coverage
of a hybrid WSN. Static sensors estimate the uncovered holes
in their vicinity and then use the hole sizes to bid for mobile
sensors. Given event locations in each round, [41] considers
dispatching mobile sensors to visit these event locations in a
round-by-round manner such that the number of rounds is
maximum. The idea is to minimize the energy consumption
of all mobile sensors while balancing their moving costs in
every round. However, these studies assume that events are
homogeneous (i.e., |A| = 1). On the contrary, our work con-
siders heterogeneous events and mobile sensors with multiple
attributes. Therefore, a more challenging problem arises in the
research of sensor dispatch.

A TWO-PHASE DISPATCH HEURISTIC TO SCHEDULE THE MOVEMENT OF MULTI-ATTRIBUTE MOBILE SENSORS IN A HYBRID WIRELESS SENSOR NETWORK 3

3 MAM SENSOR DISPATCH PROBLEM

We first formally define the MAM sensor dispatch problem
and prove its NP-complete property, and then give an intuitive
solution by using the divide-and-conquer concept.

3.1 Problem Definition

We are given a set of attributes A and a hybrid WSN consisting
of static and MAM sensors. Sensors can use GPS (global
positioning system) or some localization schemes [42] to obtain
their own locations. Static sensors form a connected network
that fully covers the sensing field. They cooperate to identify
events of the same attribute that could appear anywhere in the
sensing field1. Thus, each event reported by static sensor(s) is
associated with exact one attribute in A. In addition, we make
no assumption on the distribution of event locations.

MAM sensors are equipped with multiple sensing devices
and can visit event locations to perform more in-depth anal-
ysis. However, they may have different attributes. When an
event of attribute ai ∈ A is reported, we can only dispatch
an MAM sensor with attribute ai to analyze that event. In
this case, the MAM sensor is said to have the correct attribute
for the event. To guarantee that we can find MAM sensors to
visit event locations, the union of all MAM sensors’ attributes
should be equal to A. We assume that the moving speed of
each MAM sensor and its energy cost to move a unit distance
are both constants. In addition, the sensing field is considered
as obstacle-free, so MAM sensors can directly move to their
destinations via beelines2.

For computation efficiency, we divide time into repetitive
rounds. Each round is further divided into three periods:

• Reporting period: Static sensors report the events that
have been detected but not yet processed in the period.
Its length could depend on the frequency of event oc-
currence. This frequency can be learned by the statistics
of event occurrence in previous rounds and used to
adjust the length of the next reporting period.

• Commanding period: The sink then computes how to
assign MAM sensors to visit the events received in
the reporting period, and transmits the assignment to
the corresponding MAM sensors in the commanding
period. Obviously, its length depends on the network
diameter.

• Dispatching period: In this period, MAM sensors move
to their assigned event locations and perform analy-
sis accordingly. The length of the dispatching period
should include both the moving time of MAM sensors
and the time spent to analyze events. It can be calcu-
lated by the sink in advance3 and announced in the
previous commanding period. In case that some MAM
sensors are assigned with too many event locations or
they have to spend a lot of time to analyze certain
events, resulting in the length of the current round
exceeding a maximum threshold, the sink can delete
some event locations and put them in the next round
for scheduling.

1. Refer to [39] for possible solutions.
2. Some studies [33], [43] discuss how to move sensors or robots in a

sensing field with obstacles. They can help relax this assumption.
3. This can be achieved because the sink knows the locations and

attributes of events from the information collected in the reporting period.
Besides, the time spent to analyze events depends on the hardware
capability and can be known beforehand.

a1

l0

a3

lk'+1

s1 with

attributes {a1, a2}

s2 with

attributes {a2, a3}
a2

l1

a2

l2

a2

lk'-1

a2

lk'

...

u(x
1)

u(x2)

u(x
k’-1)

u(x
k’)

u(x
1)

u(x2)

u(xk’-1
)

u(x
k’
)

Fig. 1: An instance used to reduce the partition problem to the MSDD
problem.

Our discussion aims at how to dispatch MAM sensors
in each round. Specifically, given a set of m MAM sensors
S = {s1, s2, · · · , sm} and a set of n event locations L =
{l1, l2, · · · , ln} in a round, the objective is to assign each MAM
sensor si ∈ S a dispatch schedule Di that contains a sequence of
event locations. Obviously, the union of event locations in all
dispatch schedules should be equal to L. Let Di[j] be the jth
location in Di and ei be the current energy of si. To complete
si’s dispatch schedule, the consumed energy is formulated as
follows:

f(Di) = ecost ×



d(si,Di[1]) +

|Di|−1
∑

j=1

d(Di[j],Di[j + 1])



 ,

where ecost is the energy cost for an MAM sensor to move one
unit distance, |Di| is the number of event locations in Di, and
d(·, ·) denotes the distance between two locations. Obviously,
any dispatch schedule of si should satisfy that ei ≥ f(Di).
In addition, we are given si’s initial energy einiti in round
zero. Considering that MAM sensors are not rechargeable, our
goal is to schedule their traveling paths such that the system
lifetime is maximum.

Below, we prove that the MAM sensor dispatch problem is
NP-complete even if the event locations in the future rounds
are known in advance. To do so, the MAM sensor dispatch
problem is formulated as a decision problem in Definition 1.

Definition 1. Given a set of MAM sensors S and a sequence
of k event location sets, the MAM sensor dispatch decision
(MSDD) problem determines whether there exists a feasible
k-round schedule for S (in other words, the system lifetime
has exact k rounds).

Theorem 1. The MSDD problem is NP-complete.

Proof: We first prove that the MSDD problem belongs to
NP. Given an MSDD problem instance and a k-round schedule
for S , we can verify whether the schedule is valid or not in
polynomial time. Therefore, the part is proved.

Then, we reduce an NP-complete problem, the partition
problem [44], to the MSDD problem. Given a finite set X where
each element xi ∈ X is assigned with a value u(xi), the
partition problem determines whether X can be divided into
two subsets such that the sums of their values are equal.

Let k = 2k′ and X = {x1, x2, · · · , xk′} be an instance of
the partition problem. We then construct an MSDD problem
instance shown in Fig. 1. In the beginning, two MAM sensors
s1 and s2 are located at l0 and lk′+1, respectively. Each of

them has initial energy of
∑k′

i=1
u(xi). Let A = {a1, a2, a3}.

MAM sensors s1 and s2 have attributes {a1, a2} and {a2, a3},
respectively. For each xi ∈ X , we construct a location li such

4 IEEE TRANSACTIONS ON MOBILE COMPUTING

that the energy required to move from both l0 and lk′+1 to
li is u(xi). Then, let us consider a problem instance with
2k′(= k) rounds, where in every (2i − 1)th round one event
of attribute a2 appears at li, and in every (2i)th round one
event of attribute a1 appears at l0 and one event of attribute
a3 appears at lk′+1, i = 1..k′. Obviously, the construction of
this problem instance requires only polynomial time. We then
prove that X has a solution if and only if the MSDD problem
has a feasible k-round schedule.

Suppose that there exists a feasible k-round schedule to the
MSDD problem. The schedule must dispatch one MAM sensor
to an event location in every odd round and then dispatch
the same MAM sensor back to its original location in the
subsequent even round. In other words, either s1 or s2 will
move to li and move back in the (2i − 1)th and the (2i)th
rounds, i = 1..k′, respectively. Therefore, the overall energy

consumption of s1 and s2 is 2 · ∑k′

i=1
u(xi). Because both s1

and s2 have initial energy of
∑k′

i=1
u(xi), each of them will

exhaust its energy after 2k′(= k) rounds. Thus, s1 and s2 must
have moved the same distance. Therefore, the sets of event
locations visited by s1 and s2 all constitute a solution to the
partition problem. Therefore, we prove the if part.

Conversely, suppose that subsets X1 and X2 are a solution
to the partition problem. Then, in every (2i − 1)th round,
i = 1..k′, we dispatch s1 (respectively, s2) to visit li when
X1 (respectively, X2) contains an element with value u(xi),
and move it back in the subsequent (2i)th round. In this
case, both s1 and s2 must move the same distance and thus

drain themselves of energy (that is,
∑k′

i=1
u(xi)) after 2k′(= k)

rounds. The above k-round schedule must be feasible to the
MSDD problem, thereby proving the only if part.

