
IEEE TRANSACTIONS ON MOBILE COMPUTING 1

Using Rotatable and Directional (R&D) Sensors to
Achieve Temporal Coverage of Objects and Its

Surveillance Application
You-Chiun Wang, Yung-Fu Chen, and Yu-Chee Tseng

Abstract—Due to hardware design or cost consideration, sensors may possess sector-like sensing coverage. Furthermore, by stepper
motors, sensors can rotate to cover the objects around them. This type of sensors are called rotatable and directional (R&D) sensors.
Through rotation, R&D sensors provide temporal coverage to objects by “periodically” detecting their existence. In the paper, we first develop
an event-driven surveillance system by R&D sensors, where objects are monitored by the sensors equipped with infrared detectors and
cameras. When an object is taken away, the sensor monitoring the object reports a warning message along with detailed snapshots from the
surroundings. Then, motivated by the system, we formulate an R&D sensor deployment problem, which tries to deploy the minimum number of
R&D sensors to cover a given set of objects such that each object is covered by 0 < δ ≤ 1 ratio of time in every frame. We show this problem
to be NP-hard and propose two efficient heuristics. The maximum covering deployment (MCD) heuristic iteratively deploys a sensor to cover
more objects, and performs well when objects congregate together. The disk-overlapping deployment (DOD) heuristic deploys sensors to
cover the joint sectors of overlapped disks, so it works better when objects are arbitrarily placed in the sensing field. The paper contributes
in defining a new temporal coverage model by R&D sensors, developing a surveillance application for this model, and proposing efficient
heuristics to reduce the deployment cost.

Index Terms—directional sensor, surveillance system, temporal coverage, wireless sensor network.

✦

1 INTRODUCTION

W IRELESS sensor networks (WSNs) are characterized
by ad hoc networking, cooperative sensing, and dis-

tributed processing. They are widely adopted in various mil-
itary and civil applications [1]. Sensors need to organize a
connected network that covers a sensing field or specific
point-locations to make the WSN function well. Conventional
research on WSNs usually assumes omnidirectional sensors
with disk-like sensing coverage [2]. However, due to hardware
design or cost consideration, sensors may possess sector-like
sensing coverage, which we call directional sensors. Practical
examples include infrared, camera, and ultrasonic sensors. By
integrating directional sensors with robotic actuators, such as
stepper motors, these sensors can rotate to provide spatiotem-
poral monitoring of the environment [3]. We call the sensors
with such capability rotatable and directional (R&D) sensors.

R&D sensors have many real-life applications, for example,
providing visual monitoring of the environment [4], [5] and
identifying the positions of objects [6]. In the paper, we first
prototype an event-driven surveillance system by R&D sen-
sors, where each sensor is equipped with an infrared detector
to search objects, a camera to take snapshots, and a stepper
motor to support rotation. Each sensor is rotated periodically
and during each period the sensor can monitor the objects
that it takes care of for a portion of time. We call this mon-
itoring behavior the temporal coverage model, whose goal is to
guarantee each object to be monitored by sensors for at least
a threshold ratio of time per period. The temporal coverage

Y.-C. Wang is with the Department of Computer Science and Engineer-
ing, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan. E-mail:
ycwang@cse.nsysu.edu.tw
Y.-F. Chen and Y.-C. Tseng are with the Department of Computer Science,
National Chiao-Tung University, Hsin-Chu, 30010, Taiwan. E-mail: {yungfu,
yctseng}@cs.nctu.edu.tw

model has practical applications in, for example, monitoring
the sea surface or underwater objects by sonar sensors [7], [8]
and detecting weather changes or ground objects by airborne
radars [9], [10].

From the above discussion, we define an R&D sensor deploy-
ment problem, which tries to deploy the minimum number of
sensors to cover a given set of objects to satisfy their temporal
coverage requirements. In particular, the sensing coverage of
each sensor is modeled by a sector with an opening angle
θ. Each sensor has 360◦ of freedom to rotate and a sensing
range of rs, as shown in Fig. 1(a). The time axis is divided
into fixed-length frames and in each frame a sensor rotates one
round and spends total (constant) time T in monitoring objects
(here we ignore the rotation time for simplicity). Fig. 1(b) gives
two examples, where sensor si stops two times per frame to
monitor the objects in sectors A and B and sensor sj stops
four times per frame to monitor the objects in sectors C , D,
E, and F . Fig. 1(c) shows the temporal coverage provided
by si and sj if they evenly divide their monitoring time to
sectors. An object is said to be δ-time covered, 0 < δ ≤ 1,
if during each frame it is monitored by sensors for at least
δT time. An R&D sensor network is said to achieve δ-time
coverage if all objects are δ-time covered in every frame. Then,
our R&D sensor deployment problem asks how to calculate
the minimum number of R&D sensors and determine their
locations and rotation schedules to achieve δ-time coverage
of the network. This problem is NP-hard because we can
reduce the geometric disk cover (GDC) problem [11], which is
NP-complete, to one of its instances.

To solve the R&D sensor deployment problem, we propose
two heuristics. The idea is to use GDC to calculate disks to
cover all objects and then select a subset of disks to deploy
with R&D sensors such that all objects are δ-time covered.

2 IEEE TRANSACTIONS ON MOBILE COMPUTING

si
q

rs

ok

(a)

si

sector B
disk di

sector A

rs

q

q

sj
sector D

sector C

sector F

disk dj

sector E

rs

q

q

q

q

a

b

c

d

e

f

(b)

time

frame frame ...

the duration that a sensor stops to monitor the objects in one sector

the duration that a sensor rotates from one sector to the next sector

si
A B A B A

0.5T 0.5T 0.5T 0.5T 0.5T

sj
C D E F C D E F C

0.25T 0.25T 0.25T 0.25T 0.25T 0.25T 0.25T 0.25T 0.25T

frame frame ...

(c)

Fig. 1: The sensing model of R&D sensors: (a) sensing coverage, (b) sector
coverage, and (c) temporal coverage.

Specifically, the maximum covering deployment (MCD) heuristic
suggests deploying sensors on the disks that cover more
objects. In this way, when objects congregate together, MCD
can deploy fewer sensors to satisfy their δ-time coverage
requirements. On the other hand, the disk-overlapping deploy-
ment (DOD) heuristic prefers deploying sensors to cover the
joint sectors of overlapped disks. Therefore, when objects are
arbitrarily placed in the sensing field, DOD can take advantage
of disk overlap to reduce the number of sensors. To summarize,
the paper makes two major contributions. First, we define
a new temporal coverage model, which could have many
practical applications in visual monitoring, sonar, and radar
systems. An even-driven surveillance prototype is also devel-
oped to demonstrate its feasibility. Second, we formulate a new
R&D sensor deployment problem and propose two efficient
heuristics to save the deployment cost. Both analytical and
simulation results are presented to verify their effectiveness.

We organize the paper as follows. Literature survey is
conducted in Section 2. Section 3 gives the implementation
of our event-driven surveillance prototype and defines the
R&D sensor deployment problem. Section 4 proposes the MCD
and DOD heuristics. Performance evaluations are presented
in Section 5. Section 6 concludes the paper and gives future
research topics.

2 RELATED WORK

The subjects of sensing coverage and network deployment
in WSNs have been widely studied. Below, we first discuss
the sensing coverage issues, and then review the deployment
schemes in both omnidirectional and directional WSNs.

2.1 Sensing Coverage Issues

Conventional research on sensing coverage usually focuses
on full coverage in regular regions such as a rectangle. Most
studies aim at the k-coverage problem whose goal is to activate
a subset of sensors to make every location in the sensing

field be monitored by at least k sensors. Solutions for omni-
directional sensors [12], [13] and directional sensors [14] have
been developed. In addition, [15] proposes barrier coverage
for long-thin belt regions, where a belt region is said to be
k-barrier covered by an omnidirectional WSN if all crossing
paths through the region are k-covered. Since barrier coverage
focuses on crossing paths in belt regions, existing solutions of
the k-coverage problem may not be directly applied. The result
of barrier coverage is also extended to directional sensors [16].

Given an omnidirectional WSN in a rectangular region,
[17], [18] consider the problem of finding the minimal/maximal
exposure paths. Specifically, when an intruder selects any point
to enter the region and crosses it, the minimal/maximal ex-
posure path is a path that the intruder is monitored by the
minimum/maximum number of sensors, which can be viewed
as the worst-case/best-case coverage of the network. How to
find minimal exposure paths in directional WSNs is discussed
in [19]. The work of [20] proposes an intruder tracking problem
whose goal is to find the minimum number of omnidirectional
sensors such that if they are uniformly distributed, the average
length of an uncovered path traveled by the intruder is always
shorter than a threshold. In addition, [21] calculates the mini-
mum node density required by a directional WSN to make all
moving objects be detected by sensors.

Several studies address time-related coverage issues in om-
nidirectional WSNs. Reference [22] considers that at any time
instance, only a very small subset of sensors are activated to
extend the network lifetime, where they form an active zone to
monitor the sensing field. As the time progresses, the active
zone moves along a predefined path. Assuming that sensors
arbitrarily move in a region, [23] investigates the network
coverage problems caused by the continuous movement of
sensors such as the fraction of covered area and the time used
to detect moving objects. The work of [24] considers a mobile
WSN with a big coverage hole and the number of sensors is
not enough to cover the hole. Then, the hole “migrates” by
the movement of sensors such that every location is covered
by sensors for at least a portion of time. The study of [25]
defines a spatial-temporal coverage metric, where the metric of a
small area is the product of the area size and the period during
which the area is covered. Then, the goal is to activate a subset
of sensors to maximize the overall metric of all areas. However,
none of the above work considers time-related coverage issues
in directional WSNs. Therefore, this motivates us to investigate
the temporal coverage issue by exploiting the rotation of R&D
sensors.

