
IEEE TRANSACTIONS ON COMPUTERS 1

Multiresolution Spatial and Temporal Coding in a
Wireless Sensor Network for Long-Term

Monitoring Applications
You-Chiun Wang, Yao-Yu Hsieh, and Yu-Chee Tseng

Abstract—In many WSN (wireless sensor network) applications, such as [1]–[3], the targets are to provide long-term monitoring of

environments. In such applications, energy is a primary concern because sensor nodes have to regularly report data to the sink and need to

continuously work for a very long time so that users may periodically request a rough overview of the monitored environment. On the other

hand, users may occasionally query more in-depth data of certain areas to analyze abnormal events. These requirements motivate us to

propose a multiresolution compression and query (MRCQ) framework to support in-network data compression and data storage in WSNs

from both space and time domains. Our MRCQ framework can organize sensor nodes hierarchically and establish multiresolution summaries

of sensing data inside the network, through spatial and temporal compressions. In the space domain, only lower resolution summaries are

sent to the sink; the other higher resolution summaries are stored in the network and can be obtained via queries. In the time domain, historical

data stored in sensor nodes exhibits a finer resolution for more recent data, and a coarser resolution for older data. Our methods consider

the hardware limitations of sensor nodes. So, the result is expected to save sensors’ energy significantly and thus can support long-term

monitoring WSN applications. A prototyping system is developed to verify its feasibility. Simulation results also show the efficiency of MRCQ

compared to existing work.

Index Terms—coding, data compression, sensor data aggregation, sensor data management, wireless sensor networks.

✦

1 INTRODUCTION

W IRELESS sensor networks (WSNs) provide a new op-
portunity for pervasive and context-aware monitoring

of physical environments. A WSN is composed of numerous
sensor nodes, each being a tiny wireless device that can contin-
uously collect environment information and report to a remote
sink through a multi-hop ad hoc network [4]. A WSN is usually
deployed in a region of interest to observe particular phenom-
ena or track objects inside the region. Practical applications of
WSNs include, for example, habitat monitoring, health care,
smart home, and surveillance [5]–[7].

Because sensor nodes are typically operated by batteries
and recharging is usually infeasible, it is a critical issue to
extend the network lifetime by conserving their energy. In this
paper, we consider WSNs with the following characteristics:

• These WSNs are deployed to support long-term moni-
toring of specified regions [1]–[3]. Since sensor nodes
need to regularly report data to the sink, the com-
munication overhead will dominate their energy con-
sumption. In addition, due to the large amount of such
regular reporting, sensor nodes closer to the sink will
suffer from heavier traffic loads and thus rapier energy
drain [8]. When these nodes exhaust their energy, the
network would be broken. Thus, it is important to
reduce the amount of transmission of regular reporting
of sensor nodes.

• Sensing data often exhibit a certain degree of correla-
tion. The readings of nearby sensor nodes may present
high spatial correlation due to the similar environment.
Besides, the sensing data collected by a single node may

The authors are with the Department of Computer Science, National Chiao-Tung
University, Hsin-Chu, 30010, Taiwan.
E-mail: {wangyc, shiehyy, yctseng}@cs.nctu.edu.tw

23.0

24.0

25.0

26.0

27.0

28.0

29.0

30.0

12:35

PM

03:05

PM

05:35

PM

08:05

PM

10:35

PM

01:05

AM

03:35

AM

06:05

AM

08:35

AM

11:05

AM

time

te
m

p
e

ra
tu

re
(

C
)

sensor 1
sensor 2
sensor 3
sensor 4

Fig. 1: Indoor temperatures collected by four sensor nodes during a day.

present high temporal correlation when its surrounding
remains stable or changes slowly. Fig. 1 shows an
experimental result to support the above argument,
where four sensor nodes are used to collect the tem-
peratures of a room in a day. We can observe that the
temperatures reported by sensors 1, 2, and 4 are quite
spatially correlated because they are close to each other,
and the temperatures collected by each individual node
during the periods [12:35 PM, 05:35 PM] and [08:05 PM,
01:05 AM] are quite temporally correlated. Therefore,
there is large space to compress sensing reports to
reduce transmission.

• Users could query different ‘resolutions’ of sensing
data, both spatially and temporally, from the network
[9], [10]. In the space domain, they may want to re-
ceive a periodical rough report containing an overview
of the environment from the sink. Occasionally, they
may query more in-depth data of certain areas where

2 IEEE TRANSACTIONS ON COMPUTERS

something abnormal may be happening. As a result,
the WSN should be designed to allow periodical lower
resolution reports to be sent to the sink as well as
to keep higher resolution data inside the network for
further queries. In the time domain, they may be more
interested in recent sensing data than older ones.

