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Abstract—Wireless sensor networks (WSNs) offer a convenient way to monitor physical environments. In the past, WSNs are all considered
static to continuously collect information from the environment. Today, by introducing intentional mobility to WSNs, we can further improve the
network capability on many aspects, such as automatic node deployment, flexible topology adjustment, and rapid event reaction. In this article,
we survey recent progress in mobile WSNs and compare works in this field in terms of their models and mobility management methodologies.
The discussion includes three aspects. Firstly, we discuss mobility management of mobile sensors for the purposes of forming a better WSN,
enhancing network coverage and connectivity, and relocating some sensors. Secondly, we introduce path-planning methods for data ferries to
relay data between isolated sensors and to extend a WSN’s lifetime. Finally, we review some existing platforms and discuss several interesting
applications of mobile WSNs.

Index Terms—mobility management, path planning, sensor applications, topology adjustment, wireless sensor networks.
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1 INTRODUCTION

THE development of wireless technologies and micro-
sensing MEMS has triggered the success of wireless sensor

networks (WSNs). A WSN is composed of one or multiple re-
mote sinks and many tiny, low-power sensors, each equipped
with actuators, sensing devices, and wireless transceivers [1].
These sensors are massively deployed in a region of interest
(ROI) to continuously collect and report surrounding data.
WSNs offer a convenient way to monitor physical environ-
ments. Many applications such as object tracking, health moni-
toring, security surveillance, and intelligent transportation [2]–
[5] have been proposed.

A WSN is usually deployed with static sensors to perform
monitoring missions. However, due to the dynamics of events
or environments, a purely static WSN could face these chal-
lenges: (1) Sensors are often scattered in a ROI by aircrafts or
robots [6]. These randomly scattered sensors could not guaran-
tee complete coverage of the ROI and may be partitioned into
disconnected subnetworks. The existence of obstacles could
even worsen the problem. (2) Sensors are usually powered by
batteries. As some sensors exhaust their energy, holes could
appear and the network could be broken. However, in many
scenarios, it is quite difficult to recharge sensors or redeploy
nodes. (3) A WSN may need to support multiple missions or
have multiple types of sensors [7]. Sometimes, we may need
to send a certain type of sensors to particular locations to
support particular needs. Without mobility, this is difficult to
achieve. (4) While most efforts assume that sensors are cheap,
some types of sensors may be expensive. Dispatching of those
expensive ones from locations to locations may be necessary.

By introducing mobility to a WSN, we can enhance its
capability to handle the above problems. Nevertheless, mobile
WSN and mobile ad hoc network (MANET) are essentially differ-
ent. Mobility in a MANET is often arbitrary, whereas mobility
in a mobile WSN should be ‘intentional’, in the sense that we
can control their movement to achieve our missions. In this
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article, we give a comprehensive survey of recent progress in
mobile WSNs. Our discussion focus on two types of nodes:
mobile sensors and data ferries. With the former, one may change
the network topology by moving these mobile sensors. With
the latter, one may maneuver these data ferries to collect or
relay sensing data. We will cover three topics:

• Mobility management of mobile sensors: First, we introduce
deployment methods to organize a WSN. Second, we
present relocation methods to improve the coverage
and connectivity of a WSN. Third, we discuss how to
assign mobile sensors to desired locations.

• Path planning of data ferries: We first introduce path-
planning methods to maneuver data ferries in a sparse
WSN, and then discuss how to use data ferries to extend
a WSN’s lifetime.

• Platforms and Applications of mobile WSNs: Some mobile
platforms and applications will be introduced.

2 MOBILITY MANAGEMENT OF MOBILE

SENSORS

2.1 Solutions to Deploying Mobile Sensors

Sensor deployment is a basic issue since it decides a WSN’s de-
tection ability. A good deployment should satisfy both coverage
and connectivity [8], [9]. Coverage requires that each location
in the ROI be monitored by sensors, and connectivity requires
that the network remain not partitioned. With mobile sensors,
the deployment job becomes ‘automatic’. We introduce three
deployment methods: The force-based deployment images that
virtual forces will drive sensors to move. The graph-based
deployment identifies uncovered holes and moves sensors to
cover them. The assignment-based deployment computes the
locations to be placed with sensors and then dispatches them
in an energy-efficient way.

2.1.1 Force-Based Deployment
The work [10] considers moving sensors by virtual forces. Each

sensor si is exerted by a compound force
−→
Fi =

−−→
FiA +

−−→
FiR +

∑n
j=1,j 6=i

−→
Fij , where

−−→
FiA is an attractive force by the ROI,
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Fig. 1: Examples of force-based deployment.

−−→
FiR is the overall repulsive force by obstacles,

−→
Fij is the force

produced by sensor sj , and n is the total number of sensors.

Each force
−→
Fij is denoted by (rij , θij) in a polar coordinate,

where rij is the magnitude and θij is the orientation.
−→
Fij is

expressed as

−→
Fij =







(wA · (dij − dth), θij) if dij > dth
(wR · 1

dij
, π + θij) if dij < dth

0 otherwise,

where wA/wR is the measure of an attractive/repulsive force,
dij is the distance between si and sj , and dth is a threshold
distance to decide the force type. Fig. 1(a) gives an example,

where dth = d14. We see that s2 exerts an attractive force
−→
F12,

s3 exerts a repulsive force
−→
F13, and s4 exerts no force on s1

because d12 > dth, d13 < dth, and d14 = dth, respectively.

Sensor s1 is thus moved by the compound force
−→
F1.

In [11], each sensor is viewed as an electron and is repulsed
by other sensors. The force from a higher sensor density area
is greater than that from a lower density area, and the force
from a nearer sensor is greater than that from a farther sensor.
Specifically, the force function F (·) should satisfy three rules:
(1) F (dij) ≥ F (dik) if dij ≤ dik. (2) F (0+) = Fmax. This
gives an upper bound on forces. (3) F (dij) = 0 if dij > rc
(communication distance). This means that only neighboring
sensors will generate forces.

Sensors are moved step by step. In each step, the repulsive
force on sensor si exerted by a neighboring sensor sj is−→
Fij = Di

µ2 (rc|pi − pj |) pj−pi

|pj−pi| , where Di is the local sensor

density seen by si, µ is the expected sensor density after
the final deployment, and pi/pj is the position of si/sj . The

expected sensor density is computed by µ =
n·πr2c
|A| , where |A|

is the ROI’s area. Fig. 1(b) shows an example, where s2, s3, and
s4 all exert repulsive forces on s1.