2.2 Deployment Schemes in Omnidirectional WSNs

The deployment problem in omnidirectional WSNs has been
studied in a variety of contexts. Several studies model a region
by grid points and deploy sensors on a subset of grid points.
Reference [26] considers two types of sensors with different
costs and sensing ranges, and the goal is to make each grid
point be k-covered with the minimum cost. Considering a
probabilistic sensing model, [27] deploys sensors to make each
grid point be covered by sensors with the minimum confidence
level. The work of [28] suggests deploying sensors to make
every grid point be covered by different sensors, so the result
is used to distinguish from different grid points for localization
applications. Without the help of grid points, [29], [30] propose
an optimal deployment scheme to provide 1-coverage of the
sensing field, where sensors are deployed in a strip-by-strip

USING R&D SENSORS TO ACHIEVE TEMPORAL COVERAGE OF OBJECTS AND ITS SURVEILLANCE APPLICATION 3

manner. In the work of [31], a hexagon-like deployment is
proposed to provide k-coverage of a region. A framework to
evaluate network lifetimes and costs for various deployments
is proposed in [32].

Mobilizers are assumed in many studies to automate the
deployment. When events occur, [33] moves a subset of sensors
to detect the events while maintains 1-coverage of the sensing
field. Imaging that sensors exert attractive or repulsive forces
on each other, [34] exploits such virtual forces to help deploy a
WSN. Virtual forces are also adopted in [35], [36]. In addition,
grid structures [37] and Voronoi diagrams [38] are adopted to
facilitate the deployment procedure, where sensors are moved
from the high-density grids or small cells to other places so that
they can be evenly deployed in the sensing field. Reference [39]
calculates the minimum number of locations to deploy with
sensors to provide 1-coverage of the sensing field, and then
moves sensors to these locations such that they can consume
the least amount of energy. Designing in a similar way, [40]
extends the result to provide k-coverage of the sensing field.

2.3 Deployment Schemes in Directional WSNs

Given a set of static targets, [41] considers a maximum coverage
with minimum sensors problem whose goal is to activate the
minimum number of directional sensors to cover the maxi-
mum number of targets. This problem is formulated by integer
linear programming and a greedy strategy by selecting sensors
to cover more objects is proposed. Assuming that directional
sensors can switch to specific directions, [42] organizes the
directions of sensors into multiple cover sets, where in each
cover set all targets are covered by the corresponding sensors.
Then, a cover set is selected (and the corresponding sensors
are activated) in each period to extend the network lifetime.
Reference [43] considers that sensors have directional sensing
and communication ranges and models the WSN by a directed
communication graph to check the connectivity among sen-
sors. Assuming that directional sensors can only rotate within
a constrained angle and the network has a subset of anchor
sensors with known positions, [6] considers a localization
problem to calibrate the positions of non-anchor sensors. Each
sensor measures the relative ranges from other sensors and
compensates the confined field of view by rotating. However,
these studies do not consider the R&D sensor deployment
problem.

How to deploy static directional sensors is also discussed
in the literature. The work of [44] solves both the connected
point-coverage and connected region-coverage problems, which
seek to deploy the minimum number of directional sensors
to construct a connect network that covers a given set of
point-locations and an infinite 2D plane, respectively. For
the connected point-coverage problem, the work first finds
the sectors anchored by one, two, and three point-locations
that cover the maximum number of point-locations and then
deploys directional sensors to cover these sectors. Then, extra
sensors are added to maintain the network connectivity. For
the connected region-coverage problem, sectors are placed in
a hexagon-like fashion to cover the 2D plane. Reference [45]
models the sensing field by a set of points on which directional
sensors can be deployed. Given a subset of critical points, the
work deploys the minimum number of sensors to cover all
critical points by integer linear programming. However, once
sensors are deployed, they do not rotate in [44], [45]. The work
of [46] installs multiple directional sensors of the same type

server

Internet

R&D sensor

issue

commands
warning

report

(4) do actions to

 analyze the event

indoor

environment

camera

infrared

detector

stepper

motor

object

(2) assign

 monitoring jobs

(3) rotate and

 monitor objects

object

is stolen

(5) report

(obj1, 60o)

(obj2, 180o)

sensing

range

N

user

(1) rotate one round

 to scan objects

reference

point (0o)

Fig. 2: The event-driven surveillance system by R&D sensors.

on one node, where each sensor faces to a different direction.
In this way, one may adopt any omnidirectional WSN deploy-
ment solution to cover all objects. However, because a sensor
is usually more expensive than a stepper motor, this solution
may encounter a higher hardware cost compared with that
using R&D sensors. In addition, under the temporal coverage
model, since objects need not be always covered by sensors,
we can trade the rotation time for reducing the hardware cost.
Therefore, in this paper we propose R&D sensor deployment
heuristics to realize the temporal coverage model and reduce
the deployment cost.

3 AN R&D SENSOR SURVEILLANCE

PROTOTYPE AND ITS DEPLOYMENT PROBLEM

Below, to demonstrate how R&D sensors can be applied to
indoor applications, we first develop a prototype of sensors
and objects and integrate them to organize an even-driven
surveillance system. We then formally define our R&D sensor
deployment problem.

3.1 Prototyping an R&D Sensor Surveillance System

Conventional surveillance systems typically collect a large
amount of videos from wall-mounted cameras, which requires
huge computation to analyze [47]. To reduce the video content
produced, we develop an event-driven surveillance system by
R&D sensors, whose architecture is shown in Fig. 2. Specif-
ically, we consider an indoor environment containing static
sensors and objects to be monitored. Each sensor is equipped
with an infrared detector, a camera, a wireless interface, and a
stepper motor. The infrared detector has a directional sensing
range and is used to search and detect objects. The camera has
a zooming capability to take different resolutions of snapshots.
The wireless interface is used to interact with the server and
transmit messages. The stepper motor supports the rotation
of a sensor. We use a security scenario to illustrate how
this system works (refer to Fig. 2). In particular, each sensor
behaves as follows:

4 IEEE TRANSACTIONS ON MOBILE COMPUTING

• Initially, each sensor rotates one round to scan all ob-
jects around it. Using the north direction as the refer-
ence, the sensor records its surrounding objects along
with their angles and then reports these information to
the server.

• After collecting the data from all sensors, the server
assigns the objects to be monitored by each sensor
and broadcasts its assignments. Then, sensors start to
monitor objects according to their schedules. During
rotation, each sensor can command its camera to zoom
in/out and take snapshots according to the application
scenario.

• When an object is stolen, the responsible sensor can
soon learn the fact due to the loss of infrared signal.
Then, many actions could be taken. For example, the
sensor can notify the neighboring sensors of turning
their cameras toward the original position of the stolen
object to analyze the reason of this event.

We prototype R&D sensors and objects to realize the above
scenario. Each R&D sensor is composed of an infrared detector,
a stepper motor, and a camera, as shown in Fig. 3(a). The
infrared detector (shown in Fig. 3(b)) consists of an infrared
transmitter and a Jennic board [48]. The infrared transmitter
has a beam angle of 15◦ and emits an infrared signal every
50 milliseconds to search the surrounding objects. The Jennic
board supports the ZigBee short-range communication [49] to
exchange messages with other sensors. We adopt the SANYO
stepper motor (shown in Fig. 3(c)) to support the rotation of
sensors. It turns 1.8◦ per step and is controlled by a stepper
motor driver. Each driver manages two stepper motors simul-
taneously. We adopt a mobile phone with built-in camera to
take snapshots, so it can transmit the snapshots to the server
through its 3G interface.

On the other hand, in order to detect objects, each object
is attached with an object module. This module consists of
an infrared receiver (shown in Fig. 3(b)) and a Jennic board.
When an R&D sensor rotates to monitor an object, since the
corresponding object module will receive the infrared signal
emitted from the sensor, this module can notify the sensor
by sending a message through its Jennic board. Here, we
adopt the 940 nm wavelength module as the infrared receiver,
whose sensing angle is 45◦ and maximum receipt distance is
10 meters. When an object is taken away, the sensor cannot
hear the feedback from the object module through the Jennic
board. Thus, the sensor can know that the object disappears.
Fig. 3(d) shows a bird’s-eye view of our prototype, where a
dashed circle is the sensing range of an R&D sensor when it
rotates one round.

3.2 R&D Sensor Deployment Problem

We are given a set of static objects Ô = {o1, o2, · · · , om}
modeled by point-locations in a 2D plane. Each sensor has a
sensing range modeled by one sector with an opening angle
of θ ∈ (0, π) and a radius of rs, and an omnidirectional
communication range whose radius is rc. To formulate the
problem, we make the following assumptions:

• All sensors have the same θ, rs, and rc values, but the
relationship between rs and rc is arbitrary. We consider
the binary sensing model1, where an object is said

1. When the sensing region is irregular, we can use a probabilistic model
to describe it [39]. In this case, an object is said to be covered by a sensor
if the detection probability of the sensor to the object exceeds a threshold.

infrared detector

stepper

motor

mobile phone (with built-in

camera in the back)

(a)

(b) (c)

R&D sensor

infrared

signal
ZigBee

communication
sensor

rotation

cameracamera’s view

sensor

rotation

object stepper motor driver

(d)

Fig. 3: Our implementation of the event-driven surveillance system: (a)
the R&D sensor, (b) the infrared detector and the object module, (d) the
stepper motor (with the driver), and (d) a bird’s-eye view of our prototype.

to be covered by a sensor if it locates in the sensing
coverage of the sensor. Fig. 1(a) gives an example,
where object ok is covered by sensor si. We assume
that the monitoring results of sensors is analyzed by a
powerful server. Therefore, each sensor takes the equal
time to detect objects, no matter the number of objects
to be monitored. For example, camera or sonar sensors
satisfy this assumption since the server can analyze the
objects by image processing or sonar recognition.