Remark 1. Sometimes, the same phenomenon may cause the
trigger of different attributes of static sensors, which could
be interpreted as the occurrence of multiple attributes of
events. For example, a fire may cause a high temperature
and emit several types of gases in the air. This case is
inevitable since static sensors will report what they detect
to the sink. One possible solution is to “define” events at
the sink based on the reports from static sensors. Using
the above example, the sink may define a “fire event”
if static sensors in the same small region report both a
high temperature and high CO2 concentration. In this case,
the sink can dispatch just one MAM sensor (rather than
multiple ones) to visit the location of that fire event. This
can avoid potential waste of energy. How to define events
depends on the requirements of an application, and this
issue is out of the paper’s scope.

3.2 Divide-and-conquer (D&C) Solution

At first glance, one may intuitively adopt a divide-and-conquer
(D&C) scheme by handling each attribute of event locations in a
separate manner. Specifically, event locations are first clustered
into groups based on their attributes. For each attribute ai ∈ A
of group, say, gi, we assign the MAM sensors with attribute ai,
say, Si to visit the event locations in gi. To let all MAM sensors
in Si consume the least amount of energy, we draw a complete
weighted bipartite graph based on gi and Si, and then adopt
the Hungarian algorithm [45] to calculate a minimum-weight
maximum matching to schedule the MAM sensors in Si. This
procedure is repeated until all groups are handled. Then, each
MAM sensor adopts a TSP (traveling salesman problem) heuristic
to visit all of its assigned event locations.

a2 a3

l1 l3

3

s2 with

attributes {a1, a2}

a1 a3

a1

a2

l2

l4 l5 l6

s1 with

attributes {a1, a2}

s3 with

attributes {a2, a3}

3

3

33

3

4 4

4 4

(a)

s1 s2 s3 l1 l2 l3 l4 l5 l6
s1 – – – 3 5 8.5 6 7.2 10
s2 – – – 8.5 5 3 10 7.2 6
s3 – – – 7.2 6 7.2 5 3 5
l1 3 8.5 7.2 – 4 8 3 5 8.5
l2 5 5 6 4 – 4 5 3 5
l3 8.5 3 7.2 8 4 – 8.5 5 3
l4 6 10 5 3 5 8.5 – 4 8
l5 7.2 7.2 3 5 3 5 4 – 4
l6 10 6 5 8.5 5 3 8 4 –

(b)

a2l1

s1

3

s2
s3

T1 with

attributes {a1, a2}

T2 with

attributes {a1, a2}

T3 with

attributes {a2, a3}

a1 a3l3 l5

a3l2 a1 a2l4 l6

3 3

candidate

trees
{T3} {T1, T2} {T1, T2, T3}

3

3

8.5

4
3

8.5

(c)

Fig. 2: An example of dispatching MAM sensors. (a) The distribution of
MAM sensors and event locations. (b) The distance between any two
locations, where the symbol ‘–’ means that either the distance is zero or
we do not care the distance. (c) Execution of the spanning-tree construction
algorithm in phase 2.

Take an example in Fig. 2(a), where A = {a1, a2, a3}. There
are six event locations in L, l1, l2, l3, l4, l5, and l6 with attributes
a2, a3, a1, a1, a3, and a2, respectively. In addition, there are
three MAM sensors s1, s2, and s3 in S , which have attributes
{a1, a2}, {a1, a2}, and {a2, a3}, respectively. Fig. 2(b) gives the
distance between any two locations. Based on the above D&C
scheme, we first handle the event locations with attribute a1.
In this case, we have g1 = {l3, l4} and S1 = {s1, s2} and
thus calculate two assignments: s1 → l4 and s2 → l3. For
attribute a2, we obtain that g2 = {l1, l6} and S2 = {s1, s2, s3}.
Thus, two assignments, s1 → l1 and s3 → l6, can be derived.
Similarly, for attribute a3, we have g3 = {l2, l5}. Since S3

contains only s3, we have to assign s3 to visit both l2 and l5.
Finally, by adopting a TSP heuristic, we schedule the moving
paths of all MAM sensors as follows: s1 → l1 → l4, s2 → l3,
and s3 → l5 → l2 → l6, with the energy consumption of 6, 3,
and 11, respectively.

The D&C scheme has two drawbacks. First, the overall

A TWO-PHASE DISPATCH HEURISTIC TO SCHEDULE THE MOVEMENT OF MULTI-ATTRIBUTE MOBILE SENSORS IN A HYBRID WIRELESS SENSOR NETWORK 5

TABLE 1: Summary of notations.
Notation Definition

S The set of MAM sensors, where |S| = m

L The set of event locations in a round, where |L| = n

A The set of attributes
Di The dispatch schedule of an MAM sensor si, which

contains a sequence of event locations to be visited
ecost The energy cost for each MAM sensor to move one

unit distance
einiti The initial energy of an MAM sensor si in round zero

w(si, lj) The energy consumption for an MAM sensor si to move
from it current location to an event location lj

>p Two matchings M1 and M2 are said to M1 >p M2 if
no MAM sensors prefer M2 to M1, and some MAM
sensors prefer M1 to M2.

Lu The set of unassigned event locations after phase 1
T The set of candidate spanning trees in phase 2

moving energy of MAM sensors is not reduced, even though
we try to minimize the moving costs of MAM sensors for
each attribute of group. The reason is that each MAM sensor
has only a “narrow view” in each group. Optimizing the
moving path inside every group cannot guarantee to optimize
the moving path among groups. In fact, we will see a better
scheduling strategy using the same example latter. Second,
some MAM sensors (e.g., s3) are asked to move in longer
distances, causing them to exhaust energy quickly. This will
burden the survivals with heavy loads in the following rounds,
resulting in a vicious spiral [41]. Therefore, we have to develop
a more sophisticated and efficient algorithm to solve the MAM
sensor dispatch problem.

4 TWO-PHASE DISPATCH HEURISTIC

We develop a heuristic whose idea is to reduce the moving
costs of MAM sensors while keeping their energy consumption
as balanced as possible in each round. Without loss of general-
ity, we remove the MAM sensors without sufficient energy to
move to any event location in L from S . Our dispatch heuristic
is composed of two phases. In phase 1, we adopt a maximum-
matching algorithm in a weighted bipartite graph to assign
event locations to MAM sensors. Since phase 1 assigns at most
one event location to an MAM sensor, there could remain
unassigned event locations in L. In this case, phase 2 is invoked
to handle them by a spanning-tree construction algorithm.
Then, each MAM sensor adopts a TSP heuristic to visit all
event locations in its dispatch schedule. Table 1 summarizes
the notations used in our heuristic.

4.1 Phase 1: Finding A Maximum Pareto-Optimal
Matching

Given S and L, we construct a weighted bipartite graph
G = (V, E) = (S ∪ L,S × L). All MAM sensors and all
event locations are converted into vertices. Edges only connect
vertices between S and L. For every si ∈ S and every lj ∈ L,
there exists an edge (si, lj) between them if and only if both
si and lj have the same attribute. The corresponding weight
is then calculated by w(si, lj) = ecost × d(si, lj). Therefore,
the MAM sensor dispatch problem can be translated to the
problem of finding a matching M from G such that

1) The number of matches in M is maximum.
2) Matching M is Pareto optimal.

Objective 1) is to maximize the number of event locations
handled in this phase. On the other hand, since each edge

weight takes the energy consumption as the metric, objective 2)
is to reduce the overall energy spent by all MAM sensors and
balance their energy costs. Below, we call a matching which
satisfies both objectives a maximum Pareto-optimal matching.

To find a maximum matching M in objective 1), we adopt
the Hopcroft-Karp algorithm [46], which iteratively increases
the size of a partial matching by calculating augmenting
paths. Specifically, a vertex vi ∈ V is considered as free if
(vi, vj) /∈ M for all (vi, vj) ∈ E . In addition, we call a
path P = {(v1, v2), (v2, v3), · · · , (vi−1, vi)} an augmenting path
if both of its endpoints v1 and vi are free, and its edges
alternatively appear in E −M and M. Suppose that M has a
size of k (that is, M has k matches) and P is an augmenting
path relative to M. Then, the symmetric difference of the edges
in M and the edges in P must form a new matching whose
size is k + 1. According to this observation, we adopt a three-
step scheme to find the maximum matching M:

1) Initially, let M = ∅. We then arbitrarily select one edge
from E and add it to M.