In the above two methods, oscillation check and stability
check are performed to examine whether a sensor has reached
its final destination. When a sensor si moves back and forth
inside a small region many times, it has entered the oscillation
state. On the other hand, when si moves less than a threshold
distance in a fixed duration, it has entered the stable state. In
both cases, si will stop moving.

Reference [12] considers that sensors work under a proba-
bility sensing model. The goal is to deploy a minimum number
of sensors such that the detection probability of the ROI is
above a predefined threshold. To achieve this, we can first
deploy sufficient sensors to satisfy the detection probability.
Then, sensors can exert repulsive forces on each other. In this
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Fig. 2: The VOR and Minimax methods.

way, the number of sensors may be reduced since some sensors
may be pushed outside the ROI.

2.1.2 Graph-Based Deployment

The work [13] adopts a Voronoi diagram to search uncovered
holes and moves sensors to cover these holes. Given a set of
sensors on a 2D plane, the Voronoi diagram [14] consists of a
number of Voronoi polygons such that each polygon contains
one sensor and the points in the polygon are closer to the
interior sensor than to other exterior sensors. When the sensing
range of a sensor cannot completely cover its Voronoi polygon,
there could be an uncovered hole in that polygon. In [13], it
proposes the following methods to cover this hole:

Voronoi-based (VOR) method: A sensor should move
toward the farthest vertex of its current polygon. Fig. 2(b) gives
an example, where the dotted polygon is sensor si’s current
polygon and u is the farthest vertex. Sensor si will move along
the direction −→siu and stop at v1, where |uv1| = rs.

Minimax method: A sensor should move to the minimax
point of its current polygon, where the minimax point of a
polygon is the center of the circle with the minimum radius
that can cover the whole polygon (refer to [13] for details about
finding the circle). Fig. 2(c) gives an example, where v2 is the
minimax point of si’s current polygon.

2.1.3 Assignment-Based Deployment

Reference [15] focuses on deployment in ROIs with obstacles.
It considers two related problems: sensor placement and sensor
dispatch. The former asks how to use the minimum number of
sensors in a ROI to guarantee coverage and connectivity. The
latter asks how to dispatch mobile sensors to the designated
locations computed by the placement result such that their
moving energy is minimized.

To solve the placement problem, [15] partitions a ROI
A into single-row and multi-row regions. A single-row region
requires one row of sensors to cover it, and a multi-row region
requires multiple rows of sensors to cover it. To partition A,
we first identify all single-row regions, which is achieved by
expanding A’s boundaries inward and obstacles’ perimeters
outward by a distance of

√
3rmin, where rmin = min{rc, rs}.

When the expanded line cuts off an obstacle with an area, we



MOBILITY MANAGEMENT ALGORITHMS AND APPLICATIONS FOR MOBILE SENSOR NETWORKS 3

obstacle

(a) partition a ROI

(b) place sensors in a single-row region

3c sr r<

(c) place sensors in a multi-row region

D

bisectorminr

B

A

obstacle

cut-off

areas

expanded line

C

E

3 minr

3 minr

3 minr

3 minr

1

2 3

4

5

case

rc rs

rc

2
2

4
cr

s s
r r+ -

3c sr r³ case

rs3

rc

rs

Fig. 3: The sensor placement solution proposed in [15].

take a project from that area to identify a single-row region.
Fig. 3(a) gives an example, where 5 single-row regions (with
numbers) are identified. Other regions will be multi-row ones.
Then, we place sensors in each region as follows:

Single-row region: We place a sequence of sensors along
the region’s bisector, each separated by a distance of rmin.
Fig. 3(b) gives an example.

Multi-row region: Two cases are considered, as Fig. 3(c)
shows. When rc ≥

√
3rs, adjacent sensors are regularly sep-

arated by a distance of
√
3rs. When rc <

√
3rs, sensors in

each row are separated by a distance of rc. Adjacent rows are

separated by a distance of rs +
√

r2s − r2c
4 and shifted by a

distance of rc
2 . To connect adjacent rows, we add a column of

sensors between them, each separated by a distance not larger
than rc.

Given a set of mobile sensors S and a set of locations L
computed by the placement result, [15] considers dispatching
S to L such that the energy consumption of sensors is mini-
mized. Assuming |S| ≥ |L|, we construct a weighted complete
bipartite graph G = (S ∪ L,S × L), where the weight of each
edge (si, lj), si ∈ S , lj ∈ L, is calculated by −(em × d(si, lj)),
where em is the energy cost to move a sensor in one step and
d(si, lj) is the shortest distance between si and lj . Then, we
find a matching M in G with the maximum edge weights,
which can be solved by the Hungarian method [16]. For each
edge (si, lj) ∈ M, we move sensor si to location lj through the
shortest path (refer to [15] for details about finding the shortest
path).

Reference [17] focuses on deployment with multilevel cov-
erage. It considers two related problems: k-coverage sensor
placement and sensor dispatch. The former asks how to use the
minimum number of sensors in a ROI to guarantee k-level
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Fig. 4: The interpolating placement method.

coverage. The latter asks how to dispatch mobile sensors to the
designated locations computed by the placement result such
that their moving energy is minimized.

To solve the k-coverage placement problem, [17] proposes
an interpolating placement method based on the placement in
Fig. 3(c) (rc <

√
3rs case). Specifically, we see that a large

amount of regions in each row are more than 1-covered. So, we
can reuse these regions and place the least number of sensors
to cover those insufficiently covered regions. Three cases are
considered:

Case of rc ≤
√
3
2 rs: In Fig. 3(c), we see that the insufficiently

covered regions (marked by gray) are located between adjacent
rows. If we place a new Ni row above each original Oi row
by a distance of rs, as Fig. 4(a) shows, the ROI becomes 3-
covered. Here, sensors in each Ni row are separated by a
distance of rc. For k > 3, we can apply

⌊

k
3

⌋

times of this
3-coverage placement and apply (k mod 3) times of the 1-
coverage placement.

Case of
√
3
2 rs < rc ≤ 2+

√
3

3 rs: We can add one extra N ′
i

row between each Ni and Oi rows to construct a 3-coverage
placement, as Fig. 4(b) shows. These N ′

i rows are shifted by a
distance of rc

2 and sensors are separated by a distance of 2rc.