• All sensors have the same rotation speed and 360◦

of freedom to rotate counterclockwise2. Also, each sen-
sor is allowed to stop during rotation. The time for
a sensor to rotate one round is called a frame. Al-

2. This assumption is to guarantee that all frames have the same length.
It may result in variable lengths of frames to allow sensors to rotate in
arbitrary directions, and how to deal with the above issue is out of the
paper’s scope.

USING R&D SENSORS TO ACHIEVE TEMPORAL COVERAGE OF OBJECTS AND ITS SURVEILLANCE APPLICATION 5

though the rotation angle between any two adjacent
stopping points is different, a sensor must rotate 360◦

in each frame. Fig. 1(b) gives an example. Sensor si
has two stopping points a and b, so it takes 0.5T time
to monitor the objects in sector A, rotates by 6 asib,
stops to monitor the objects in sector B for 0.5T time,
and then rotates by 6 bsia. Thus, si totally rotates by
6 asib+ 6 bsia = 360◦ in each frame. Similarly, suppos-
ing that sensor sj starts rotating at point c, it totally
rotates by 6 csjd + 6 dsje + 6 esjf + 6 fsjc = 360◦ in
each frame. Since the rotation speed is the same, the
total time spent on rotating 360◦ (without stopping) in
each frame must be the same. Note that the rotation
angle to move from one sector to the next sector is no
smaller than θ since sectors are not overlapped in a disk.

• Stepper motors have a correction mechanism. For ex-
ample, each stepper motor can be equipped with a com-
pass to correct the direction during rotation. Thus, we
ignore the rotation error caused by stepper motors. In
addition, stepper motors are powered by large-capacity
batteries, so we do not take their energy consumption
into account.

• Sensors are time-synchronized for detection purpose,
because they need to attach time stamps on the moni-
toring data and forward them to the server. All sensors
have the same frame length but their frames are not
necessarily aligned. Besides, we assume that sensors
can be precisely deployed on any location in the sensing
field.

When a sensor si rotates one round (without changing its
location), its sensing coverage scans a complete disk di that
is centered at si and with a radius of rs. According to the
objects in di, we cut it into multiple disjointed sectors, where
each sector has an opening angle of θ. Sensor si then rotates its
sensing coverage to fit each sector. When its sensing coverage
fits a sector, we say that si covers the sector. Fig. 1(b) gives two
examples. Disk di is cut into two sectors and sensor si rotates
to cover sectors A and B, while disk dj is cut into four sectors
and sensor sj rotates to cover sectors C , D, E, and F .

We divide the time axis into fixed-length frames. In each
frame, a sensor si rotates one round to cover the objects in
its disk di. Supposing that di has αi sectors, si should stop to
cover each sector for T

αi

time and then rotate to the next sector.
Therefore, the frame length is the total time that a sensor stops
to cover all sectors (that is, T) and the time to rotate one round
(marked as grey in Fig. 1(c)). Fig. 1(c) gives two examples.
Since disks di and dj are cut into two and four sectors, sensors
si and sj stop to cover each disk for 0.5T and 0.25T time,
respectively. Given a threshold 0 < δ ≤ 1, an object is said to
be δ-time covered if and only if the object is covered by sensors
for at least δT time in every frame. Fig. 1(c) gives two example,
where the objects in disks di and dj are 0.5-time and 0.25-time

covered, respectively. Then, given Ô and δ, the R&D sensor
deployment problem asks how to use the minimum number
of R&D sensors and determine their locations and rotation
schedules to cover all objects in Ô such that each object is
δ-time covered.

Note that the rotational latency does not affect the time
used to monitor objects, because each sensor has reserved time
T to monitor all of its objects in every frame. In addition, since
the frame length is fixed, each sensor is allowed to cover at
most

⌊
1
δ

⌋
sectors in every frame. (Thus, a sensor stops at most

⌊
1
δ

⌋
times per frame.) When a disk is cut into more than

⌊
1
δ

⌋

sectors, it requires multiple sensors to cover its sectors. Fig. 1(b)
gives an example. Supposing that 0.5-time coverage is required
(that is, δ = 0.5), we need to deploy two sensors on disk dj
to make its objects be 0.5-time covered. Theorem 1 shows that
the R&D sensor deployment problem is NP-hard.

Theorem 1. The R&D sensor deployment problem is NP-hard.

Proof: We reduce the GDC problem, which is NP-
complete, to the R&D sensor deployment problem. Given a
set of point-locations, GDC asks how to find the minimum
number of disks to cover all point-locations. Here, we consider
an instance of the R&D sensor deployment problem where
δ = θ

2π and π is divisible by θ. We show that GDC has a
solution if and only if the R&D sensor deployment problem
has a solution.

Suppose that we have a solution to the R&D sensor de-
ployment problem. Because δ = θ

2π , each sensor can rotate
to cover 2π

θ
sectors in every frame. Since each sector has an

opening angle of θ, these sectors form a complete disk. In other
words, each sensor can cover all of the objects in its disk per
frame. Therefore, these disks constitute a solution to GDC. This
proves the if part.

Conversely, suppose that we have a solution to GDC, which
is a set of disks. Then, by deploying a sensor on each disk in
the set, we can guarantee that all objects are δ-time covered
(since each sensor can rotate to cover all of the objects in its
disk per frame). This constitutes a solution to the R&D sensor
deployment problem, thus proving the only if part.

4 THE PROPOSED SENSOR DEPLOYMENT

HEURISTICS

Our idea is to first calculate disks to cover all objects and
then select a subset of disks to deploy with R&D sensors such
that all objects are δ-time covered. We propose two heuristics,
where MCD suggests deploying sensors on the disks that cover
more objects, while DOD exploits disk overlap by deploying
sensors to cover joint sectors. Then, we add the minimum
number of relay nodes to maintain the network connectivity.

4.1 Maximum Covering Deployment (MCD) Heuristic

Given a set of objects Ô, MCD has three phases:

• Phase 1: Find a set of disks D̂ to cover all objects in Ô.

• Phase 2: Set all objects in Ô to unmarked. We then
iteratively select the disk with the maximum number of
unmarked objects, conduct the sector cutting operation to
find its sectors, and mark all of its objects. This iteration

is repeated until all objects in Ô are marked. Then, we
remove the disks without conducting the sector cutting

operation from D̂.

• Phase 3: Iteratively select the disk from D̂ that covers
the maximum number of objects. We then deploy one
R&D sensor on the center of that disk and determine
its rotation schedule. This iteration is repeated until all

objects in Ô are covered.

Below, we discuss the detail of each phase. In phase 1, we

modify the GDC solution in [50] to calculate a set of disks D̂
to cover all objects in Ô, which contains three rules:

6 IEEE TRANSACTIONS ON MOBILE COMPUTING

o1

o2

o3

o4

o5

rs

2rs< 2rs

Fig. 4: An example of the modified GDC solution.

1) If two objects have a distance smaller than 2rs, we
place two disks such that their circumferences intersect
at these two objects.

2) If two objects have a distance equal to 2rs, we place
a disk such that its circumference passes these two
objects.

3) If an object is isolated, in the sense that its distance to
the nearest object is larger than 2rs, we place a disk
such that its center locates at the object.

Fig. 4 gives three examples. Since we need to check each pair

of objects in Ô, the maximum number of disks in D̂ is 2Cm
2 ,

where Cm
2 = m!

2(m−2)! is the combination of selecting two

objects from m objects in Ô.

Since the size of D̂ is larger than m, which means that some

disks are redundant, we select a subset of O(m) disks from D̂
and find their sectors in phase 2. Specifically, we iteratively
select the disk that covers the maximum number of objects
and then conduct the two-step sector cutting operation to find
its sectors:

1) Indexing and clustering: We cluster objects according
to their locations in the disk. Specifically, we arbitrarily
select an object, index it by o1, and add it to cluster 1.
From o1, we scan non-indexed objects counterclockwise.
On finding a non-indexed object, we index it by o2
and decide its cluster. If 6 o1sao2 ≤ θ, o2 is added to
cluster 1; otherwise, o2 is added to cluster 2, where sa
is the disk center. For a general case, supposing that we
index an object by oi and add it to cluster k, the next
non-indexed object is indexed by oi+1. If 6 oisaoi+1 ≤
θ, oi+1 is added to cluster k; otherwise, oi+1 is added
to cluster k + 1. This operation is repeated until all
objects are indexed. Fig. 5(a) and (b) together give an
example by grouping all objects into three clusters.

2) Deciding sectors: We then decide the sectors to cover
all objects in each cluster. Supposing that there are
K clusters, we handle these clusters in the sequence
of K, 1, 2, · · · ,K − 1. For each cluster, starting from
the uncovered object with the smallest index, say, oi,
we place a sector whose edge passes oi such that the
sector covers the maximum number of objects. This
operation is repeated until all objects in the cluster are
covered. Fig. 5(c) gives an example, where we place a
sector A whose edge passes o8 and covers all objects
in cluster 3. Since sector A also covers o1 in cluster 1,
we place a sector B whose edge passes o2 and covers
the remaining objects in cluster 1.