2) From M, we find its augmenting path P , and generate
a new matching M′ = M ⊕ P , which contains the
symmetric difference of the edges in M and the edges
in P . Then, we set M = M′.

3) Repeat step 2 until there is no augmenting path from
M.

Lemma 1 gives the time complexity of the above scheme.

Lemma 1. Finding a maximum matching M in G requires
O(mn

√
m+ n) time in the worst case.

Proof: According to the analysis in [46], it takes O(|E| ·
√

|V|) time to calculate the maximum matching M by using
the augmenting-path solution, where |E| and |V| are the num-
ber of edges and the number of vertices in G, respectively. The
worst case occurs when G is a complete weighted bipartite
graph. In this case, because

|V| = |S ∪ L| = |S|+ |L| = m+ n,

|E| = |S × L| = |S| × |L| = mn,

finding M requires O(|E| ·
√

|V|) = O(mn
√
m+ n) time.

Then, to satisfy objective 2), we “exchange” some matches
in M to make it become Pareto optimal. To do so, we first
define the preference of an MAM sensor in relation to matchings
in Definition 2.

Definition 2. Given two matchings M1 and M2, an MAM
sensor si is said to prefer M1 to M2 if either of the two
conditions is satisfied:

• MAM sensor si is matched to one event location in M1

but not in M2.
• Suppose that si is matched to event locations lj and

lk in M1 and M2, respectively. We have w(si, lj) <
w(si, lk), so si spends less energy to reach lj than to lk.

However, if si is not matched in both M1 and M2, it is
considered as no difference.

Let us denote by M1 >p M2 when no MAM sensors prefer
M2 to M1, and some MAM sensors prefer M1 to M2. Then,
Definition 3 defines the Pareto optimality.

Definition 3. A matching M is Pareto optimal if and only if
we cannot find another matching, say, M′ such that M′ >p

M.

6 IEEE TRANSACTIONS ON MOBILE COMPUTING

By modifying the algorithm in [11], we conduct two checks
successively to make M become Pareto optimal.

• Trade-in-free check: Suppose that an MAM sensor
si is matched to an event location lj in M. If there
exists an unmatched event location, say, lk such that
w(si, lj) > w(si, lk), we replace the match (si, lj) with
a new match (si, lk) in M. When there are multiple
candidates, we select the event location lk such that
w(si, lk) is minimum. The trade-in-free check is re-
peated until no such replacement can be conducted.

• Coalition-free check: Suppose that there exists a se-
quence of matches (si1 , lj1), (si2 , lj2), · · · , (sik , lik) in
M such that w(si1 , lj1) > w(si1 , lj2), w(si2 , lj2) >
w(si2 , lj3), · · · , w(sik−1

, ljk−1
) > w(sik−1

, ljk), and
w(sik , ljk) > w(sik , lj1). In this case, we remove
matches (si1 , lj1), (si2 , lj2), · · · , (sik , lik) from M
and then add new matches (si1 , lj2), (si2 , lj3), · · · ,
(sik−1

, ljk), and (sik , lj1) to M. The coalition-free check
is repeated until no such sequence can be found.

In the trade-in-free check, although an MAM sensor has
already matched one event location, it can still test if there are
unmatched event locations closer than the current matched
one. If so, the MAM sensor can change to visit the closest
unmatched event location to save its moving energy. On the
other hand, the coalition-free check allows MAM sensors to
exchange their matched event locations to further reduce the
overall energy consumption. In particular, if there exists a
sequence of MAM sensors (si1 , si2 , · · · , sik) in M such that
every MAM sensor siα prefers the event location matched
to siα+1

(i.e., ljα+1
) to its matched event location ljα , for

α = 1..k−1, and sik prefers lj1 (which is matched to si1) to its
matched event location ljk , a coalition {si1 , si2 , · · · , sik} occurs.
In this case, every siα and siα+1

in the coalition (including
sik and si1) can exchange their matched event locations to
reduce the overall moving energy. Notice that the number of
matches in M does not change after passing the above two
checks, so M is still a maximum matching. Theorem 2 proves
the correctness of the two checks and Lemma 2 gives their
computation complexity.

Theorem 2. A maximum matching M is Pareto optimal after
conducting the trade-in-free and coalition-free checks.

Proof: Suppose that M is Pareto optimal. If M is not
trade-in-free, there must be an MAM sensor si and an event
location lk such that si is matched to lj in M, lk is not
matched in M, and si prefers lk to lj . Thus, we can derive
another matching M′ = (M\{(si, lj)}) ∪ {(si, lk)}, where we
remove match (si, lj) from M and then add match (si, lk) to
M. Obviously, since M′ >p M, a contradiction occurs. On
the other hand, if M has a coalition {si1 , si2 , · · · , sik}, we
can derive another matching M′ by exchanging the matches
in the coalition. In this case, a contradiction occurs because
M′ >p M. Therefore, we prove the if part.

Conversely, suppose that M is both trade-in-free and
coalition-free but not Pareto optimal. Then, there must exist
another matching M′ such that M′ >p M. Let si1 be an
MAM sensor matched in M and si1 prefers M′ to M. For
ease of presentation, let us denote by M(siα) and M′(siα)
the event locations that siα is matched to in M and in M′,
respectively. Then, it follows that M′(si1) is matched in M,
say, to si2 (otherwise, M cannot be trade-in-free). In this
case, we have M′(si2) 6= M(si2) and si2 must prefer M′

to M (otherwise, M′ >p M cannot be true). Applying the
similar argument, M′(si2) is matched in M, say, to si3 and
si3 prefers M′ to M. Following the same way, we can find a
sequence of MAM sensors {si1 , si2 , · · · } such that siα prefers
M(siα+1

) to M(siα). Because S is finite, the above sequence
of MAM sensors must form a cycle. This statement obviously
contradicts the assumption that M is coalition-free, thereby
proving the only if part.

Lemma 2. It takes O(mn lg n) time in the worst case to perform
the trade-in-free and coalition-free checks on a maximum
matching M.

Proof: To efficiently conduct the trade-in-free and
coalition-free checks, we maintain a preference list for each
MAM sensor si ∈ S , which ranks all of the event locations
acceptable to si (that is, si has the correct attributes for these
event locations). When G is a complete weighted bipartite
graph, each si ∈ S has to sort |L| = n event locations in its
preference list, which spends O(n lg n) time. Thus, the worst-
case time complexity to compute the preference lists of all
MAM sensors is

|S| ·O(n lg n) = m ·O(n lg n) = O(mn lg n).

Besides, the length of all preference lists is |S × L| = mn.
According to [11], the repeated trade-in-free checks can be re-
alized by searching all preference lists just once. Thus, it takes
O(mn) time for M to pass all trade-in-free checks. Similarly,
the repeated coalition-free checks can be implemented by a
one-time search of all preference lists. Thus, it also spends
O(mn) for M to pass all coalition-free checks. Therefore, the
overall time complexity is

O(mn lg n) +O(mn) +O(mn) = O(mn lg n).

Let us use the example in Fig. 2(a) to demonstrate the
above matching-finding algorithm. From S = {s1, s2, s3} and
L = {l1, l2, l3, l4, l5, l6}, we construct a weighted bipartite
graph and assign edge weights based on Fig. 2(b). Then, we se-
lect an edge, say, (s1, l1) and run the Hopcroft-Karp algorithm.
By iteratively calculating the augmenting path, we eventually
obtain a maximum matching M = {(s1, l6), (s2, l4), (s3, l1)}.
Then, we conduct the trade-in-free check on M. Starting
from s3, we find an unmatched event location l5 such that
w(s3, l5) = 3 < w(s3, l1) = 7.2. Thus, we replace (s3, l1) with
(s3, l5) in M. Since l1 becomes unassigned and w(s1, l1) = 3 <
w(s1, l6) = 10, we thus replace (s1, l6) with (s1, l1) in M. Sim-
ilarly, (s2, l4) is replaced with (s2, l3) in M. Therefore, we have
a new maximum matching M = {(s1, l1), (s2, l3), (s3, l5)}.
Since there are no coalitions in M, it can pass the coalition-
free check and thus M is Pareto optimal.

Theorem 3 presents the time complexity of the matching-
finding algorithm.