For k > 3, we can apply
⌊

k
3

⌋

times of this 3-coverage place-
ment and apply (k mod 3) times of the 1-coverage placement.

Case of rc > 2+
√
3

3 rs: We can duplicate k sensors on each
location in Fig. 3(c).

Given a set of mobile sensors S and a set of locations
L = {(l1, n1), (l2, n2), · · · , (lm, nm)} computed by the place-
ment result, where each location lj will be placed with nj

sensors, [17] proposes a distributed method to dispatch S to
L as follows:

1. Each sensor si maintains a OCCi[1..m] table, where each
OCCi[j] = { (sj1 , dj1), (sj2 , dj2), . . . , (sjα , djα)}, α ≤ nj ,
contains the set of sensors sjβ that select lj as their destinations
and their distances djβ to lj . Initially, OCCi[j] = ∅, ∀j. Then,
si selects the nearest location lj such that |OCCi[j]| < nj as its
destination, adds (si, d(si, lj)) in OCCi[j], and moves to lj .

2. Sensor si periodically updates and exchanges its table
with one-hop neighbors. When si hears the OCCk table from
a neighbor sk, si combines OCCi with OCCk as follows: For
each j, we calculate a union Uj = OCCi[j] ∪ OCCk[j]. If
|Uj | > nj , we remove the records in Uj that have longer
moving distances, until |Uj | = nj . Then, we replace OCCi[j]
by Uj . If si was in the original OCCi[j] entry, but is not in
the new OCCi[j] entry, it means that si is replaced by other
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sensors with a shorter distance to lj . Thus, si should reselect
another destination.

3. After si reaches lj , it still exchanges its table with neigh-
bors. Since the sink will eventually observe that all locations
are covered, it can notify all sensors to exit from the dispatch
method.

2.2 Solutions to Enhancing Coverage and
Connectivity of a WSN

After deploying a WSN, some sensors may be broken or may
exhaust their energy. These failed sensors may disconnect
the network or cause uncovered holes. One can move some
mobile sensors to relieve this problem. We introduce two such
solutions for enhancing connectivity and coverage of a WSN.

2.2.1 Connectivity Enhancement
Reference [18] considers a static WSN with several isolated
groups, called islands. To help these islands communicate with
each other, we can add some mobile sensors between them. For
two islands IG and IH , the minimum number of mobile sen-

sors required to connect them is MG,H =
⌈

dG,H

rc
− 1

⌉

, where

dG,H = min
si∈IG,sj∈IH

{di,j} is the shortest distance between IG

and IH . Let N(IG) be the number of sensors in island IG and
W (IG,m) be the optimal set of islands that can be connected
by m mobile sensors starting from island IG. It can be derived
that W (IG,m) = max{W (IG∪IH ,m−MG,H)+N(IG∪IH)},
where IH is an island to be directly connected by IG and
N(IG ∪ IH) = N(IG) + N(IH) + MG,H . However, for an
island IG, if the remaining m mobile sensors cannot connect
to any other island, we set W (IG,m) = 0. Using dynamic
programming, the minimum m to connect all islands can be
found.

The work [19] considers strengthening the topology of a
WSN to be biconnected. First, each cut-vertex is identified. For
example, in Fig. 5(a), c1 and c2 are cut-vertices. By removing
cut-vertices, the network is divided into several biconnected
components (called blocks). Actually, we can ‘pull’ two neigh-
boring blocks together to eliminate the cut-vertex between
them. With this observation, a block movement method is pro-
posed as follows: Given a network topology, we first identify
all blocks along with their cut-vertices. A block can have zero,
one, or multiple sensors. If two cut-vertices are directly con-
nected, an empty block is established. Then, we can translate
the network into a block tree, whose nodes contain blocks and
cut-vertices. The block with the maximum number of sensors
is the root. In Fig. 5(a), there are 5 blocks (including the empty
block B4) and 2 cut-vertices c1 and c2. Block B1 is the root and
blocks B2, B3, and B5 are leaves. The method executes in two
iterations until the network becomes biconnected: (1) Move
each leaf block toward the nearest sensor of its parent block,
until a new edge appears. (2) If its parent block is empty, we
further move it to the upstream cut-vertex of its parent block.
Fig. 5(a) gives an example, where B5 moves toward v of its
parent block B1, and B2 and B3 move toward the cut-vertex
c1 since their parent block B4 is empty. The final topology is
shown in Fig. 5(b).

2.2.2 Coverage Enhancement
The work [20] proposes a bidding protocol to enhance the cover-
age of a hybrid WSN composed of static and mobile sensors.
Static sensors detect uncovered holes locally and bid for mobile
sensors by the sizes of holes. It involves the following steps:

v

(a) initial network topology (b) final network topology
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Fig. 5: An example of the block movement method.

1. Each mobile sensor is assigned with a base price, which
is an estimation of the hole size when it leaves its current
position. Initially, the base price is zero for all mobile sensors.
Then, mobile sensors broadcast their positions and base prices
in their local areas.

2. Static sensors exchange their positions with their neigh-
bors in two hops to construct a Voronoi diagram. If a static
sensor si detects an uncovered hole in its Voronoi polygon, it
calculates a bid as π×(d−rs)

2, where d is the distance between
si and its farthest polygon vertex and rs is the sensing distance.
Here, the bid is an estimation of the uncovered hole size. Then,
si sends its bid to the nearest mobile sensor whose base price
is lower than the bid.

3. On receiving bids, a mobile sensor selects the highest bid
and moves to cover that hole. Then, it replaces its base price
by the selected bid.

The bidding protocol repeats the above steps until no static
sensor can give a bid higher than the base price of any mobile
sensor.

Reference [21] considers moving sensors close to locations
where events could appear. Given a set of event locations,
sensors are moved such that their positions can eventually
approximate the event distribution. Two moving methods are
proposed. In the history-free method, each sensor si at position
pk−1
i reacts to the appearance of an event at location lk by

moving to a new position pki = pk−1
i + fm(d(pk−1

i , lk)), where
function fm(·) prohibits a sensor from passing another along
the same vector in response to the same event. The history-based
method requires sensors to maintain event history to approxi-
mate the event distribution. To maintain maximal coverage of
the ROI, a sensor is not allowed to move if its movement will
leave an uncovered hole.