Since we arbitrarily select the initial object in step 1, the
included angle between clusters K and 1 may be no larger than
θ. In this case, by selecting cluster K to start placing sectors,
the last sector in cluster K could also cover some objects in
cluster 1 (so the number of sectors is reduced). Note that we

sa

o1

start from

this object

(a)

sa

o1

o2

o3

o5

o7

o8

o4

cluster 1

cluster 2

cluster 3

q>

q>

q£

o6

o9

(b)

sector A

sa

o1

o2

o3

o5

o7

o8

o4

cluster 1

o6

o9

sector B

sector C

c
lu

s
te

r
2

cluster 3

(c)

Fig. 5: The sector cutting operation on a disk: (a) select an object and index
it by o1, (b) scan all objects counterclockwise and cluster them accordingly,
and (c) starting from the last cluster, place sectors to cover each cluster.

conduct the sector cutting operation on only O(m) disks since

Ô has m objects. Those disks without conducting the sector

cutting operation are removed from D̂, so the size of D̂ can
shrink from O(2Cm

2) to O(m). Theorem 2 shows that the sector
cutting operation can place the minimum number of sectors to
cover the objects in a disk.

Theorem 2. The sector cutting operation places the minimum
number of sectors to cover the objects in a disk.

Proof: We divide the proof into two parts. First, we show
that the sector cutting operation finds the minimum number
of clusters in a disk, where 1) the included angle between any
two adjacent clusters is larger than θ and 2) the included angle
between any two adjacent objects in each cluster is smaller
than or equal to θ. Second, for each cluster, the sector cutting
operation places the minimum number of sectors to cover all
of its objects.

For the first part, recall that the sector cutting operation
starts placing sectors from the last cluster, so its last sector may
also cover some objects in the first cluster. In this case, we can
combine the first and last clusters into the same one. Without
loss of generality, suppose that the sector cutting operation
calculates a set of clusters C = {c1, c2, · · · , cK}, where the
included angle between clusters cK and c1 is larger than θ.
Then, suppose that there is a scheme which calculates a set
of clusters C′ = {c′1, c

′
2, · · · , c

′
K′}, where K ′ < K and the

included angle between any two adjacent clusters is larger
than θ (that is, condition 1 is satisfied). In this case, there
must be a cluster, say, c′j in C′ that overlaps at least two
clusters ci and ci+1 in C. Let ok and ok+1 be the last and first
objects in clusters ci and ci+1, respectively. Both ok and ok+1

must belong to c′j . However, the included angle between ok
and ok+1 must be larger than θ (otherwise, they will be both
included in ci). Thus, this violates condition 2 and causes a

USING R&D SENSORS TO ACHIEVE TEMPORAL COVERAGE OF OBJECTS AND ITS SURVEILLANCE APPLICATION 7

oaob

. . .

l1l2

. . .

. . .

. . .

. . .

. . .

.

lilk lk-1 li-1 li-2

l'1l'2l'i’l'k’ l'k’-1 l'i’-1 l'i'-2

l'i’l'k’ l'k’-1 l'1l'2l'i’-1 l'i'-2

sector cutting

operation

optimal scheme

optimal scheme

(shifting)

the cluster containing {oa, oa+1, �, ob}

s-line segments being shifited θ

}

Fig. 6: Viewing a cluster as a line segment from objects oa to ob.

contradiction. Therefore, the sector cutting operation finds the
minimum number of clusters in a disk.

For the second part, let us consider a cluster containing
objects {oa, oa+1, · · · , ob}. For ease of presentation, we view
the cluster as a line segment from oa to ob, as shown in Fig. 6.
In this case, each sector used to cover objects can be viewed as
a line segment whose length is θ. For convenience, we call such
a line segment a s-line segment. Since any two adjacent objects
in a cluster must have an included angle smaller than or equal
to θ, the distance between any two adjacent s-line segments
must be smaller than or equal to θ. Then, suppose that the
sector cutting operation calculates a set of s-line segments L =
{l1, l2, · · · , lk} and there is an optimal scheme which calculates
another set of s-line segments L′ = {l′1, l

′
2, · · · , l

′
k′}. Each s-line

segment l′i′ in L′ must overlap either exact one s-line segment
li or two s-line segments li and li+1 in L. In the former case,
l′i′ is equal to li since we can shift l′i′ such that its right-hand
end aligns its rightmost object, as shown in Fig. 6. In addition,
since the distance between any two adjacent s-line segments
is smaller than or equal to θ, if l′i′ is equal to li, then we can
guarantee that l′i′+1 is equal to li+1, l

′
i′+2 is equal to li+2, · · · ,

and l′k′ is equal to lk by doing shifting. Thus, we have k′− i′+
1 = k − i + 1. On the other hand, l′i′−1 must overlap li−1 and
li−2, l′i′−2 must overlap li−2 and li−3, · · · , and l′2 must overlap
l2 and l1. Since l′2 cannot cover oa (otherwise, it cannot overlap
both l2 and l1), we need to use one extra s-line segment (that
is, l′1) to cover oa. In this case, we have i′ − 1 = i − 1 and
thus k = k′. Therefore, the sector cutting operation places the
minimum number of sectors to cover the objects in a cluster.

By proving both the two parts, we show that the sector
cutting operation places the minimum number of sectors to
cover the objects in a disk.

Finally, in phase 3, we deploy R&D sensors on disk centers

to cover objects. We sort all disks in D̂ by their maximum
numbers of objects covered by one sensor in a decreasing order.
In particular, if a disk has more than

⌊
1
δ

⌋
sectors, this value

is the maximum number of objects covered by its
⌊
1
δ

⌋
sectors;

otherwise, it is the total number of objects in the disk. Then,
we iteratively pick one disk, deploy a sensor on its center, and
make the sensor rotate to monitor each of its sectors with equal
time. Note that if the disk has more than

⌊
1
δ

⌋
sectors, the sensor

only monitors the
⌊
1
δ

⌋
sectors with the maximum number of

objects. Then, we remove the objects covered by the sensor

from Ô. If di contains no objects, we remove it from D̂. The

above iteration is repeated until Ô becomes empty. Fig. 1(b)
gives an example, where δ = 0.5. We deploy one sensor to
cover sectors D and E, then one sensor to cover sectors A and
B, and finally one sensor to cover sectors C and F . All sensors
monitor each sector for 0.5T time. Theorem 3 calculates the
time complexity of MCD.

Theorem 3. MCD has time complexity of O(m2).

Proof: In phase 1, running the modified GDC solution
takes O(Cm

2) time since we need to search any pair of objects

from Ô. In phase 2, we build a maximum binary heap to

maintain the disks in D̂ (whose size is O(2Cm
2)), which takes

O(2Cm
2) time. Since deleting the maximum from the heap

spends O(lg 2Cm
2) time and we delete O(m) disks from the

heap, it takes O(m) · O(lg 2Cm
2) = O(m lgm) time to do all

deletions. In addition, the sector cutting operation totally takes

O(2m) time since in each step we scan m objects in Ô. In
phase 3, a maximum binary heap is also built in O(m) time

to maintain the disks in D̂ (whose size is shrunk to O(m)).
Since D̂ has O(m) disks, the number of heap operations to
delete the maximum and to insert entries does not exceed
O(m), where each heap operation takes O(lgm) time. So,
it totally takes O(m) · O(lgm) = O(m lgm) time to select
disks in phase 3. Therefore, MCD has time complexity of
O(Cm

2)+O(2Cm
2)+O(m lgm)+O(2m)+O(m)+O(m lgm) =

O(m2).
We remark that when objects congregate together, a sector

could cover more objects. Thus, the number of sectors in each
disk may be reduced. Therefore, by deploying sensors to cover
the sectors with more objects, MCD can reduce the number of
sensors.

4.2 Disk-Overlapping Deployment (DOD) Heuristic

When objects are arbitrarily placed in the sensing field, each
sector may cover only few objects. In this case, each disk
requires more sectors to cover its objects and thus we may need
to deploy multiple sensors on each of most disks. Therefore,
the efficiency of MCD may degrade. To handle this case, we
propose DOD whose idea is to exploit disk overlap to save
sensors. Fig. 7 gives an example, where δ = 0.5. Both disks
da and db are divided into more than two sectors but a sensor
can cover only two sectors. Thus, MCD deploys totally four
sensors at sa and sb to cover all objects. However, since sectors
A, B, and E overlap with each other, we can use one sensor
to cover their objects. Specifically, we deploy one sensor at si
to cover the objects in sectors A, B, and E, one sensor at sa to
cover sectors C and D, and one sensor at sb to cover sectors F
and G, which totally requires only three sensors. Here, sectors
A, B, and E are called joint sectors since they can be “jointly”
covered by one disk.

Based on the above observation, DOD exploits disk overlap
by deploying sensors to cover joint sectors, which is outlined
as follows:

• Phase 1: Use the modified GDC solution to calculate
the set D̂. We then select a subset of disks D̂s from D̂ to
cover all objects in Ô.

• Phase 2: Find the joint sectors of any two disks in D̂s.
• Phase 3: Calculate the additional disks used to cover

the joint sectors. We then deploy R&D sensors on these

additional disks and a subset of disks in D̂s.

Below, we discuss the detail of each phase. In phase 1, recall

that the modified GDC solution finds a set D̂ with O(2Cm
2)

disks. Then, from D̂, we find a subset of disks D̂s to cover all
objects in Ô such that 1) the size of D̂s is minimized and 2) the
number of disks with no more than

⌊
1
δ

⌋
sectors is maximized.

Here, we want to use the minimum number of disks to cover
all objects by objective 1. On the other hand, when a disk has

8 IEEE TRANSACTIONS ON MOBILE COMPUTING

sbsa

sector E

sector F

sector G

sector A

sector D

sector C

disk dbdisk da

s
e
c
to

r
B

the circle used to find joint sectors

rs

(a)

si

disk di

sb

sa

sector Esector A
disk da

sector B

disk db

(b)

Fig. 7: An example of DOD: (a) find the joint sectors of disks da and db
and (b) deploy one sensor at si to cover all objects in the joint sectors.

no more than
⌊
1
δ

⌋
sectors, we can deploy one sensor to cover

all of its sectors. So, objective 2 is to select as many such disks
as possible. Therefore, we propose a disk selection scheme to
achieve the two objectives:

1) Let D̂s = ∅ and set all objects in Ô to unmarked.