Theorem 3. Executing the matching-finding algorithm requires
O(mn

√
m+ n) time in the worst case.

Proof: It takes O(mn) time to construct a complete
weighted bipartite graph G, because we need to assign a
weight for each edge in E = S × L. According to Lemmas 1
and 2, finding a maximum Pareto-optimal matching M from
G requires O(mn

√
m+ n) + O(mn lg n) time. Therefore, the

matching-finding algorithm spends time of

O(mn) +O(mn
√
m+ n) +O(mn lg n) = O(mn

√
m+ n).

A TWO-PHASE DISPATCH HEURISTIC TO SCHEDULE THE MOVEMENT OF MULTI-ATTRIBUTE MOBILE SENSORS IN A HYBRID WIRELESS SENSOR NETWORK 7

We then discuss the rationale in phase 1. Recall that the
D&C scheme in Section 3.2 limits the view of each MAM sensor
to only a group of event locations, leading some MAM sensors
to move in longer distances. To overcome this weakness, we
construct a weighted bipartite graph G that takes all event lo-
cations into consideration. Although the Hungarian algorithm
is widely used to find a minimum-weight maximum matching
in a bipartite graph, we do not adopt it in phase 1 due to two
reasons:

• The Hungarian algorithm requires O(K3) time to find
the matching, where K = max(m,n), while our
matching-finding algorithm takes only O(mn

√
m+ n)

time, which is more computation-efficient.
• Pareto optimality can maximize people’s satisfaction

when they have different requirements in some eco-
nomic issues. By translating the MAM sensor dispatch
problem to the problem of finding a maximum Pareto-
optimal matching M from G, we could not only reduce
the energy consumption of MAM sensors but also bal-
ance their moving costs because each MAM sensor is
“satisfied” with its assigned event location in M.

4.2 Phase 2: Constructing Multiple Spanning Trees

Phase 1 uses a one-to-one manner to assign MAM sensors
to visit event locations. However, when MAM sensors are
not enough to visit all event locations, some event locations
will be left unassigned. Therefore, we propose a spanning-tree
construction algorithm to handle this situation in phase 2.

Given M from phase 1, each of its matches is treated as
a spanning tree rooted at the corresponding MAM sensor. Let
Lu be the set of unassigned event locations after phase 1. Then,
for each event location lj ∈ Lu, it can join a spanning tree if
the root MAM sensor has the correct attribute. Let T be the set
of candidate trees such that lj can join, the goal is to select a
tree ti from T such that

1) The original tree weight of ti is as small as possible.
2) When lj joins ti, the increase in its tree weight is

minimum.

The first objective is to balance the moving costs among MAM
sensors, while the second objective is to reduce the energy
consumption of ti’s root MAM sensor.

We develop a spanning-tree construction algorithm to sat-
isfy both objectives as follows:

1) For each match (si, lj) in M, we construct a spanning
tree such that the root is si and the tree contains an
edge (si, lj).

2) Select one event location, say, lj from Lu. Let aj be the
attribute of lj . We then calculate the set of candidate
trees T whose root MAM sensors have attribute aj . In
case of T = ∅, the algorithm is terminated since no
MAM sensors have the correct attribute to handle lj .

3) If |T | = 1, lj joins the only tree in T and we update its
tree weight accordingly. Otherwise, we sort all trees in
T based on their tree weights in an ascending order.
Then, we pick the first ⌈δ · |T |⌉ trees from T , where
0 < δ ≤ 1. Among these trees, lj joins the tree ti such
that the increase in ti’s tree weight is minimum. We
then update ti’s tree weight accordingly.

4) Delete lj from Lu as it has been assigned with an MAM
sensor. We then repeat steps 2 and 3 until Lu = ∅.

Let us continue the example in Fig. 2(a) to demonstrate
the spanning-tree construction algorithm. Given the maxi-
mum Pareto-optimal matching M = {(s1, l1), (s2, l3), (s3, l5)}
from phase 1, we construct a set of spanning trees T1, T2,
and T3 shown in Fig. 2(c), where their tree weights are all
3. Meanwhile, we have a set of unassigned event locations
Lu = {l2, l4, l6}. Let δ = 0.6. Starting from l2, since its attribute
is a3, only T3 can be its candidate tree. Thus, l2 joins T3 and
T3’s tree weight becomes 3 + 3 = 6. Then, for l4, it has two
candidate trees T = {T1, T2}. Since ⌈δ · |T |⌉ = ⌈0.6 × 2⌉ = 2,
l4 has to choose between T1 and T2. Because T1 can increase
a smaller tree weight (i.e., 3) when l4 joins it, comparing with
that to T2 (i.e., 8.5), we thus let l4 join T1. Similarly, among
candidate trees T1, T2, and T3, l6 selects T2 to join. Therefore,
the final spanning trees are T1 = {s1, l1, l4}, T2 = {s2, l3, l6},
and T3 = {s3, l5, l2}.

Notice that phase 2 uses only the MAM sensors in M to
grow the spanning trees. In other words, if an MAM sensor is
not assigned with any event location in phase 1, it cannot par-
ticipate in phase 2. We show this property in both Theorem 4
and Corollary 1.

Theorem 4. Every MAM sensor can be always assigned with an
event location in phase 1 unless it does not have the correct
attribute for any event location in Lu.

Proof: We prove this theorem by considering two possi-
ble cases: |S| ≥ |L| and |S| < |L|.

Case of |S| ≥ |L|: This case is divided into two subcases.

• If all event locations in L are assigned with MAM
sensors in phase 1, then Lu = ∅ and thus the theorem
is proven.

• Otherwise, Lu must be nonempty. Since we have |S| ≥
|L|, there must exist a subset Su ⊆ S of MAM sensors
which are not assigned with any event location in phase
1. Then, we show that every MAM sensor in Su does
not have the correct attribute for any event location
in Lu by contradiction. Suppose that an MAM sensor
si ∈ Su and an event location lj ∈ Lu have the
same attribute. Then, we can derive a new matching
M′ = M ∪ {(si, lj)}. Obviously, we have M′ >p M,
which results in a contradiction since M is Pareto
optimal. Therefore, the theorem is correct.

Case of |S| < |L|: In this case, we have Lu 6= ∅. Similarly,
the case is divided into two subcases.

• If Su = ∅, in the sense that every MAM sensor is
assigned with one event location in phase 1, then the
theorem is proven.

• Otherwise, we also show the correctness of the theorem
by contradiction. Suppose that an MAM sensor si ∈ Su

has the correct attribute for an event location lj ∈ Lu.
Because M must have |S − Su| matches, we can derive
another matching M′ by adding a new match (si, lj) to
M. Notice that M′ must exist since |S − Su| < |S|. In
this case, M′ has more matches than M, which contra-
dicts the assumption that M is maximum. Therefore,
the theorem is proved.

Corollary 1. If an MAM sensor does not appear in M, it cannot
participate in phase 2.

8 IEEE TRANSACTIONS ON MOBILE COMPUTING

s1 s2 sδk sk

lkl1 l2 lδk

sk+1 sm

lk+1 ln...

... ...

...

We do not care these

MAM sensors.

k matches in M

δk candidate spanning trees

unassigned event locations in Lu

Fig. 3: Calculating the time complexity of the spanning-tree construction
algorithm.

Proof: Based on Theorem 4, since this MAM sensor has
no correct attribute for any event location in Lu, it is not
considered in phase 2.

Corollary 1 is critical in analyzing the time complexity of
the spanning-tree construction algorithm, which is presented
in Theorem 5 and Corollary 2.

Theorem 5. Given matching M from phase 1, the spanning-tree
construction algorithm requires O(n lg |M|)+O(δ|M|·(n−
|M|)) +O((n− |M|)2) time in the worst case.