2.3 Solutions to Assigning Mobile Sensors to Desired
Second Line Locations

This may involves several issues: sensor relocation, sensor navi-
gation, and sensor dispatch.

2.3.1 Sensor Relocation

Reference [22] divides a ROI into grids and moves sensors
from high-density grids to low-density grids. It proposes grid-
quorum to move sensors such that the number of exchanged
messages are reduced. Specifically, a grid head is selected in
each grid to maintain its information. A grid Gi with more
sensors sends an advertisement (ADV) to its row to announce
that it has extra sensors. On the other hand, a grid Gj with
fewer sensors sends a request (REQ) message to its column
to ask for extra sensors. These ADV and REQ will meet at
a common grid. Fig. 6(a) shows an example, where grid (1, 3)
sends ADV to its row and grid (3, 1) sends REQ to its column.
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Fig. 6: The grid-quorum and cascade movement methods.

They will meet at grid (1, 1). This can reduce the message
overhead significantly.

After identifying the targets, sensors are moved by cas-
caded movement rather than direct movement to prevent a
single sensor from consuming too much energy. Fig. 6(b) is
a direct movement, where sj needs to travel a long distance.
Fig. 6(c) is a cascaded movement, where sk first moves to the
target, then si moves to sk’s original position, and then sj
moves to si’s original position.

2.3.2 Sensor Navigation
The work [23] considers navigating mobile sensors in a hybrid
WSN. It assumes that all sensors do not know their own
locations in the ROI. When a static sensor si detects an event, it
will broadcast a weight request (WREQ) packet to search mobile
sensors. On receiving WREQ, a mobile sensor mj will bid for

the event by replying its weight wj =
Aj×h(si,mj)

ej
, where Aj is

the area of Voronoi polygon of mj , h(si,mj) is the hop count
between si and mj , and ej is the energy of mj . A mobile sensor
with a smaller weight will win the bidding.

Static sensors will then guide mj to si’s location. An ADV
packet is sent along the path from si to mj to build up a
navigation field, as Fig. 7 shows. In particular, si sets the
highest credit C1 for itself. For each rebroadcast of ADV, a
lower credit value will be set. Then, mj will try to move to
si by repeatedly searching higher credit values.

C1

ADV

navigation field

si

mjADV
ADV

C2

C2

C2

C3

C3

C3

C4

Fig. 7: Navigate a mobile sensor by credits, where C1 > C2 > C3 > C4.

2.3.3 Sensor Dispatch
Given a set of mobile sensors S and a set of event locations
L, the work [24] considers dispatching S to L with a concept
of load balance. Assuming |S| ≥ |L|, we first calculate the
energy cost w(si, lj) = em × d(si, lj) for each sensor si ∈ S
to reach each location lj ∈ L, where em is the energy cost to
move a sensor in one step. The scheme tries to find a matching
M between sensors and locations by allowing a bound Bj for
each lj ∈ L as follows:

1. For each lj ∈ L, we use a bound Bj to limit the candidate
sensors that lj can match with. A sensor si is said as lj ’s candi-
date if w(si, lj) ≤ Bj . Since a larger bound may lead a sensor
to select a farther location, Bj will be increased gradually.

Initially, each Bj =
1
|L|

∑|L|
j=1 min

∀i,(si,lj)∈S×L
{w(si, lj)}.

2. For each unmatched lj ∈ L, we find a candidate sensor
si with the minimum w(si, lj) to match with. If si is still
unmatched, we add the pair (si, lj) in M. Otherwise, si must
be matched with another location lo. In this case, lj will
compete with lo for si by three rules: (1) If Bj > Bo, we
match si with lj to avoid expanding Bj . (2) If Bj = Bo and
w(si, lj) < w(si, lo), we match si with lj to reduce its energy
consumption. (3) If Bj = Bo and si is the only candidate of
lj but is not that of lo, we match si with lj . When lj wins the
competition, the pair (si, lo) is replaced by the new pair (si, lj)
in M, and lo becomes unmatched. Otherwise, lj checks other
candidate sensors, until there is no candidate.

3. If lj cannot find any match, we increase Bj by ∆B and
go to step 2, until a match is found.

4. We repeat steps 2 and 3, until each lj ∈ L can find a
sensor to match with.

Fig. 8 gives an example, where ∆B = 70. The initial bound
is 79+97+94

3 = 90. In Fig. 8(b), l1 matches with s2 with bound
B1 = 90 and l2 matches with s4 with bound B2 = 90 + 70 =
160. Then, after expanding B3, l3 finds that its candidate s4 has
been matched with l2, so it competes with l2 for s4. Since B3 =
B2 and w(s4, l3) < w(s4, l2), (s4, l2) is replaced by (s4, l3) in
Fig. 8(c). Similarly, l2 obtains s2 from l1 in Fig. 8(d) and thus l1
selects an unmatched sensor s1. Fig. 8(e) shows the final result.

(a) energy costs of mobile sensors

(b) M = {(s2, l1), (s4, l2)} (c) M = {(s2, l1), (s4, l3)}

(d) M = {(s2, l2), (s4, l3)} (e) M = {(s1, l1), (s2, l2), (s4, l3)}
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Fig. 8: An example of finding the matching M.

When |S| < |L|, a clustering approach is proposed and
then the similar matching steps are executed (we omit the
details).

Reference [25] considers a mobile WSN as a multi-robot
system and addresses the cooperation among robots. Each
robot is regarded as a resource and may be required by
multiple concurrent missions. It points out that deadlock may
happen when some missions never finish executing and re-
sources are tied up, preventing other missions from starting.
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Then, a deadlock avoidance policy based on the Petri nets is
proposed.

2.4 Summary of Mobility Management

Table 1 summarizes the mobility management methods for
mobile sensors. While most methods consider a purely mobile
WSN, [18], [20], [23]–[25] consider a hybrid WSN. References
[18], [20] use mobile sensors to improve the topology of a static
WSN, and [23], [24] use static sensors to detect events and
send mobile sensors to event locations. For sensors’ detection,
[10], [12], [15], [17] consider the probabilistic sensing model.
For coverage and connectivity, most deployment methods [10],
[11], [13], [15], [17] address both issues, but the work [12]
addresses only the coverage issue. References [20]–[22] move
sensors to improve a WSN’s coverage, while references [18],
[19] move sensors to improve the network connectivity. For
energy concern, the dispatch solutions in [15], [17], [23] try to
minimize the energy consumption of mobile sensors. Balance
of energy consumption is addressed in [22], [24].