2) Sort the disks in D̂ by their numbers of unmarked
objects in a decreasing order. Then, we select the first

n > 1 disks from D̂ and conduct the sector cutting
operation on each of these n disks independently3. To
satisfy objective 2, two cases are considered:

• If some disks have no more than
⌊
1
δ

⌋
sectors,

we remove the disks with more than
⌊
1
δ

⌋
sectors

from these n disks.
• Otherwise, all disks must have more than

⌊
1
δ

⌋

sectors. In this case, no disks are removed.

Among the remaining disks, we select the disk, say,
di that covers the maximum number of unmarked
objects. We then add di to D̂s and mark all objects in
di.

3) Repeat step 2 until all objects in Ô are marked.

Note that D̂s has O(m) disks since there are m objects in Ô.
Then, in phase 2, we find the joint sectors of any two disks

in D̂s by Definition 1.

Definition 1. Two disks have joint sectors if and only if 1) the
distance between their centers is no larger than 2rs, 2) both

3. Unlike MCD, after conducting the sector cutting operation, we do not
mark the objects in the disk. Thus, if an object locates in two disks, it is
considered by both disks when conducting the sector cutting operation.

disks have more than
⌊
1
δ

⌋
sectors, and 3) when drawing a

circle between the two disks with a radius of rs, each disk
has at least one sector whose objects all locate inside the
circle.

Here, condition 1 means that both disks overlap with each
other. Condition 2 means that both disks require multiple sen-
sors to cover their sectors, so it is efficient to deploy sensor(s)
to jointly cover their sectors. Condition 3 indicates how to find
joint sectors. Fig. 7(a) shows an example, where δ = 0.5. Given
two overlapped disks da and db (so condition 1 is satisfied),
both disks have more than

⌊
1
δ

⌋
= 2 sectors (so condition 2

is satisfied). Then, we draw a circle between da and db with a
radius of rs. In this case, all of the objects in sectors A, B, and E
locate inside the circle. By condition 3, they are joint sectors. All
other sectors are called non-joint sectors. For example, sectors
C , D, F , and G are non-joint sectors because they have objects
outside the circle.

Finally, in phase 3, we find the additional disks to cover
the joint sectors and select disks to deploy with sensors. This
phase involves three steps:

1) For each disk di in D̂s without joint sectors, we deploy
⌈αiδ⌉ sensors to cover all of its sectors, where αi is the
number of non-joint sectors in di. We then remove all

objects in di from Ô and di from D̂s.

2) After step 1, D̂s must remain only the disks with joint
sectors. We then deploy sensors to cover the non-joint

sectors of these disks. For each disk in D̂s with αi non-
joint sectors, we deploy ⌈αiδ⌉ sensors to cover all of
its non-joint sectors. Here, since each sensor can cover⌊
1
δ

⌋
sectors, there could be one sensor that covers only,

say, γ <
⌊
1
δ

⌋
non-joint sectors. In this case, we make

this sensor also cover the (
⌊
1
δ

⌋
− γ) joint sectors with

the maximum number of objects in that disk. Then,
we remove all objects covered by these sensors from

Ô. Thus, the sectors and disks without objects are
also removed accordingly. Fig. 7(a) gives an example,
where δ = 0.5. We deploy one sensor at sa to cover the
non-joint sectors C and D of disk da and one sensor
at sb to cover the non-joint sectors F and G of disk db.
Then, only joint sectors A, B, E are left, as shown in
Fig. 7(b).

3) After step 2, each disk in D̂s must remain only joint
sectors. Thus, we iteratively select the two overlapped

disks in D̂s such that their joint sectors have the

maximum number of objects. Let Ôc denote the set
of objects in these joint sectors. We then find a set

of additional disks to cover the objects in Ôc. Here,
recall that we have already calculated the set of disks

D̂ to cover all objects in Ô by the modified GDC
solution in phase 1. So, we need not recalculate these

additional disks since they must belong to D̂ − D̂s.
Then, among these additional disks, we select the

disk, say, di that covers all objects in Ôc by using the
minimum number of sectors (this can be calculated by
the sector cutting operation). We then deploy sensor(s)

to cover all sectors of di and remove Ôc from Ô. In
this case, the sectors and disks without objects are
also removed accordingly. Fig. 7(b) gives an example,
where we deploy one sensor on the additional disk di
to cover all objects in sectors A, B, and E. The above

iteration is repeated until Ô is empty.

USING R&D SENSORS TO ACHIEVE TEMPORAL COVERAGE OF OBJECTS AND ITS SURVEILLANCE APPLICATION 9

Note that in step 3, we do not simply deploy sensor(s) between
the two overlapped disks since it may waste sensors. Fig. 7(a)
gives an example, where δ = 0.5. If we simply deploy sensor(s)
at the center of the dash circle, we need to cut the circle into
three sectors to cover all objects in the joint sectors A, B, and
E. In this case, we have to deploy two sensors at the circle
center. Instead, we just deploy one sensor at si to cover all
objects in these joint sectors, as shown in Fig. 7(b). Theorem 4
calculates the time complexity of DOD.

Theorem 4. DOD has time complexity of O(m2 + nm lgm),
where n < m is a system constant.

Proof: In phase 1, running the modified GDC solution

takes O(Cm
2) time. To calculate D̂s, we build a maximum

binary heap to maintain the disks in D̂, which takes O(2Cm
2)

time. It involves n times of deleting-maximum operations and

n − 1 times of insertion operations to add one disk in D̂s,
where each heap operation spends O(lg 2Cm

2) = O(lgm)
time. Since Ô has m objects, we add O(m) disks to D̂s. Thus,

calculating D̂s totally spends O(2Cm
2) + O(m) · (O(n lgm) +

O((n − 1) lgm)) = O(m2 + nm lgm) time. Then, finding
the joint sectors of any two disks in phase 2 takes O(Cm

2)
time since D̂s has O(m) disks. Finally, in phase 3, it takes
O(m) time to deploy sensors to cover the disks without joint
sectors in step 1. Similarly, it takes O(m) time to deploy
sensors to cover the non-joint sectors in step 2. In step 3,
finding the additional disks to cover joint sectors takes no

time since they belong to D̂ − D̂s. In addition, running the
sector cutting operation on the selected disk requires O(m)
time. Since objects are removed whenever we deploy sensors
to cover them, step 3 runs O(m) iterations. So, the total time of
step 3 is O(m)·O(m) = O(m2). Therefore, the time complexity
of DOD is O(Cm

2) + O(m2 + nm lgm) + O(Cm
2) + O(m) +

O(m) +O(m2) = O(m2 + nm lgm).
We remark on the difference between MCD and DOD. First,

they take different strategies to select a subset of disks from D̂
to deploy with sensors. MCD suggests selecting the disks that
cover more objects. DOD prefers selecting the disks with no
more than

⌊
1
δ

⌋
sectors so that each disk can be deployed with

just one sensor. Second, while MCD always deploys sensors to
cover the sectors with the maximum number of objects, DOD
tries to deploy sensors to cover the joint sectors of overlapped
disks. Due to the different designs, MCD saves more sensors
when objects congregate together, while DOD works better
when objects are arbitrarily placed in the sensing field. The
simulation results in Section 5 also support the remark.

4.3 Maintaining The Network Connectivity

Till now, our deployment heuristics focus on covering all
objects, but the network may not be connected. To solve this
problem, we add extra relay nodes to maintain the network
connectivity, where a relay node is the communication module
of a sensor4. This solution has two advantages. First, the
deployment cost is reduced. Second, our heuristics can allow
an arbitrary relationship between rs and rc.

We modify the approach in [44] to add relay nodes. Given a
set of sensors S calculated by MCD or DOD, we construct the
minimum spanning tree on S . Then, for each tree edge whose

length, say, l is larger than rc, we deploy (
⌈

l
rc

⌉
−1) relay nodes

4. In several sensor platforms such as Jennic [48], each sensor consists of
separable sensing and communication modules.

along that edge. The distance between any two adjacent relay
nodes is rc. This operation is repeated until all tree edges are

checked. Since Ô has m objects, both MCD and DOD deploy
no more than O(m) sensors. By using the Prim’s algorithm to
calculate the minimum spanning tree, this approach has time
complexity of O(m2).

5 PERFORMANCE EVALUATION

We evaluate the performances of our deployment heuristics in
terms of the number of sensors by developing a simulator in
C++. A sensing field with 400 × 400 rectangle is considered,
in which there are static objects needed to be monitored by
sensors. We use two distributions, namely random and con-
gregating distributions, to model the placement of objects in
the sensing field. Under the random distribution, objects are
uniformly and arbitrarily placed in the sensing field. Under
the congregating distribution, ten positions are selected from
the sensing field and then objects are arbitrarily placed around
these positions. For each sensor, we set rs = 10 and rc = 20.
In DOD, we set n = 5. The number of objects (m), the sector
angle θ, and the δ value are varied in the simulations.

We compare MCD and DOD with the connected point-
coverage (CPC) solution in [44], which seeks to deploy the
minimum number of directional sensors to construct a con-
nected network that covers all objects. However, once sensors
are deployed, they do not rotate in CPC. According to the
discussion in Section 2.3, since none of the existing work
considers employing the rotation of R&D sensors to deploy a
network, we thus develop a random disk selection (RDS) scheme
for comparison. In RDS, a subset of objects are arbitrarily
selected as disk centers such that these disks can cover all
objects. Then, we find the sectors of each disk and deploy
enough sensors to cover all of its sectors. Finally, we adopt
the scheme in Section 4.3 to deploy relay nodes to maintain
the network connectivity.