Proof: Let |M| = k. Without loss of generality, suppose
that M = {(s1, l1), (s2, l2), · · · , (sk, lk)}. Based on Corollary 1,
only the MAM sensors in M can participate in the spanning-
tree construction algorithm. Thus, we have a set of k spanning
trees rooted at s1, s2, · · · , sk and Lu = {lk+1, lk+2, · · · , ln},
as shown in Fig. 3. The worst case occurs when each event
location in Lu can select all of these k trees to be its candi-
dates. Then, we sort these k trees using their tree weights,
which takes O(k lg k) time, and analyze how the spanning-tree
construction algorithm reacts to each event location in Lu:

• For lk+1, it has δk trees to select according to step 3
of the algorithm4. In this case, there are totally 2δk
edges to be tested (that is, edges (lk+1, s1), (lk+1, s2),
· · · , (lk+1, sδk), (lk+1, l1), (lk+1, l2), · · · , (lk+1, lδk), as
shown in Fig. 3). Among these 2δk edges, lk+1 selects
the edge with the minimum weight and join the corre-
sponding tree, say, ti. Then, we update ti’s tree weight
and sort all k trees again. Since all trees (except ti) have
been sorted, we can use a binary search to insert ti in the
correct position of the sorting list. This requires O(lg k)
time.

• For lk+2, it also has δk trees to select. In this case, there
are totally 2δk + 1 edges to be tested (since lk+1 has
joined one tree, there would be a new edge (lk+2, lk+1)
to be tested). Similarly, after updating the tree weight
of the selected tree, it takes O(lg k) time to sort k trees
using the binary search.

• Following the same way, for lk+j , it needs to test 2δk+
(j−1) edges. Then, sorting k trees spends O(lg k) time.

• Finally, for ln, it must test 2δk + (n − k − 1) edges.
However, we need not sort trees in the last iteration.

4. We ignore the ceiling function here for ease of presentation.

Since there are (n − k) event locations in Lu, we sum up the
above calculations as follows:

n−k
∑

j=1

2δk + (j − 1) +
n−k−1
∑

j=1

O(lg k) (1)

= 2δk(n− k) +
(n− k − 1)(n− k)

2
+ (n− k − 1) ·O(lg k).

Here, the first term and the second term in Eq. (1) indicate the
time spent to find the edge with the minimum weight for each
event location and to sort k trees in every iteration (except the
last one), respectively. By adding the big-O notation to Eq. (1),
we obtain

O(δk(n− k)) +O((n− k)2) +O((n− k) · lg k).

Therefore, the overall time complexity of the spanning-tree
construction algorithm is

O(k lg k) +O(δk(n− k)) +O((n− k)2) +O((n− k) · lg k)
= O(n lg k) +O(δk(n− k)) +O((n− k)2). (2)

By replacing k with |M| in Eq. (2), we obtain

O(n lg |M|) +O(δ|M| · (n− |M|)) +O((n− |M|)2).

Corollary 2. When n ≫ |M|, the time complexity of the
spanning-tree construction algorithm is O(n2).

When there are sufficient MAM sensors, our two-phase
dispatch heuristic can properly assign MAM sensors to visit
all event locations in L. Then, for every MAM sensor with
a nonempty dispatch schedule, it can adopt any TSP heuristic
[47] to efficiently reach each of its assigned event locations5. Let
us complete the example in Fig. 2(a). By using a TSP heuristic
on the spanning trees T1 = {s1, l1, l4}, T2 = {s2, l3, l6}, and
T3 = {s3, l5, l2} calculated in phase 2, we can schedule the
moving paths of all MAM sensors as follows: s1 → l1 → l4,
s2 → l3 → l6, and s3 → l5 → l2. Compared with the
D&C scheme in Section 3.2, we can reduce the overall energy
consumption of MAM sensors from 20 to 18. In addition, our
heuristic can balance the loads among MAM sensors since the
standard deviation of their energy consumption is reduced
from 3.3 (by the D&C scheme) to 0 in the example. This shows
the effectiveness of our heuristic.

We finally discuss the rationale in phase 2. Phase 2 is in-
voked when Lu 6= ∅ and by Corollary 1, only the MAM sensors
in M are allowed to handle event locations in Lu. This means
that some of them have to visit more than one event location,
where this problem is similar to TSP. Since a number of TSP
heuristics [47] construct a spanning tree containing nodes to
be visited, we are motivated by the same idea to make MAM
sensors organize their spanning trees to select event locations
in Lu. In this way, if an MAM sensor can organize a “good”
spanning tree, it can use such a TSP heuristic to calculate a
shorter moving path to complete its dispatch schedule. Then,
the question is how to organize a good spanning tree? There
are two considerations in our design:

5. Notice that the moving path of an MAM sensor may not necessary
be a Hamiltonian path. In other words, an MAM sensor can pass the
same event location more than once. However, since TSP is widely used
to address how to reduce the path length to visit a given set of locations,
we also adopt a TSP heuristic in the paper.

A TWO-PHASE DISPATCH HEURISTIC TO SCHEDULE THE MOVEMENT OF MULTI-ATTRIBUTE MOBILE SENSORS IN A HYBRID WIRELESS SENSOR NETWORK 9

c
r

s
r

3
s

r

3
2 s
r

Fig. 4: The deployment of static sensors in the simulator.

1) The tree weights of all spanning trees should be similar
so that the loads among MAM sensors can be bal-
anced. In this case, the system lifetime can be extended
[41].

2) The moving path of an MAM sensor could be pro-
portional to the tree weight of its spanning tree, so
we have to reduce the increase in the tree weight
whenever adding an event location to that tree.

To address both considerations, in step 3 of the spanning-tree
construction algorithm, we sort all trees in T and pick the
first ⌈δ · |T |⌉ ones as candidates. In this way, when an event
location, say, lj joins any of these candidates, we can keep
all tree weights in T as balanced as possible. Then, to satisfy
the second consideration, lj should join the tree, say, ti such
that the increase in ti’s tree weight is minimum. This can help
reduce the moving path of ti’s root MAM sensor.

5 EXPERIMENTAL RESULTS

We develop a simulator by using C++ to measure the per-
formances of different dispatch schemes. In the simulator,
the sensing field is a 550 meters × 450 meters rectangle, on
which 1000 static sensors are deployed by using a hexagon-
like pattern, as shown in Fig. 4. The distance between any two
adjacent static sensors is

√
3rs, where rs is the sensing range

of a static sensor. To maintain network connectivity, we ensure
that rc ≥

√
3rs, where rc is the communication range of a static

sensor. Thus, we set rs = 10meters and rc = 18meters. Given
A = {a1, a2, a3}, a number of static sensors are arbitrarily
selected as event locations (i.e., L) in every round. We divide
L into three groups L1, L2, and L3 associated with attributes
a1, a2, and a3, respectively. Two scenarios are considered:

• Equal scenario: |L1| = |L2| = |L3| = 1

3
|L|.

• Biased scenario: |L1| = |L2| = 1

4
|L| and |L3| = 1

2
|L|.

There are also a number of MAM sensors (i.e., S) arbitrarily
deployed in the sensing field. Each MAM sensor is equipped
with two batteries for its moving energy, where each battery
has energy capacity of 1350 mAh (milliampere-hour). Thus,
we have einiti = 29160 J (joule) for i = 1..m. The moving
energy cost is 8.27 J per meter [48]. Since we aim at measuring
the performances of different dispatch schemes, we do not
estimate the energy spent on other operations such as sensing,
communication, and analysis. In addition, the communication
impairment (such as message loss or packet collision) is not
considered in the experiments. We divide S into three groups
S1, S2, and S3 associated with attributes {a1, a2}, {a2, a3},

0

40

80

120

160

200

240

30 60 90 120 150 180

number of MAM sensors

s
y
s
te

m
lif

e
ti
m

e
(r

o
u
n
d
)

0

20

40

60

80

100

ra
ti
o

(%
)

D&C scheme RP1 scheme
2-phase, δ=0.4 2-phase, δ=0.8
ratio(D&C) ratio(RP1)
ratio(2-phase, δ=0.4)

(a) the equal scenario

0

40

80

120

160

200

240

30 60 90 120 150 180
number of MAM sensors

s
y
s
te

m
lif

e
ti
m

e
(r

o
u
n
d
)

0

20

40

60

80

100

ra
ti
o

(%
)

D&C scheme RP1 scheme
2-phase, δ=0.4 2-phase, δ=0.8
ratio(D&C) ratio(RP1)
ratio(2-phase, δ=0.4)

(b) the biased scenario

Fig. 5: Comparison on the average system lifetime.

and {a1, a3}, respectively. Therefore, no single MAM sensor
can handle every event location in L.