3 PATH PLANNING OF DATA FERRIES

3.1 Solutions to Relaying Messages by Data Ferries

Data ferries are a type of mobile sensors that are mainly de-
signed for carrying data. For example, they can travel between
isolated sensors to relay information. So, path planning is a
critical issue for data ferries to minimize message delay and
meet bandwidth requirements. We will discuss two types of
path planning: The adaptive planning considers that all sensors
are isolated and the final path is adjusted from the initial TSP
solution. The probabilistic planning considers that sensors may
arbitrarily roam around a ROI and ferries may meet them by a
probability model.

3.1.1 Adaptive Planning
Given a data ferry F and a set of isolated sensors S =
{s1, s2, . . . , sn}, the work [26] considers how to schedule a
path for F to visit S . The goal is to exchange data between
sensors such that the average message delay is minimized and
the bandwidth requirement of each sensor is satisfied. To solve
this problem, a 4-step algorithm is proposed:

1. We first calculate an initial path p by any TSP solution.
The message delay between two sensors si and sj on p is

defined by T
p
ij = |p|

2v +
d
p
ij

v
, where |p| is p’s total length, v is

F ’s speed, and d
p
ij is the distance between si and sj on p. It is

assumed that F will repeatedly travel along p. Here,
|p|
2v is the

average waiting time for si be visited by F , and
d
p
ij

v
is the time

for F to deliver si’s data to sj . So, the average delay incurred

by p is T p =
∑

1≤i,j≤n bijT
p
ij∑

1≤i,j≤n bij
, where bij is the average amount

of data to be sent from si to sj .
2. Next, we try to improve p by two operations:

• Edge Replacement: Let sisj and slsm be two edges in p.
Let p′ be the path modified from p by replacing sisj and

slsm with sisl and sjsm. If T p′

< T p, then we replace
p by p′.

• Sequence Reordering: We construct a new path p′ by
moving any si in p from its original position to another

position. If T p′

< T p, then we replace p by p′.

The above operations are repeated until no better path can be
found.

3. Since the communication ranges of sensors may over-
lap, a time allocation policy Φp is needed to assign F ’s com-
munication time with sensors. Specifically, we cut p into m
segments {ξ1, ξ2, · · · , ξm} as F enters or leaves a sensor’s
communication range, and define Φp(si, ξj) as the portion of
F ’s communication time with si when F moves along segment
ξj . Fig. 9(a) gives an example, where the subpath from u to
v is cut into 4 segments ξ1, ξ2, ξ3, and ξ4. Φp(·, ξ1) = 0
since F cannot communicate with any sensor. Φp(s2, ξ2) =
Φp(s1, ξ4) = 1 since F can only communicate with one sensor.
Φp(s2, ξ3) = Φp(s1, ξ3) =

1
2 since F should share its time to s1

and s2.
4. To meet the bandwidth requirement of each si, F should

spend sufficient time to communicate with si. If there is no
sufficient time, the segments for si should be extended prop-
erly. For example, in Fig. 9(a), segment ξ2 may be extended
to the dotted curve to increase the communication time with
s2. Let xj be the extra communication time of F to extend
ξj and ti be the original communication time of F for si. A
linear programming is formulated to minimize the total extra
communication time of F :

min
m
∑

j=1

xj ,

subject to
(ti +

∑m
j=1 Φp(si, ξj)xj) ·R
|p|
v
+

∑m
j=1 xj

≥ bi, (1)

where R is F ’s data rate and bi is the bandwidth requirement
of si. Here, the numerator and denominator are the expected
amount of data that can be sent and received by si and the
total moving time of F after extension, respectively. The path
p after extension is F ’s traveling path.

The work [27] further considers multiple data ferries. Given
n sensors and m data ferries, the goal is to find a set of paths for
data ferries to visit all sensors such that the average message
delay is minimized and the bandwidth requirement of each
sensor is met. Four types of solutions are proposed.

F data ferry sensorpath of a data ferry

F

F

contact point

G4

F F

F

F

cr F

F

1s

2s1 2

3

4

v

u

relaying

sensor

G3

G1 G2

F

F

extending

path

Fig. 9: Path-planning examples for data ferries.

Single-route algorithm (SIRA): All data ferries will move
along the same path and there is no communication between
them. Fig. 9(a) gives an example with two ferries. This algo-
rithm directly extends that of [26]. For any path p, the delay
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references category hybrid probabilistic coverage connectivity energy
WSN sensing issue issue issue

virtual force [10] deployment
√ √ √

repulsive force [11] deployment
√ √

gradient [12] deployment
√ √

Voronoi [13] deployment
√ √

1-coverage [15] deployment
√ √ √ √

k-coverage [17] deployment
√ √ √ √

island [18] enhancement
√ √

block tree [19] enhancement
√

bidding [20] enhancement
√ √

event motion [21] enhancement
√

relocation [22] dispatch
√ √

navigation [23] dispatch
√ √

load balance [24] dispatch
√ √

deadlock [25] dispatch
√

TABLE 1: Comparison of mobility management methods for mobile sensors.

to deliver data from si to sj on p is T
p
ij = |p|

2mv
+

d
p
ij

v
. So,

the average delay of p is T p =
∑

1≤i,j≤n wijT
p
ij∑

1≤i,j≤n wij
, where wij is

the weight assigned to each T
p
ij . Still, edge replacement and

sequence reordering are applied to improve p. Finally, the
linear programming in Eq. (1) can be rewritten as:

min
n
∑

i=1

yi,

subject to R · (2rc + yi)

|p|+∑n
j=1 yj

≥ bi

m
, (2)

where yi is the extra moving length of data ferries in the
communication range of si. In Eq. (2), the left-hand term is the
product of data ferries’ data rate and the ratio of data ferries’
communication time allocated to si, and the right-hand term
means that si’s bandwidth requirement bi is shared by m data
ferries.