5.1 Effect of Different Object Numbers

We first investigate the effect of different object numbers on
the number of sensors and relay nodes deployed by CPC, RDS,
MCD, and DOD. The object number is ranged from 100 to 500.
The δ value is set to 0.5 and 0.3 so that a sensor can rotate to
cover two and three sectors, respectively. We set θ = 45◦ and
measure 1) the number of sensors used to cover objects and 2)
the total number of sensors and relay nodes used to construct
the network.

Fig. 8 shows the number of nodes deployed by CPC, RDS,
MCD, and DOD with different object numbers under the
random distribution of objects. Explicitly, each scheme requires
more sensors when the object number grows. In this case, we
may need more relay nodes to connect these sensors. Since
objects are arbitrarily placed and CPC does not allow sensors
to rotate, it spends much more nodes compared with other
schemes. The situation becomes worse when δ = 0.3. In this
case, RDS, MCD, and DOD allow a sensor to rotate to cover
three sectors, while CPC limits a sensor to cover only one
sector. This comparison shows the advantage of using R&D
sensors in terms of the deployment cost.

In RDS, MCD, and DOD, a smaller δ value helps save
more sensors because each sensor can rotate to cover more
sectors. By carefully selecting the disks to deploy with sensors,
MCD and DOD significantly outperform RDS. In addition,

10 IEEE TRANSACTIONS ON MOBILE COMPUTING

0

100

200

300

400

500

600

700

800

100 200 300 400 500

number of objects

n
u

m
b

e
r

o
f
n

o
d

e
s

CPC (sensor) RDS (sensor)
MCD (sensor) DOD (sensor)
CPC (sensor + relay) RDS (sensor + relay)
MCD (sensor + relay) DOD (sensor + relay)

(a) δ = 0.5

0

100

200

300

400

500

600

700

800

100 200 300 400 500

number of objects

n
u

m
b

e
r

o
f
n

o
d

e
s

(b) δ = 0.3

Fig. 8: The number of nodes deployed by CPC, RDS, MCD, and DOD with
different object numbers under the random distribution of objects.

DOD uses fewer sensors compared with MCD due to two
reasons. First, since objects are arbitrarily placed, each disk
may cover only few objects. So, the greedy strategy of MCD
that deploys sensors to cover the disks with more objects may
not have significant effect. Second, DOD exploits disk overlap
by deploying sensors to cover joint sectors, which helps reduce
the number of sensors.

In average, when δ = 0.5, MCD saves 58.1%/24.2% of sen-
sors and 42.0%/18.5% of all nodes compared with CPC/RDS.
On the other hand, DOD saves 63.1%/33.2% of sensors and
47.9%/26.8% of all nodes compared with CPC/RDS. When
δ = 0.3, MCD saves 61.3%/27.3% of sensors and 43.9%/19.6%
of all nodes compared with CPC/RDS. On the other hand,
DOD saves 68.3%/40.3% of sensors and 52.3%/31.6% of all
nodes compared with CPC/RDS.

Fig. 9 shows the number of nodes deployed by CPC, RDS,
MCD, and DOD with different object numbers under the
congregating distribution of objects. Similarly, each scheme
needs more nodes when there are more objects. Interestingly,
when there are only 100 objects, CPC outperforms RDS. The
reason is that since objects congregate together, CPC calculates
relatively few sectors to cover them. On the other hand, RDS
finds disks in a random manner so that more disks may be
used. However, when the object number grows, CPC requires
more nodes compared with RDS because RDS allows sensors
to rotate to cover multiple sectors.

Recall that both MCD and DOD find a subset of disks from
D̂ to deploy with sensors. When objects congregate together,

0

25

50

75

100

125

150

175

200

225

250

100 200 300 400 500

number of objects

n
u

m
b

e
r

o
f
n

o
d

e
s

CPC (sensor) RDS (sensor)
MCD (sensor) DOD (sensor)
CPC (sensor + relay) RDS (sensor + relay)
MCD (sensor + relay) DOD (sensor + relay)

(a) δ = 0.5

0

25

50

75

100

125

150

175

200

225

250

100 200 300 400 500

number of objects

n
u

m
b

e
r

o
f
n

o
d

e
s

(b) δ = 0.3

Fig. 9: The number of nodes deployed by CPC, RDS, MCD, and DOD with
different object numbers under the congregating distribution of objects.

MCD selects the disks with more objects so that it can find
a smaller subset of disks. On the other hand, DOD prefers
selecting the disks with no more than

⌊
1
δ

⌋
sectors (and then

finds additional disks to cover joint sectors), so it may calculate
a relatively larger subset of disks. Therefore, MCD saves more
sensors compared with DOD under the congregating distribu-
tion of objects.

In average, when δ = 0.5, MCD saves 54.9%/54.7% of sen-
sors and 40.7%/42.3% of all nodes compared with CPC/RDS.
On the other hand, DOD saves 30.0%/30.7% of sensors and
22.8%/24.9% of all nodes compared with CPC/RDS. When
δ = 0.3, MCD saves 63.4%/52.8% of sensors and 45.8%/38.5%
of all nodes compared with CPC/RDS. On the other hand,
DOD saves 45.8%/31.7% of sensors and 33.0%/24.0% of all
nodes compared with CPC/RDS.

From Figs. 8 and 9, we conclude that 1) different object
numbers have significant impact on the number of sensors
and relay nodes, 2) CPC requires much more nodes compared
with other schemes, which shows the necessary of using R&D
sensors to reduce the deployment cost, 3) MCD and DOD
deploy the minimum number of sensors and relay nodes with
different object numbers under the congregating and random
distributions of objects, respectively. Below, we compare the
performances of RDS, MCD, and DOD since they all allow
sensors to rotate.

USING R&D SENSORS TO ACHIEVE TEMPORAL COVERAGE OF OBJECTS AND ITS SURVEILLANCE APPLICATION 11

5.2 Effect of Different Sector Angles θ

We then evaluate the effect of different θ values on the number
of sensors deployed by RDS, MCD, and DOD. There are 200
and 400 objects in the sensing field and δ is set to 0.3 and
0.5. Starting from θ = 15◦, θ is gradually increased by 15◦,
until θ = 120◦. We measure the number of sensors and their
reduction ratios, where we take the number of sensors when
θ = 15◦ as the basis for comparison.

Fig. 10(a)–(d) show the number of sensors deployed by
RDS, MCD, and DOD and their reduction ratios with different
θ values under the random distribution of objects. Intuitively,
a larger θ value means that a sensor covers a wider range, so
more objects can be covered. However, the reduction ratio of
RDS is always below 6.5% since it arbitrarily selects disks to
cover objects. The reduction ratios of MCD and DOD decrease
when there are 200 objects. The reason is that when there are
fewer objects, they are sparsely placed in the sensing field. So,
the number of objects covered by each disk may be reduced.
Thus, even with a larger θ value, the number of objects covered
by each sensor increases slightly. In addition, when δ = 0.3, all
schemes have smaller reduction ratios since a smaller δ value
helps each sensor cover more sectors in its disk. Therefore, the
number of cases to deploy multiple sensors on the same disk
may be reduced.

By considering disk overlap, DOD deploys the minimum
number of sensors when objects are arbitrarily placed. In
addition, it always has the largest reduction ratio since we
could easily deploy fewer sensors on the additional disks to
cover joint sectors when θ grows. In average, the reduction
ratios of RDS, MCD, and DOD are 2.85%, 9.15%, and 16.75%
when θ = 120◦ (that is, the largest θ value), respectively.

Fig. 10(e)–(h) show the number of sensors deployed by
RDS, MCD, and DOD and their reduction ratios with different
θ values under the congregating distribution of objects. We
observe that θ has significant impact on the number of sensors.
Since objects congregate together, a larger θ value helps a sen-
sor cover more objects. Thus, the number of sensors decreases
sharply when θ grows. When there are 200 objects and δ = 0.3,
the reduction ratios of all schemes decrease. However, such
decreases are not significant as compared with those under the
random distribution of objects.

When objects congregate together, MCD deploys the min-
imum number of sensors. In addition, DOD has the largest
reduction ratio since it deploys sensors to cover joint sectors.
In average, the reduction ratios of RDS, MCD, and DOD are
33.08%, 39.38%, and 52.35% when θ = 120◦, respectively,
which are larger than those under the random distribution of
objects.

From Fig. 10, we conclude that 1) θ has significant impact
on the number of sensors when objects congregate together, 2)
DOD always has the largest reduction ratio, and 3) MCD and
DOD deploy the minimum number of sensors with different
θ values under the congregating and random distributions of
objects, respectively.

5.3 Effect of Different δ Values

Finally, we evaluate the effect of different δ values on the
number of sensors deployed by RDS, MCD, and DOD. There
are 200 and 400 objects in the sensing field and we set θ = 30◦.
The δ value is set to 0.4, 0.3, 0.2, and 0.1, so a sensor can
rotate to cover two, three, five, and ten sectors, respectively.
We measure the number of sensors and their reduction ratios,

0

50

100

150

200

250

300

350

0.4 0.3 0.2 0.1

δ value

n
u

m
b

e
r

o
f
s
e

n
s
o

rs

0

5

10

15

20

25

30

re
d

u
c
ti
o

n
ra

ti
o

o
f
s
e

n
s
o

rs
(%

)

RDS (sensor) MCD (sensor) DOD (sensor)
RDS (reduction) MCD (reduction) DOD (reduction)

(a) 400 objects (random)

0

30

60

90

120

150

180

0.4 0.3 0.2 0.1

δ value

n
u

m
b

e
r

o
f
s
e

n
s
o

rs

0

3

6

9

12

15

18

re
d

u
c
ti
o

n
ra

ti
o

o
f
s
e

n
s
o

rs
(%

)

(b) 200 objects (random)

0

30

60

90

120

150

180

0.4 0.3 0.2 0.1
δ value

n
u

m
b

e
r

o
f
s
e

n
s
o

rs

0

10

20

30

40

50

60

70

re
d

u
c
ti
o

n
ra

ti
o

o
f
s
e

n
s
o

rs
(%

)
(c) 400 objects (congregating)

0

20

40

60

80

100

120

0.4 0.3 0.2 0.1

δ value

n
u

m
b

e
r

o
f
s
e

n
s
o

rs

0

10

20

30

40

50

60

re
d

u
c
ti
o

n
ra

ti
o

o
f
s
e

n
s
o

rs
(%

)

(d) 200 objects (congregating)

Fig. 11: The number of sensors deployed by RDS, MCD, and DOD with
different δ values: (a)–(b) under the random distribution of objects and
(c)–(d) under the congregating distribution of objects.

where we take the number of sensors when δ = 0.4 as the
basis for comparison.