We compare our two-phase heuristic with the D&C scheme
mentioned in Section 3.2. In addition, a dispatch scheme called
repeating phase 1 (RP1) is also proposed for comparison. As its
name suggested, the RP1 scheme iteratively repeats phase 1 in
our heuristic to assign event locations to MAM sensors, until
L becomes empty. We set the δ value to 0.4 and 0.8 in phase 2
to observe its effect on our heuristic.

5.1 Average System Lifetime

We first measure the average system lifetimes by different
schemes. In each round, 150 static sensors are arbitrarily se-
lected as L. The number of MAM sensors ranges between
30 and 180. Each MAM sensor moves to the event locations
assigned by the dispatch scheme and stays at its last-visiting
location to wait for the next schedule. In Fig. 5, we use the
result of our heuristic (with δ = 0.8) as the comparison basis
for all ratios.

Fig. 5(a) shows the average lifetimes in the equal scenario,
where |L1| = |L2| = |L3| = 50. In general, the lifetime ex-

10 IEEE TRANSACTIONS ON MOBILE COMPUTING

tends when the number of MAM sensors increases. The D&C
scheme has the shortest lifetime because it handles different
attributes of event locations separately, which narrows the
view of each MAM sensor when deciding its destinations. In
this case, not only the moving distances of some MAM sensors
become longer but also the loads among all MAM sensors may
be unbalanced. The RP1 scheme, on the other hand, allows
MAM sensors to have a global view of event locations, and
thus extends the lifetime compared with the D&C scheme.
However, similar to the D&C scheme, the RP1 scheme also
adopts an iterative concept to assign event locations to MAM
sensors. Thus, it does not reduce the distance between any two
event locations assigned to the same MAM sensor in different
iterations. In this case, some of its assigned event locations
could be far away from each other. This situation becomes
worse when the number of MAM sensors is smaller than 150
(i.e., |S| < |L|).

Our heuristic always has the longest lifetime in Fig. 5(a).
A larger δ value can help extend the lifetime since each MAM
sensor can select a better tree (that is, a shorter distance to
that tree) from more candidates. From the ratios in Fig. 5(a),
our heuristic performs much better than the RP1 scheme when
|S| ≤ 120. The reason is that more MAM sensors participate
in phase 2 and the spanning-tree construction algorithm help
them visit closer event locations. On the average, the lifetimes
of the D&C scheme, the RP1 scheme, and our heuristic with
δ = 0.4 achieve only ratios of 58.6%, 82.7%, 90.4% of that of
our heuristic with δ = 0.8, respectively. The result verifies the
effectiveness of our heuristic, especially with a larger δ value.

Fig. 5(b) shows the average lifetimes in the biased scenario,
where |L1| = |L2| = 38 and |L3| = 74. In this scenario, since
there are more event locations with attribute a3, the energy of
MAM sensors in both S2 and S3 will exhaust quickly6. The
result in Fig. 5(b) is similar to that in Fig. 5(a), where the D&C
scheme < the RP1 scheme < our heuristic with δ = 0.4 <
our heuristic with δ = 0.8. On the average, the lifetimes of
the D&C scheme, the RP1 scheme, and our heuristic with δ =
0.4 achieve only ratios of 53.1%, 75.8%, 82.5% of that of our
heuristic with δ = 0.8, respectively. The result indicates that
our heuristic works more efficiently in the biased scenario. The
reason is that phase 2 helps MAM sensors to select nearby
event locations to visit, and thus reduces the energy costs of
MAM sensors in S2 and S3 when visiting more event locations
with attribute a3.

5.2 Survived MAM Sensors

To observe how different dispatch schemes burden MAM
sensors with different loads, we then estimate the number of
survived MAM sensors in each round. In the experiment, we
set |S| = 60 and |L| = 90, so some MAM sensors have to visit
more than one event location in a round. We omit rounds 6
to 24 in both Fig. 6(a) and Fig. 7(a) since all MAM sensors are
alive in these rounds.

Fig. 6 gives the number of survived MAM sensors in the
equal scenario, where |L1| = |L2| = |L3| = 30. Since the D&C
scheme burdens certain MAM sensors with heavier loads (as
they are closer to some event locations), the first MAM sensor
dies very early in the 32nd round. Then, after 44 rounds, the

6. Since the MAM sensors in S1 do not have attribute a3, they cannot
help handle these event locations and thus burden other MAM sensors
with heavier loads.

0

10

20

30

40

50

60

1 25 30 35 40 45 50 55 60
round

su
rv

iv
ed

 M
A

M
 s

en
so

rs

D&C scheme
RP1 scheme
2-phase, =0.4
2-phase, =0.8

(a) survived MAM sensors (rounds 6–24 are omitted)

dispatch 1st MAM sensor lifetime final survived
scheme dies (round #) (round) MAM sensors

D&C scheme 32nd 44 14
RP1 scheme 37th 51 9

2-phase, δ = 0.4 40th 54 4
2-phase, δ = 0.8 42nd 58 2

(b) statistics

Fig. 6: Comparison on the number of survived MAM sensors in the equal
scenario.

0

10

20

30

40

50

60

1 25 30 35 40 45 50 55 60
round

su
rv

iv
ed

 M
A

M
 s

en
so

rs

D&C scheme
RP1 scheme
2-phase, =0.4
2-phase, =0.8

(a) survived MAM sensors (rounds 6–24 are omitted)

dispatch 1st MAM sensor lifetime final survived
scheme dies (round #) (round) MAM sensors

D&C scheme 27th 39 20
RP1 scheme 35th 47 18

2-phase, δ = 0.4 36th 51 11
2-phase, δ = 0.8 37th 54 7

(b) statistics

Fig. 7: Comparison on the number of survived MAM sensors in the biased
scenario.

system lifetime terminates but there still remain 14 MAM sen-
sors (without correct attributes to handle any event location).
By iteratively finding a maximum Pareto-optimal matching to
dispatch MAM sensors, the RP1 scheme postpones the dead
time of the first MAM sensor to the 37th round and leaves 9
MAM sensors in the last round. Our heuristic performs the
best in the equal scenario, where a larger δ value helps extend
the lifetime. Specifically, our heuristic not only drains the first
MAM sensor of its energy quite late (after 40 rounds) but

A TWO-PHASE DISPATCH HEURISTIC TO SCHEDULE THE MOVEMENT OF MULTI-ATTRIBUTE MOBILE SENSORS IN A HYBRID WIRELESS SENSOR NETWORK 11

also leaves fewer MAM sensors (no more than 4) in the last
round. This result shows that our heuristic can better use MAM
sensors to analyze events, compared with other schemes.

Fig. 7 gives the number of survived MAM sensors in the
biased scenario, where |L1| = |L2| = 23 and |L3| = 44.
The result is similar to Fig. 6. However, since L3 contains
more event locations, which burdens the MAM sensors in
both S2 and S3 with heavier loads, the first MAM sensor dies
earlier in all schemes. In addition, by comparing Fig. 7(b) with
Fig. 6(b), there are more final survivals in the biased scenario.
All of these survivals must belong to S1 since they cannot
handle event locations with attribute a3. In sum, our heuristic
performs the best in the biased scenario, and a larger δ value
helps improve the performance.

5.3 Moving Energy Consumption

Finally, we evaluate the energy consumption of MAM sensors,
where |S| = 90 and |L| ranges between 30 and 150. Both
the average and standard deviation of energy consumption
of MAM sensors are measured in the experiment. For all ratios
in Figs. 8 and 9, we use the result of the D&C scheme as the
comparison basis.

Fig. 8 shows the energy consumption of MAM sensors in
the equal scenario. As mentioned earlier, the D&C scheme
narrows the view of each MAM sensor when deciding its
destinations. Thus, this scheme always makes MAM sensors
spend the most energy and it has the largest standard devia-
tion (in other words, MAM sensors are burdened with very
unbalanced loads). With the help of phase 2, our heuristic
not only saves the moving energy of MAM sensors but also
significantly reduces the standard deviation, as comparing
with the RP1 scheme. This result shows the effectiveness of
phase 2.