Multi-route algorithm (MURA): Each data ferry will move
along a different path and there is no communication between
them. Fig. 9(b) gives an example. In this algorithm, given a
set of paths P , we use a 2-tuple (E1(P), E2(P)) as the cost
function to evaluate the quality of P , where E1(P) is the
estimated total overload of data ferries in P and E2(P) is the
estimated total message delay incurred by P (refer to [27] for
details). Intuitively, overload is the amount of data that newly
appear and cannot be delivered over a time interval. Initially,
we assume that each sensor has a ferry. Let P be the current
path set and ni be number of ferries in pi ∈ P . We adopt
four operations to reduce the number of ferries and to refine
the path set P : (1) overlap(pi, pj): We extend path pj ∈ P by
including one sensor in path pi ∈ P , pi 6= pj such that the cost
is minimized. (2) merge(pi, pj): We combine pi and pj into one
new path, and put all ni + nj ferries on the new path. (3)
merge−(pi, pj): This is the same as merge(pi, pj), except that
we decrease the number of ferries by one. (4) reduce(pi): We
decrease ni by one for pi if ni > 1. We iteratively select one
operation in a greedy manner to minimize the cost, until there
are only m paths. After obtaining m paths, we can apply SIRA
to optimize each path.

Node replying algorithm (NRA): In this scheme, each data
ferry will move along a different path and static sensors will
serve as relay nodes to propagate data from paths to paths.
First, the ROI is divided into c1 × c2 grids, where c1c2 ≤ m,
and each grid will be served by a ferry that travels on a path
constructed by SIRA. Among all possible combinations of c1
and c2, we select the one with the minimum cost (as defined in

MURA). Suppose that grids Gs and Gd want to exchange data.
To relay data between them, we will try to connect Gs and Gd

directly or indirectly. Two grids can be connected using the
overlap(pi, pj) operation in MURA to find a relaying node.
Fig. 9(c) gives an example, where there are 4 grids and 4
paths. Then, these paths will be connected by extending one
to another.

Ferry relaying algorithm (FRA): Like NRA, the ROI is
divided into grids, each to be served by one data ferry. Data
ferries may exchange their data when they meet with each
other. Contact points are designated along grid boundaries for
this purpose, as shown in Fig. 9(d). These contact points are
separated by a distance of one half of the grid boundary, so
each ferry have up to eight contact points to communicate
with other ferries. Data ferries of any two adjacent grids will
move in reverse directions of each other. To guarantee that data
ferries can meet at contact points, [27] suggests extending the
path in each grid by connecting to the contact points and also
extending paths such that they have the same lengths.

The work [28] considers that sensors may have different
communication ranges. A data ferry only needs to touch any
point within the communication range of each sensor to collect
its data. Thus, the moving path of the ferry can be further
reduced. Fig. 10 shows an example, where the ferry is initially
placed at l0. We can observe that the path l0 → l1 → l2 → l0
is shorter than the path l0 → s1 → s2 → l0. Here, l1 and
l2 are called touching points of sensors s1 and s2, respectively.
Based on this observation, [28] adopts evolutionary algorithms
to calculate the touching points of sensors.

s1's communication 
range

starting point 

s2
s1

l1 l2

l0

s2's communication 
range

Fig. 10: An example of touching points of sensors.
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3.1.2 Probabilistic Planning

Given a set of mobile sensors and a data ferry F , [29] considers
planning F ’s path such that the overall probability that F can
meet each mobile sensor is larger than a predefined threshold
τ and the path length is minimized. It is assumed that these
mobile sensors may move following a predefined mobility
model. It is also assumed that F will stop at a few points for
some periods of time when moving along the path. A 3-step
solution is proposed:

F data ferry

mobile sensor

path of a

data ferry

way-point

not in L

way-point

in L

rc

li

ci

F

o

,

,

Fig. 11: An example of the probabilistic planning method.

1. We divide a ROI into grids. Let L be the set of the central
point of each grid, called way-point, as shown in Fig. 11. For
each li ∈ L, let ci be the circle centered at li and with a radius
rc. We define g(ci, sj) as the instantaneous contact probability
that F can meet sensor sj inside ci at a time instance, and
h(ci, ti, sj) as the time-cumulative contact probability that F can
meet sensor sj inside ci when F stays at li for a time period ti.
These probabilities depend on the mobility model of mobile
sensors. In [29], these probability are developed for both a
periodic mobility model and a random way-point mobility model.

2. We then select a subset L′ ⊆ L and determine the time
ti for F to stay in each way-point li ∈ L′ with the following
objective:

min{
∑

li∈L′

ti + βd(li, O)}, (3)

subject to

∀sj ,
∑

li∈L′

h(ci, ti, sj) + max
li∈L′

{g(ci, sj)} ≥ τ, (4)

In Eq. (3), O is the ROI’s center, d(li, O) is the distance between
li and O, and β is a constant to measure the quality of the path
yet to be constructed for F . In Eq. (4), maxli∈L′{g(ci, sj)} is
an estimation of the meeting probability between F and sj .

3. After calculating L′ and the staying time ti for each li ∈
L′, we then adopt any TSP solution to construct a path to visit
all way-points in L′.

3.2 Solutions to Prolonging a WSN’s Lifetime by Data
Ferries

The previous section mainly focuses on using data ferries to
relay data between isolated sensors. Nevertheless, with richer
energy, data ferries can also help prolong the lifetime of a
connected WSN. It is widely known that sensors nearby the
sink could exhaust their energy faster. By scheduling data
ferries to collect data from sensors, the energy consumption

of sensors can be balanced and thus the network lifetime can
be prolonged. We will introduce four path-planning solutions
for data ferries in a connected WSN: The recursive planning
uses a divide-and-conquer scheme to plan a ferry’s path.
The tree-based planning uses a tree structure to plan ferries’
paths. The single-hop collection allows a ferry to directly contact
each sensor. While the above solutions are centralized, the
distributed navigation considers guiding data ferries by sensors
in a distributed manner.