Fig. 11(a) and (b) show the number of sensors deployed by

12 IEEE TRANSACTIONS ON MOBILE COMPUTING

0

50

100

150

200

250

300

15 30 45 60 75 90 105 120

sector angle (θ)

n
u

m
b

e
r

o
f
s
e

n
s
o

rs
0

5

10

15

20

25

30

35

re
d

u
c
ti
o

n
ra

ti
o

o
f
s
e

n
s
o

rs
(%

)

RDS (sensor)

MCD (sensor)

DOD (sensor)

RDS (reduction)

MCD (reduction)

DOD (reduction)

(a) δ = 0.5, 400 objects (random)

0

30

60

90

120

150

180

15 30 45 60 75 90 105 120

sector angle (θ)

n
u

m
b

e
r

o
f
s
e

n
s
o

rs

0

5

10

15

20

25

30

35

re
d

u
c
ti
o

n
ra

ti
o

o
f
s
e

n
s
o

rs
(%

)

(b) δ = 0.5, 200 objects (random)

0

50

100

150

200

250

300

15 30 45 60 75 90 105 120

sector angle (θ)

n
u

m
b

e
r

o
f
s
e

n
s
o

rs

0

2

4

6

8

10

12
re

d
u

c
ti
o

n
ra

ti
o

o
f
s
e

n
s
o

rs
(%

)

(c) δ = 0.3, 400 objects (random)

0

30

60

90

120

150

180

15 30 45 60 75 90 105 120

sector angle (θ)

n
u

m
b

e
r

o
f
s
e

n
s
o

rs

0

2

4

6

8

10

12

re
d

u
c
ti
o

n
ra

ti
o

o
f
s
e

n
s
o

rs
(%

)

(d) δ = 0.3, 200 objects (random)

0

25

50

75

100

125

150

175

200

15 30 45 60 75 90 105 120

sector angle (θ)

n
u

m
b

e
r

o
f
s
e

n
s
o

rs

0

10

20

30

40

50

60

70

re
d

u
c
ti
o

n
ra

ti
o

o
f
s
e

n
s
o

rs
(%

)

(e) δ = 0.5, 400 objects (congregating)

0

20

40

60

80

100

120

15 30 45 60 75 90 105 120

sector angle (θ)

n
u

m
b

e
r

o
f
s
e

n
s
o

rs

0

10

20

30

40

50

60

70

re
d

u
c
ti
o

n
ra

ti
o

o
f
s
e

n
s
o

rs
(%

)

(f) δ = 0.5, 200 objects (congregating)

0

25

50

75

100

125

150

175

200

15 30 45 60 75 90 105 120

sector angle (θ)

n
u

m
b

e
r

o
f
s
e

n
s
o

rs

0

10

20

30

40

50

60

re
d

u
c
ti
o

n
ra

ti
o

o
f
s
e

n
s
o

rs
(%

)

(g) δ = 0.3, 400 objects (congregating)

0

20

40

60

80

100

120

15 30 45 60 75 90 105 120

sector angle (θ)

n
u

m
b

e
r

o
f
s
e

n
s
o

rs

0

10

20

30

40

50

60

re
d

u
c
ti
o

n
ra

ti
o

o
f
s
e

n
s
o

rs
(%

)

(h) δ = 0.3, 200 objects (congregating)

Fig. 10: The number of sensors deployed by RDS, MCD, and DOD with different sector angles θ: (a)–(d) under the random distribution of objects and
(e)–(h) under the congregating distribution of objects.

RDS, MCD, and DOD and their reduction ratios with different
δ values under the random distribution of objects. Intuitively,
a smaller δ value means that a sensor covers more sectors, so
more sensors are saved. However, the increase of reduction
ratio from 0.2 to 0.1 is not significant. The reason is given by
considering the following worst case. When δ is 0.4, 0.3, 0.2,
and 0.1, each sensor covers totally 2×30◦ = 60◦, 3×30◦ = 90◦,
5× 30◦ = 150◦, and 10× 30◦ = 300◦ of angle, so a disk needs

at most
⌈
360◦

60◦

⌉
= 6,

⌈
360◦

90◦

⌉
= 4,

⌈
360◦

150◦

⌉
= 3, and

⌈
360◦

300◦

⌉
= 2

sensors to cover its objects, respectively. Since the difference
between the maximum number of sensors used to cover a disk
is 3 − 2 = 1 when δ is 0.2 and 0.1, the increase of reduction
ratio is not significant. We observe that DOD always has the
largest reduction ratio since it can deploy fewer sensors on the
additional disks. In average, the reduction ratios of RDS, MCD,
and DOD are 4.7%, 11.9%, and 21.6% when δ = 0.1 (that is, the
smallest δ value), respectively.

Fig. 11(c) and (d) show the number of sensors deployed by
RDS, MCD, and DOD and their reduction ratios with different
δ values under the congregating distribution of objects. We
observe that δ has significant impact on the number of sensors.
Since objects congregate together, a smaller δ value allows
each sensor to cover more objects. So, the number of sensors
decreases sharply when δ reduces. By exploiting disk overlap,
DOD always has the largest reduction ratio. In average, the

reduction ratios of RDS, MCD, and DOD are 39.1%, 40.5%,
and 54.9% when δ = 0.1, respectively, which are larger than
those under the random distribution of objects.

From Fig. 11, we conclude that 1) δ has significant impact
on the number of sensors, especially when objects congregate
together, 2) DOD always has the largest reduction ratio, and
3) MCD and DOD deploy the minimum number of sensors
with different δ values under the congregating and random
distributions of objects, respectively.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have defined a temporal coverage model to
monitor objects and developed a surveillance system by R&D
sensors, which warns users that objects disappear by sending
snapshots. We demonstrate our temporal coverage model by
the system and point out the NP-hard R&D sensor deployment
problem. Two efficient heuristics are proposed, where MCD
deploys sensors to cover the disks with more objects, while
DOD deploys sensors to cover joint sectors to exploit disk
overlap. Simulation results show that MCD performs well
when objects congregate together, while DOD works better
when objects are arbitrarily placed in the sensing field.

Below, we give future research topics. First, since the R&D
sensor deployment problem is NP-hard, we will design more

USING R&D SENSORS TO ACHIEVE TEMPORAL COVERAGE OF OBJECTS AND ITS SURVEILLANCE APPLICATION 13

polynomial-time approximate algorithms with lower approxi-
mation ratios based on the current result. Second, in this paper
we consider that a sensor takes equal time T

αi

to stay at each
sector to detect objects. For some types of sensors, the detection
time may depend on the object number, so sensors should
stay longer time at the sectors covering more objects. Third,
giving the locations of objects and sensors, some studies [42],
[51] calculate the directions of sensors to cover objects. These
results could help determine the rotation sequences of stepper
motors to save their energy and thus extend our deployment
heuristics. Finally, using disk overlap and sensor cooperation
for fault tolerance deserves further investigation.

REFERENCES

[1] T. Arampatzis, J. Lygeros, and S. Manesis, “A survey of applications
of wireless sensors and wireless sensor networks,” Proc. IEEE Mediter-
ranean Conf. Control and Automation, pp. 719–724, 2005.

[2] M. Younis and K. Akkaya, “Strategies and techniques for node
placement in wireless sensor networks: a survey,” Ad Hoc Networks,
vol. 6, no. 4, pp. 621–655, 2008.

[3] S. Aoki, J. Nakazawa, and H. Tokuda, “Spinning sensors: a middle-
ware for robotic sensor nodes with spatiotemporal models,” Proc.
IEEE Int’l Conf. Embedded and Real-Time Computing Systems and Appli-
cations, pp. 89–98, 2008.

[4] R. Horaud, D. Knossow, and M. Michaelis, “Camera cooperation for
achieving visual attention,” Machine Vision and Applications, vol. 16,
no. 6, pp. 1–12, 2006.

[5] P. Kulkarni, D. Ganesan, P. Shenoy, and Q. Lu, “SensEye: a multi-
tier camera sensor network,” Proc. ACM Int’l Conf. Multimedia, pp.
229–238, 2005.

[6] J.Y. Lee, “Exploiting constrained rotation for localization of direc-
tional sensor networks,” Proc. IEEE Int’l Wireless Comm. and Mobile
Computing Conf., pp. 767–772, 2008.

[7] F. Nussbaum, G.T. Stevens, and J.G. Kelly, “Sensors for a forward-
looking high resolution AUV sonar,” Proc. IEEE Symp. Autonomous
Underwater Vehicle Technology, pp. 141–145, 1996.

[8] I.T. Ruiz, S. de Raucourt, Y. Petillot, and D.M. Lane, “Concurrent
mapping and localization using sidescan sonar,” IEEE J. Oceanic
Engineering, vol. 29, no. 2, pp. 442–456, 2004.