From Fig. 8, δ has different effects on the average and
standard deviation of energy consumption in our heuristic.
In particular, a larger δ value reduces the energy cost since
it allows each MAM sensor to have more candidate spanning
trees to select in phase 2. However, the risk that trees become
unbalanced could also arise, whose effect is shown in Fig. 8(b).
On the average, the RP1 scheme, our heuristic with δ = 0.4,
and our heuristic with δ = 0.8 can save 24.0%, 30.2%, and
34.3% of energy cost comparing with the D&C scheme, respec-
tively. Meanwhile, the RP1 scheme, our heuristic with δ = 0.4,
and our heuristic with δ = 0.8 can reduce 39.4%, 73.1%,
and 68.7% of the standard deviation of energy consumption
comparing with the D&C scheme, respectively. This result
demonstrates the effectiveness of our heuristic in the equal
scenario.

Fig. 9 shows the energy consumption of MAM sensors in
the biased scenario, where two interesting phenomena arise:

• By comparing Fig. 9(a) with Fig. 8(a), the energy cost of
the D&C scheme even reduces when |L| = 150 in the
biased scenario7. The reason is that the D&C scheme
burdens some MAM sensors (especially those in S2 and
S3) with heavier loads, leading other MAM sensors to
spend less energy. The above argument can be verified
by both Fig. 7 and Fig. 9(b), where a lot of MAM sensors
survive in the last round and the standard deviation of

7. In other three schemes, the energy costs increase in the biased sce-
nario.

0

100

200

300

400

500

600

700

30 60 90 120 150

number of event locations

e
n
e
rg

y
c
o
n
s
u
m

p
ti
o
n

(J
)

0

20

40

60

80

100

ra
ti
o

(%
)

D&C scheme RP1 scheme
2-phase, δ=0.4 2-phase, δ=0.8
ratio(RP1) ratio(2-phase, δ=0.4)
ratio(2-phase, δ=0.8)

(a) average of energy consumption

0

100

200

300

400

500

30 60 90 120 150
number of event locations

e
n
e
rg

y
c
o
n
s
u
m

p
ti
o
n

(J
)

0

20

40

60

80

100

ra
ti
o

(%
)

D&C scheme RP1 scheme
2-phase, δ=0.4 2-phase, δ=0.8
ratio(RP1) ratio(2-phase, δ=0.4)
ratio(2-phase, δ=0.8)

(b) standard deviation of energy consumption

Fig. 8: Comparison on the energy consumption of MAM sensors in the
equal scenario.

energy consumption among all MAM sensors is much
larger than other schemes.

• By comparing Fig. 9(b) with Fig. 8(b), the ratios become
larger in the biased scenario when |L| ≤ 90. In this
case, since a half of event locations have attribute a3,
the D&C scheme could calculate a more “balanced”
matching for the MAM sensors in both S2 and S3 to
handle these event locations. Because the comparison
basis (i.e., the standard deviation of the D&C scheme)
reduces, all ratios increase accordingly when |L| ≤ 90.

On the average, the RP1 scheme, our heuristic with δ = 0.4,
and our heuristic with δ = 0.8 can save 13.5%, 18.8%, and
23.8% of energy cost comparing with the D&C scheme, respec-
tively. Meanwhile, the RP1 scheme, our heuristic with δ = 0.4,
and our heuristic with δ = 0.8 can reduce 35.3%, 65.1%,
and 56.4% of the standard deviation of energy consumption
comparing with the D&C scheme, respectively. This result
verifies that our heuristic still performs well in the biased
scenario.

12 IEEE TRANSACTIONS ON MOBILE COMPUTING

0

100

200

300

400

500

600

700

30 60 90 120 150

number of event locations

e
n
e
rg

y
c
o
n
s
u
m

p
ti
o
n

(J
)

0

20

40

60

80

100

ra
ti
o

(%
)

D&C scheme RP1 scheme
2-phase, δ=0.4 2-phase, δ=0.8
ratio(RP1) ratio(2-phase, δ=0.4)
ratio(2-phase, δ=0.8)

(a) average of energy consumption

0

200

400

600

800

1000

1200

1400

1600

30 60 90 120 150
number of event locations

e
n
e
rg

y
c
o
n
s
u
m

p
ti
o
n

(J
)

0

20

40

60

80

100

ra
ti
o

(%
)

D&C scheme RP1 scheme
2-phase, δ=0.4 2-phase, δ=0.8
ratio(RP1) ratio(2-phase, δ=0.4)
ratio(2-phase, δ=0.8)

(b) standard deviation of energy consumption

Fig. 9: Comparison on the energy consumption of MAM sensors in the
biased scenario.

6 CONCLUSIONS AND FUTURE WORK

This paper has formulated the MAM sensor dispatch problem
in a hybrid WSN. To solve this NP-complete problem, a two-
phase heuristic is developed by reducing and balancing the
energy consumption of MAM sensors. In phase 1, we assign
event locations to MAM sensors in a one-to-one manner by
finding a maximum Pareto-optimal matching in a weighted
bipartite graph. Since there could remain unassigned event
locations, a spanning-tree construction algorithm is proposed
in phase 2 to handle this case. Experimental results show that
our heuristic can extend the system lifetime compared with
other schemes.

Below, we present some future research issues. First, we
aim at path efficiency of MAM sensors in our heuristic, so they
are scheduled to reduce and balance the moving distances.
However, since analyzing different attributes of events may
require different amounts of time, it deserves further investiga-
tion to schedule MAM sensors such that the overall time spent
to complete the assignment is also minimum. In this case, we
should consider not only the moving costs of MAM sensors but
also the time to analyze events. Second, a distributed version

of our heuristic can be designed to let MAM sensors work in
a decentralized fashion. Finally, a new challenge arises when
events also have multiple attributes.

REFERENCES

[1] Y.C. Wang, F.J. Wu, and Y.C. Tseng, “Mobility management algo-
rithms and applications for mobile sensor networks,” Wireless Comm.
and Mobile Computing, vol. 12, no. 1, pp. 7–21, 2012.

[2] G. Song, Z. Wei, W. Zhang, and A. Song, “A hybrid sensor network
system for home monitoring applications,” IEEE Trans. Consumer
Electronics, vol. 53, no. 4, pp. 1434–1439, 2007.

[3] Y.C. Tseng, Y.C. Wang, K.Y. Cheng, and Y.Y. Hsieh, “iMouse: an in-
tegrated mobile surveillance and wireless sensor system,” Computer,
vol. 40, no. 6, pp. 60–66, 2007.

[4] L. Cheng, C.D. Wu, and Y.Z. Zhang, “Indoor robot localization based
on wireless sensor networks,” IEEE Trans. Consumer Electronics, vol.
57, no. 3, pp. 1099–1104, 2011.

[5] N. Bartolini, T. Calamoneri, T.F. La Porta, and S. Silvestri, “Au-
tonomous deployment of heterogeneous mobile sensors,” IEEE Trans.
Mobile Computing, vol. 10, no. 6, pp. 753–766, 2011.

[6] D.P. Eickstedt, M.R. Benjamin, H. Schmidt, and J.J. Leonard, “Adap-
tive control of heterogeneous marine sensor platforms in an au-
tonomous sensor network,” Proc. IEEE/RSJ Int’l Conf. Intelligent Robots
and Systems, pp. 5514–5521, 2006.

[7] S. Ferrari, R. Fierro, and D. Tolic, “A geometric optimization approach
to tracking maneuvering targets using a heterogeneous mobile sensor
network,” Proc. IEEE Conf. Decision and Control, pp. 1080–1087, 2009.

[8] M. Hofmeister, M. Kronfeld, and A. Zell, “Cooperative visual map-
ping in a heterogeneous team of mobile robots,” Proc. IEEE Int’l Conf.
Robotics and Automation, pp. 1491–1496, 2011.

[9] R. Rao and G. Kesidis, “Purposeful mobility for relaying and surveil-
lance in mobile ad hoc sensor networks,” IEEE Trans. Mobile Comput-
ing, vol. 3, no. 3, pp. 225–231, 2004.

[10] Y.C. Wang, W.C. Peng, M.H. Chang, and Y.C. Tseng, “Exploring load-
balance to dispatch mobile sensors in wireless sensor networks,” Proc.
IEEE Int’l Conf. Computer Comm. and Networks, pp. 669–674, 2007.

[11] D.J. Abraham, K. Cechlarova, D.F. Manlove, and K. Mehlhorn,
“Pareto optimality in house allocation problems,” Proc. Int’l Conf.
Algorithms and Computation, pp. 1163–1175, 2005.