3.2.1 Recursive Planning
Given a set of sensors S and a data ferry F , [30] considers
planning F ’s path to visit some sensors in S such that the
F ’s moving distance (or time) can be bounded by a pre-
defined threshold, and the network lifetime is maximized.
Suppose that F will move from a location la = (xa, ya) to
another location lb = (xb, yb). The idea is to recursively pick
a turning point between la and lb, until we can find a path
la → l1 → · · · → lm → lb such that the distance (or time)
bounded can be meet, and the network lifetime is maximized
when F moves along the path, where l1, l2, · · · , lm are the
turning points. A divide-and-conquer scheme is proposed as
follows:

1. Given two locations la and lb, we select a set of possible
turning points such that each point locates at (xa+xb

2 , k∆y),
where k is an integer and ∆y is a constant such that every
turning point will be inside the ROI. Among these turning
points, we select the point lv and construct a path la → lv → lb
such that the network lifetime can be maximized when F
moves along that path (refer to [30] for the details about
calculating the network lifetime). Fig. 12(a) gives an example,
where there are 4 turning point and a path la → lv2

→ lb is
constructed.

2. We divide sensors into two groups according to their
distances to the line segments la → lv and lv → lb (a sensor
will favor the closer line segment). For example, in Fig. 12(b),
sensors s1, s2, and s3 are in one group, while s4 and s5 are in
another group.

3. For each cluster of sensors, we recursively execute the
above two steps, until the distance (or time) bounded is
reached. Fig. 12(c) shows the final result, where there are two
iterations.

3.2.2 Tree-Based Planning
Given a data ferry F and a routing tree T = (V, E) rooted a
sink, where V contains all sensors S and the sink B, and E
contains all tree edges, [31] considers scheduling a cyclic path
for F to visit a subset of nodes V ′ ⊆ V , such that B ∈ V ′, the
path length is not longer than Lmax, and the overall hop count
along T from each sensor to a node in V ′ is minimized. We
denote by δTSP (V ′) the length of a path calculated by any TSP
solution to traverse all nodes in V ′. This algorithm involves
five following steps:

1. Initially, V ′ = {B}.
2. Then, we construct a candidate set W as follows: For

each v ∈ V − V ′, we add v to W if δTSP (V ′ ∪ {v}) ≤ Lmax. If
W = ∅, the algorithm is terminated.

3. For each v ∈ W , we calculate its utility by

U(v) =

∑

si∈S dT (si,V ′)−∑

si∈S dT (si,V ′ ∪ {v})
δTSP (V ′ ∪ {v})− δTSP (V ′)

,

where dT (si,V ′) is the hop count along T from si to a node
in V ′. Here, the utility of v is the ratio of the reduction of total
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Fig. 12: An example of the recursive planning method for a data ferry.

hop count that data has to be relayed along T to the increase
of F ’s length after adding v. We then add the node with the
maximum utility to V ′.

4. After adding a new node, we recalculate the utility of
each si ∈ V ′. If any si ∈ V ′ has U(si) = 0, we remove it from
V ′.

5. If all sensors are included in V ′, the algorithm is termi-
nated. Otherwise, we go to step 2.

Fig. 13 gives an example. We will include s1 and s2 into V ′

in the first two iterations. In the third iteration, s3 is added.
Since U(s1) becomes zero, we remove s1 from V ′. The final
path is B → s2 → s3 → B.

iteration 1: iteration 2: iteration 3: 

S1
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}{s{B}V'

}s,s,{sW

1

321

}{s}s{B,V'
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Fig. 13: An example of the tree-based planning method for a data ferry.

Reference [32] considers that sensors may aggregate their
data before sending to a data ferry. It discusses how to sched-
ule a ferry’s path such that the path length is not longer
than Lmax and the total amount of data sent to the ferry can
be minimized. The work suggests planning a ferry’s path by
adopting a steiner tree [33] to aggregate sensing data.

3.2.3 Single-Hop Collection

The work [34] considers planning a ferry’s path to travel in
a WSN such that each sensor can directly communicate with
the ferry. Let L = {l1, l2, . . . , lk} be a set of candidate polling
points which contains all sensor locations and some predefined
locations. Let N (li) be the set of sensors that the ferry can
directly communicate with when it arrives at point li ∈ L. The
goal is to find a subset of polling points L′ ⊆ L such that
each sensor belongs to at least one N (li), li ∈ L′, and the total
length is minimized. Initially, we set L′ = {B}, where B is the
base station. Then, a greedy solution is proposed to iteratively
add a polling point li in L with the minimum covering cost τ(i),
until all sensors belongs to at least one N (li), li ∈ L′. Here, we

define τ(i) =
min{d(li,lj)|lj∈L′}

|N (li)∩U| , where U is the set of sensors

that are not in any N (li), li ∈ L′ and d(li, lj) is the distance
between two polling points li and lj . Then, a TSP scheme can
be applied for the data ferry to visit all points in L′.

Reference [35] extends the above work by assuming that
each sensor is equipped with one antenna and the data ferry
is equipped with two antennas such that the dada ferry may
communicate with two sensors simultaneously by a space divi-
sion multiple access (SDMA) technology. It redefines the service
coverage when the ferry stays at a location and then a similar
path planning scheme in [34] is adopted.

3.2.4 Distributed Navigation

Unlike the previous centralized approaches, some efforts focus
on designing a fully distributed protocol to navigate a data
ferry for data collection. Given a set of sensors without location
information and a data ferry with an antenna system which
can accurately compute the direction of arrival (DOA) for
received signals, reference [36] proposes a distributed nav-
igation protocol to visit some representative sensors. These
representative sensors are called navigation agents (NAs). Then,
the data ferry is navigated by the intermediate sensors between
these NAs, called intermediate navigators (INs). Fig. 14 shows an
example. A 3-phase protocol is proposed:

intermediate navigator

navigation agent communication link

moving path

F

N

E

Y

MX

Z

L

C

G

W

H

B

A

I

Fig. 14: An example of distributed navigation by sensors.

1. Identification of NAs and INs: The set of NAs should be a
dominating set of this network. The heuristic in [37] is adopted.
First, a spanning tree rooted at any sensor is formed. Second,
nodes mark themselves as NAs as follows:

• The root declares itself as a NA by broadcasting a
Declare-NA message.
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• When a sensor receives a Declare-NA, it will give up
becoming a NA by broadcasting an Accept-NA message.

• When a sensor receives Accept-NA from all lower-depth
neighbors, it will declare itself as a NA by broadcasting
a Declare-NA message.

This process is repeated until each sensor is either a NA or a
one-hop neighbor of a NA. Then, for each pair of NAs, the
nodes passed by the shortest path (in terms of hop count)
between these two NAs are marked as INs.