[9] J.F. Michaels, “An approach to radiated testing of installed airborne
Doppler radar with weather/windshear detection capability,” IEEE
Aerospace and Electronic Systems Magazine, vol. 10, no. 12, pp. 25–30,
1995.

[10] M. Daun, W. Koch, and R. Klemm, “Tracking of ground targets with
bistatic airborne radar,” Proc. IEEE Radar Conf., 2008.

[11] G.K. Das, R. Fraser, A. Lopez-Ortiz, and B.G. Nickerson, “On the
discrete unit disk cover problem,” Lecture Notes in Computer Science,
vol. 6552, pp. 146–157, 2011.

[12] C.F. Huang and Y.C. Tseng, “The coverage problem in a wireless
sensor network,” Mobile Networks and Applications, vol. 10, no. 4, pp.
519–528, 2005.

[13] G. Simon, M. Molnar, L. Gonczy, and B. Cousin, “Robust k-coverage
algorithms for sensor networks,” IEEE Trans. Instrumentation and
Measurement, vol. 57, no. 8, pp. 1741–1748, 2008.

[14] L. Liu, H. Ma, and X. Zhang, “On directional k-coverage analysis of
randomly deployed camera sensor networks,” Proc. IEEE Int’l Conf.
Comm., vol. 57, no. 8, pp. 2707–2711, 2008.

[15] S. Kumar, T.H. Lai, and A. Arora, “Barrier coverage with wireless
sensors,” Wireless Networks, vol. 13, no. 6, pp. 817–834, 2007.

[16] L. Zhang, J. Tang, and W. Zhang, “Strong barrier coverage with
directional sensors,” Proc. IEEE Global Telecomm. Conf., 2009.

[17] S. Megerian, F. Koushanfar, G. Qu, G. Veltri, and M. Potkonjak, “Ex-
posure in wireless sensor networks: theory and practical solutions,”
Wireless Networks, vol. 8, no. 5, pp. 443–454, 2002.

[18] G. Veltri, Q. Huang, G. Qu, and M. Potkonjak, “Minimal and maximal
exposure path algorithms for wireless embedded sensor networks,”
Proc. ACM Int’l Conf. Embedded Networked Sensor Systems, pp. 40–50,
2003.

[19] L. Liu, X. Zhang, and H. Ma, “Minimal exposure path algorithms for
directional sensor networks,” Proc. IEEE Global Telecomm. Conf., 2009.

[20] C. Gui and P. Mohapatra, “Power conservation and quality of surveil-
lance in target tracking sensor networks,” Proc. ACM Int’l Conf. Mobile
Computing and Networking, pp. 129–143, 2004.

[21] L. Liu, X. Zhang, and H. Ma, “Exposure-path prevention in direc-
tional sensor networks using sector model based percolation,” Proc.
IEEE Int’l Conf. Comm., 2009.

[22] C. Gui and P. Mohapatra, “Virtual patrol: a new power conservation
design for surveillance using sensor networks,” Proc. IEEE Int’l Symp.
Information Processing in Sensor Networks, pp. 246–253, 2005.

[23] B. Liu, P. Brass, O. Dousse, P. Nain, and D. Towsley, “Mobility
improves coverage of sensor networks,” Proc. ACM Int’l Symp. Mobile
Ad Hoc Networking and Computing, pp. 300–308, 2005.

[24] C.Y. Chang, H.R. Chang, H.J. Liu, and S.W. Chang, “On providing
temporal full-coverage by applying energy-efficient hole-movement
strategies for mobile WSNs,” Proc. IEEE Wireless Comm. and Network-
ing Conf., pp. 2778–2783, 2007.

[25] C. Liu and G. Cao, “Spatial-temporal coverage optimization in wire-
less sensor networks,” IEEE Trans. Mobile Computing, vol. 10, no. 4,
pp. 465–478, 2011.

[26] K. Chakrabarty, S.S. Iyengar, H. Qi, and E. Cho, “Grid coverage for
surveillance and target location in distributed sensor networks,” IEEE
Trans. Computers, vol. 51, no. 12, pp. 1448–1453, 2002.

[27] S.S. Dhillon and K. Chakrabarty, “Sensor placement for effective
coverage and surveillance in distributed sensor networks,” Proc. IEEE
Wireless Comm. and Networking Conf., pp. 1609–1614, 2003.

[28] F.Y.S. Lin and P.L. Chiu, “A near-optimal sensor placement algorithm
to achieve complete coverage/discrimination in sensor networks,”
IEEE Comm. Letters, vol. 9, no. 1, pp. 43–45, 2005.

[29] Y.C. Wang, C.C. Hu, and Y.C. Tseng, “Efficient deployment algo-
rithms for ensuring coverage and connectivity of wireless sensor
networks,” Proc. IEEE Wireless Internet Conf., pp. 114–121, 2005.

[30] X. Bai, S. Kumar, D. Xuan, Z. Yun, and T.H. Lai, “Deploying wireless
sensors to achieve both coverage and connectivity,” Proc. ACM Int’l
Symp. Mobile Ad Hoc Networking and Computing, pp. 131–142, 2006.

[31] T. Sun, L.J. Chen, C.C. Han, and M. Gerla, “Reliable sensor networks
for planet exploration,” Proc. IEEE Int’l Conf. Networking, Sensing and
Control, pp. 816–821, 2005.

[32] Z. Cheng, M. Perillo, and W.B. Heinzelman, “General network life-
time and cost models for evaluating sensor network deployment
strategies,” IEEE Trans. Mobile Computing, vol. 7, no. 4, pp. 484–497,
2008.

[33] Z. Butler and D. Rus, “Event-based motion control for mobile-sensor
networks,” IEEE Pervasive Computing, vol. 2, no. 4, pp. 34–42, 2003.

[34] Y. Zou and K. Chakrabarty, “Sensor deployment and target localiza-
tion based on virtual forces,” Proc. IEEE INFOCOM, pp. 1293–1303,
2003.

[35] G. Tan, S.A. Jarvis, and A.M. Kermarrec, “Connectivity-guaranteed
and obstacle-adaptive deployment schemes for mobile sensor net-
works,” IEEE Trans. Mobile Computing, vol. 8, no. 6, pp. 836–848, 2009.

[36] X. Wang and S. Wang, “Hierarchical deployment optimization for
wireless sensor networks,” IEEE Trans. Mobile Computing, 2010.

[37] G. Wang, G. Cao, T.L. Porta, and W. Zhang, “Sensor relocation in
mobile sensor networks,” Proc. IEEE INFOCOM, pp. 2302–2312, 2005.

[38] G. Wang, G. Cao, and T.L. Porta, “Movement-assisted sensor deploy-
ment,” IEEE Trans. Mobile Computing, vol. 5, no. 6, pp. 640–652, 2006.

[39] Y.C. Wang, C.C. Hu, and Y.C. Tseng, “Efficient placement and dis-
patch of sensors in a wireless sensor network,” IEEE Trans. Mobile
Computing, vol. 7, no. 2, pp. 262–274, 2008.

[40] Y.C. Wang and Y.C. Tseng, “Distributed deployment schemes for
mobile wireless sensor networks to ensure multilevel coverage,” IEEE
Trans. Parallel and Distributed Systems, vol. 19, no. 9, pp. 1280–1294,
2008.

[41] J. Ai and A.A. Abouzeid, “Coverage by directional sensors in ran-
domly deployed wireless sensor networks,” J. Combinatorial Optimiza-
tion, vol. 11, no. 1, pp. 21–41, 2006.

[42] Y. Cai, W. Lou, M. Li, and X.Y. Li, “Energy efficient target-oriented
scheduling in directional sensor networks,” IEEE Trans. Computers,
vol. 58, no. 9, pp. 1259–1274, 2009.

[43] H. Ma and Y. Liu, “Some problems of directional sensor networks,”
Int’l J. Sensor Networks, vol. 2, no. 1/2, pp. 44–52, 2007.

[44] X. Han, X. Cao, E.L. Lloyd, and C.C. Shen, “Deploying directional
sensor networks with guaranteed connectivity and coverage,” Proc.
IEEE Conf. Sensor, Mesh and Ad Hoc Comm. and Networks, pp. 153–160,
2008.

[45] Y.E. Osais, M. St-Hilaire, and F.R. Yu, “Directional sensor placement
with optimal sensing range, field of view and orientation,” Mobile
Networks and Applications, vol. 15, pp. 216–225, 2010.

[46] J. Djugash, S. Singh, G. Kantor, and W. Zhang, “Range-only SLAM
for robots operating cooperatively with sensor networks,” Proc. IEEE
Int’l Conf. Robotics and Automation, pp. 2078–2084, 2006.

[47] Y.C. Tseng, Y.C. Wang, K.Y. Cheng, and Y.Y. Hsieh, “iMouse: an in-
tegrated mobile surveillance and wireless sensor system,” Computer,
vol. 40, no. 6, pp. 60–66, 2007.

[48] Jennic microcontroller. [Online]. Available: http://www.jennic.com/
[49] Zigbee Alliance, “Zigbee specification: Zigbee document,” 2006.

14 IEEE TRANSACTIONS ON MOBILE COMPUTING

[50] B. Xiao, Q. Zhuge, Y. He, Z. Shao, and E.H.M. Sha, “Algorithms for
disk covering problems with the most points,” Proc. IASTED Int’l
Conf. Parallel and Distributed Computing and Systems, pp. 541–546, 2003.

[51] X. Cao, X. Jia, and G. Chen, “Maximizing lifetime of sensor surveil-
lance systems with directional sensors,” Proc. IEEE Int’l Conf. Mobile
Ad-hoc and Sensor Networks, pp. 110–115, 2010.