[12] Z.J. Haas and B. Liang, “Ad hoc mobility management with uniform
quorum systems,” IEEE/ACM Trans. Networking, vol. 7, no. 2, pp. 228–
240, 1999.

[13] N. Li, J.C. Hou, and L. Sha, “Design and analysis of an MST-based
topology control algorithm,” IEEE Trans. Wireless Comm., vol. 4, no. 3,
pp. 1195–1206, 2005.

[14] H. Nishiyama, T. Ngo, N. Ansari, and N. Kato, “On minimizing the
impact of mobility on topology control in mobile ad hoc networks,”
IEEE Trans. Wireless Comm., vol. 11, no. 3, pp. 1158–1166, 2012.

[15] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for
ad hoc network research,” Wireless Comm. and Mobile Computing, vol.
2, no. 5, pp. 483–502, 2002.

[16] Q. Li and D. Rus, “Communication in disconnected ad hoc networks
using message relay,” J. Parallel Distributed Computing, vol. 63, pp.
75–86, 2003.

[17] D. Niyato and P. Wang, “Optimization of the mobile router and traffic
sources in vehicular delay-tolerant network,” IEEE Trans. Vehicular
Technology, vol. 58, no. 9, pp. 5095–5104, 2009.

[18] H. Dang and H. Wu, “Clustering and cluster-based routing protocol
for delay-tolerant mobile networks,” IEEE Trans. Wireless Comm., vol.
9, no. 6, pp. 1874–1881, 2010.

[19] L. Vig and J.A. Adams, “Multi-robot coalition formation,” IEEE Trans.
Robotics, vol. 22, no. 4, pp. 637–649, 2006.

[20] K.H. Park, Y.J. Kim, and J.H. Kim, “Modular Q-learning based multi-
agent cooperation for robot soccer,” Robotics and Autonomous Systems,
vol. 35, no. 2, pp. 109–122, 2001.

[21] K.S. Hwang, Y.J. Chen, and C.H. Lee, “Reinforcement learning in
strategy selection for a coordinated multirobot system,” IEEE Trans.
Systems, Man and Cybernetics — Part A: Systems and Humans, vol. 37,
no. 6, pp. 1151–1157, 2007.

[22] J. Mugan and B. Kuipers, “Autonomous learning of high-level states
and actions in continuous environments,” IEEE Trans. Autonomous
Mental Development, vol. 4, no. 1, pp. 70–86, 2012.

[23] M.G. Lagoudakis, M. Berhault, S. Koenig, P. Keskinocak, and A.J.
Kleywegt, “Simple auctions with performance guarantees for multi-
robot task allocation,” Proc. IEEE/RSJ Int’l Conf. Intelligent Robots and
Systems, pp. 698–705, 2004.

A TWO-PHASE DISPATCH HEURISTIC TO SCHEDULE THE MOVEMENT OF MULTI-ATTRIBUTE MOBILE SENSORS IN A HYBRID WIRELESS SENSOR NETWORK 13

[24] M.B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot
coordination: a survey and analysis,” Proc. of the IEEE, vol. 94, no. 7,
pp. 1257–1270, 2006.

[25] B.P. Gerkey and M.J. Mataric, “Sold!: auction methods for multirobot
coordination,” IEEE Trans. Robotics and Automation, vol. 18, no. 5, pp.
758–768, 2002.

[26] L. Luo, N. Chakraborty, and K. Sycara, “Competitive analysis of
repeated greedy auction algorithm for online multi-robot task assign-
ment,” Proc. IEEE Int’l Conf. Robotics and Automation, pp. 4792–4799,
2012.

[27] M. Berhault, H. Huang, P. Keskinocak, S. Koenig, W. Elmaghraby,
P. Griffin, and A. Kleywegt, “Robot exploration with combinatorial
auctions,” Proc. IEEE/RSJ Int’l Conf. Intelligent Robots and Systems, pp.
1957–1962, 2003.

[28] L. Lin and Z. Zheng, “Combinatorial bids based multi-robot task
allocation method,” Proc. IEEE Int’l Conf. Robotics and Automation, pp.
1145–1150, 2005.

[29] Z. Butler and D. Rus, “Event-based motion control for mobile-sensor
networks,” IEEE Pervasive Computing, vol. 2, no. 4, pp. 34–42, 2003.

[30] G. Wang, G. Cao, and T.F. La Porta, “Movement-assisted sensor
deployment,” IEEE Trans. Mobile Computing, vol. 5, no. 6, pp. 640–
652, 2006.

[31] G. Tan, S.A. Jarvis, and A.M. Kermarrec, “Connectivity-guaranteed
and obstacle-adaptive deployment schemes for mobile sensor net-
works,” IEEE Trans. Mobile Computing, vol. 8, no. 6, pp. 836–848, 2009.

[32] X. Wang and S. Wang, “Hierarchical deployment optimization for
wireless sensor networks,” IEEE Trans. Mobile Computing, vol. 10, no.
7, pp. 1028–1041, 2011.

[33] Y.C. Wang, C.C. Hu, and Y.C. Tseng, “Efficient placement and dis-
patch of sensors in a wireless sensor network,” IEEE Trans. Mobile
Computing, vol. 7, no. 2, pp. 262–274, 2008.

[34] Y.C. Wang and Y.C. Tseng, “Distributed deployment schemes for
mobile wireless sensor networks to ensure multilevel coverage,” IEEE
Trans. Parallel and Distributed Systems, vol. 19, no. 9, pp. 1280–1294,
2008.

[35] Y. Zou and K. Chakrabarty, “Distributed mobility management for
target tracking in mobile sensor networks,” IEEE Trans. Mobile Com-
puting, vol. 6, no. 8, pp. 872–887, 2007.

[36] R. Tan, G. Xing, J. Wang, and H.C. So, “Exploiting reactive mobility
for collaborative target detection in wireless sensor networks,” IEEE
Trans. Mobile Computing, vol. 9, no. 3, pp. 317–332, 2010.

[37] J. Hu, L. Xie, and C. Zhang, “Energy-based multiple target localiza-
tion and pursuit in mobile sensor networks,” IEEE Trans. Instrumen-
tation and Measurement, vol. 61, no. 1, pp. 212–220, 2012.

[38] G. Wang, G. Cao, T.F. La Porta, and W. Zhang, “Sensor relocation in
mobile sensor networks,” Proc. IEEE INFOCOM, pp. 2302–2312, 2005.

[39] A. Verma, H. Sawant, and J. Tan, “Selection and navigation of
mobile sensor nodes using a sensor network,” Pervasive and Mobile
Computing, vol. 2, no. 1, pp. 65–84, 2006.

[40] G. Wang, G. Cao, P. Berman, and T.F. La Porta, “Bidding protocols for
deploying mobile sensors,” IEEE Trans. Mobile Computing, vol. 6, no.
5, pp. 515–528, 2007.

[41] Y.C. Wang, W.C. Peng, and Y.C. Tseng, “Energy-balanced dispatch
of mobile sensors in a hybrid wireless sensor network,” IEEE Trans.
Parallel and Distributed Systems, vol. 21, no. 12, pp. 1836–1850, 2010.

[42] S. Zhang, J. Cao, L. Chen, and D. Chen, “Accurate and energy-
efficient range-free localization for mobile sensor networks,” IEEE
Trans. Mobile Computing, vol. 9, no. 6, pp. 897–910, 2010.

[43] S.Q. Zheng, J.S. Lim, and S.S. Iyengar, “Finding obstacle-avoiding
shortest paths using implicit connection graphs,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, vol. 15, pp.
103–110, 1996.

[44] M. Udi, Introduction to Algorithms: A Creative Approach, Addison-
Wesley Publishing Company, 1989.

[45] H.W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.

[46] J.E. Hopcroft and R.M. Karp, “A n5/2 algorithm for maximum
matchings in bipartite graphs,” SIAM J. Computing, vol. 2, pp. 225–
231, 1973.

[47] D.L. Applegate, R.E. Bixby, V. Chvatal, and W.J. Cook, The Traveling
Salesman Problem: A Computational Study, Princeton Series in Applied
Mathematics, 2007.

[48] M. Rahimi, H. Shah, G.S. Sukhatme, J. Heideman, and D. Estrin,
“Studying the feasibility of energy harvesting in a mobile sensor
network,” Proc. IEEE Int’l Conf. Robotics and Automation, pp. 19–24,
2003.