2. Path computation: A path P is formed to visit each NA.
The work proposes adopting the ant colony optimization-TSP
solution [38].

3. Navigation: Finally, the data ferry travels along P with
the assistance of INs based on a DOA model. When visiting a
NA, both NA and those sensors dominated by NA will send
their data to the ferry.

Reference [39] extends the above protocol to the k-hop data
collection scheme where sensors that are within k hops from
a NA can send their data to the NA (and thus the ferry). To
reduce the latency to deliver data to a NA, a sensor can pre-
transmit its data to a sensor that is 1-hop away from a NA.

3.3 Summary of Path Planning

Table 2 summarizes the path-planning methods for data fer-
ries. While most methods consider centralized approaches,
[36], [39] uses sensors to navigate a data ferry in a distributed
manner. References [30]–[32], [39] consider that data sent from
sensors to a data ferry can be multi-hop transmission; other
work [26]–[29], [34]–[36] consider that ferries should directly
communicate with each sensor. For the issue of communication
time, [26], [27] extend the communication time of sensors to
meet their bandwidth requirements, [29] minimizes the total
waiting time of a ferry at each point along the path, and [35]
adopts an physical layer technology to help a ferry quickly
collect data from sensors. For energy concern, [30] balances
the traffic loads among sensors, while [31], [32], [34]–[36], [39]
reduce the total energy consumption of sensors. For the length
concern, [30]–[32] give constraints on path lengths, while [26]–
[29], [34]–[36], [39] try to minimize path lengths.

4 PLATFORMS AND APPLICATIONS OF MOBILE

WSNS

Below, we review some interesting platforms and applications.
Mobile Emulab [40] is a robotic testbed developed for mobile
WSNs. Mobile sensors are robots that carry single-board com-
puters and sensing devices. Remote users can control these
mobile sensors in a real-time and interactive way, or through a
script. Fig. 15 shows its system architecture. The video cameras
will overlook the ROI and track mobile sensors. Snapshots
are periodically reported to the vision system. Through image
processing, the positions of mobile sensors are determined.
The robot system can send motion commands to mobile sensors,
which can report their sensing data to the robot system. On the
other hand, the robot system can query the current positions
of mobile sensors via the robot-backend system. Remote users
can send motion requests to control mobile sensors, or send event
requests to obtain the ROI’s status.

Visual surveillance systems typically collect a large amount
of images from video cameras, which require a huge com-
putation cost to analyze. Introducing the intelligence of mo-
bile WSNs can help reduce such overheads while supporting

Emulab interface

motion requests
 event requests

position data
event reports

position data

vision system

user

video cameras

 motion requests

position data position queries

event reports

mobile sensors

robot-backend system

snapshots

robot system

motion commands sensing data

Fig. 15: The system architecture of Mobile Emulab.

more advanced, context-rich services. The iMouse system [41]
is proposed to integrate static sensors and mobile sensors, as
Fig. 16(a) shows. Static sensors continuously monitor the ROI
and notify the server when detecting abnormal events. Once
receiving such notifications, the server will dispatch mobile
sensors to take snapshots at event locations. Thus, iMouse can
avoid recording unnecessary images when nothing happens.
Fig. 16(b) shows the components of a mobile sensor, which
consists of a LEGO car carrying a MICAz mote, a webcam,
an 802.11 WLAN card, and a Stargate. Fig. 16(c) shows an
experimental grid-link deployment.

static sensor (mote)

mobile sensor

event

WLAN card
mote

Stargate

light detector Lego car

webcam

intersection
road

(1) collect data &

report events(2) dispatch

(3) move to event locations &

conduct advanced analysis

(4) move back &   

report detailed data

mobile sensors
event location

user & server

static sensor

Fig. 16: The iMouse system.

Robomote [42] is a mobile platform with MICA2 motes and
some infrared sensors to detect obstacles. Two case studies
have been tested on this platform. Based on the sensor-based
path-planning scheme [43], it uses one Robomote to move
along a desired contour constructed by querying neighboring
sensor readings. The second case is to implement a tracking
algorithm proposed in [44] to locate the light source by a
Robomote.

The work in [45] uses a WSN to implement the pursuer-
evader game. There is a moving object (called evader) and a data
ferry (called pursuer). The evader roams around arbitrarily and
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references category distributed multi-hop communication energy path
scheme collection time issue constraint

single ferry [26] data relaying
√

multiple ferries [27] data relaying
√

touching points [28] data relaying
probability [29] data relaying

√
recursive [30] network longevity

√ √ √
routing tree [31] network longevity

√ √ √
aggregation [32] network longevity

√ √ √
1-hop collection [34] network longevity

√
SDMA [35] network longevity

√ √
1-hop navigation [36] network longevity

√ √
k-hop navigation [39] network longevity

√ √ √

TABLE 2: Comparison of path-planning methods for data ferries.

the pursuer tries to intercept the evader based on the data
reported by static sensors. One challenge for static sensors is
how to quickly tell the pursuer where the evader is. To address
this issue, static sensors detecting the evader will elect a leader
to report to the pursuer. Such reports are sent to the moving
pursuer through a landmark routing [46], which operates over
a tree-building mechanism. Finally, the pursuer will determine
the interception path to chase the evader. The platform is
developed based on MICA2 motes, an 802.11 WLAN card, and
high-precision differential GPS devices.

The work in [47] proposes an implementation of data
ferries. Two critical issues are addressed: (1) how to reduce
the speed of a data ferry when its MAC layer encounters
interference and collision, and (2) how to construct the relaying
path from each sensor to a data ferry’s moving path. To address
the first issue, this work designs an adaptive speed control
algorithm to determine whether a data ferry should slow down
depending on its current data deliver rate. Specifically, a data
ferry has three speeds: SLOW, STOP, and FAST. A sensor can
indicate how much data that it wishes to transfer in a packet
header. Then, the data ferry can select a speed accordingly. To
address the second issue, a data ferry can broadcast an interest
message to help sensors learn their distances to the data ferry’s
moving path.

5 CONCLUSIONS

Static WSNs have limitations on supporting multiple missions
and handling different situations when network conditions
change. Introducing mobility to WSNs can improve the net-
work capability and thus relieve the above limitations. This
article provides a comprehensive survey of current works
on mobile WSNs. Various mobility management and path-
planning schemes have been discussed. Also, several mobile
platforms and applications have introduced.
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