• Sensor nodes are usually simple devices. They have a
limited computation power and a smaller memory size.
Thus, the proposed compression and storage schemes
cannot be too complicated to fit into sensor nodes.

In this paper, we propose a multiresolution compression and
query (MRCQ) framework to support in-network data com-
pression and data storage in WSNs. The idea is to organize
sensor nodes hierarchically and then establish multiresolution
summaries of sensing data, via spatial and temporal coding
techniques. To reduce communication cost, only lower resolu-
tion summaries are sent to the sink. The other higher resolution
summaries will be stored at different layers of the network to
be retrieved via further queries. The hierarchical architecture
of sensor nodes is to support such layering. Data reported from
lower layer nodes will be compressed by an upper layer node
through a spatial coding technology. In this way, the amount of
data transmission can be significantly reduced. Each node also
compresses its historical data by a temporal coding technique.
To keep historical summaries inside the network, we develop
a reverse-exponential storage algorithm, where historical data also
exhibits a multiresolution characteristic in the sense that finer
resolutions are available for more recent data, while coarser
resolutions are available for older data.

To summarize, major contributions of this paper are three-
fold. First, we propose a transmission and storage framework
for WSNs to support multiresolution spatial and temporal
coding of sensing data. To avoid sensor nodes wasting too
much energy on regular reporting, they only report period-
ical lower resolution summaries to the sink. On the other
hand, higher resolution data are kept in the network to allow
occasional queries from users. This design can significantly
extend a WSN’s lifetime, especially in long-term monitoring
applications in a somewhat stable or slowly changed environ-
ment. Second, we develop in-network spatial and temporal
compression algorithms to help reduce data transmission in
a WSN. Not only the network lifetime can be extended, but
also the network congestion can be alleviated. Compression
ratios are tunable, so users are allowed to trade data accuracy
for energy consumption according to their requirements. In
addition, we also design an efficient storage mechanism to help
sensor nodes to maintain their historical sensing data in local
memories. The historical data also have multiple resolutions
depending on their seniority. Third, the proposed compression
and storage algorithms consider the limitation of computation
power and memory size of sensor nodes. We have developed
a prototyping system to evaluate the feasibility of the MRCQ
framework. Extensive simulations are also conducted to verify
the efficiency of the proposed algorithms. The results show
that MRCQ incurs a lower amount of data transmission and
renders more accurate reports compared to DIMENSIONS
[11].

The rest of this paper is organized as follows: Section 2
reviews some related work. Section 3 presents our MRCQ
framework. Section 4 discusses our prototyping results. Sec-
tion 5 gives simulation results. Section 6 concludes this paper.

2 RELATED WORK

Data compression has been widely researched in various fields.
Some of these concepts have also been applied to WSNs. Below
we give a classification and a review.

Text-based compression: The Lempel-Ziv-Welch (LZW) al-
gorithm [12] is a popular lossless compression scheme for
text data. It is a dictionary-based algorithm that encodes new
strings based on previously encountered strings. This concept
is adopted by S-LZW [13] to reduce data transmission in
a WSN. S-LZW treats sensing data as strings and divides
them into fixed-size blocks, each being compressed by LZW.
Although it is appropriate for sensor nodes, S-LZW does not
use the spatial and temporal correlations of sensing data.

Wavelet-based compression: Wavelet-based compression
such as JPEG2000 [14] is designed for image compression. It
divides an image into multiple small pixels and compresses
them through wavelet transform and quantization [15]. DI-
MENSIONS [11] adopts this concept to support multiresolu-
tion storage in a WSN by organizing the network into multiple
levels. The three-dimensional discrete wavelet transform (3D-DWT)
[16] is adopted to generate spatiotemporal summarization of
sensing data in each level. Users can obtain different resolu-
tions of sensing reports from different levels via drill-down
queries. Although DIMENSIONS meets our multiresolution
requirement, it is too complicated for sensor nodes because
wavelet-based compression would incur high computation
and storage complexity. Also, such expensive wavelet com-
pression and decompression operations are performed at each
level of the DIMENSIONS hierarchy.

Distributed source coding: The Slepian-Wolf theorem [17] is
the foundation of such coding. Given two correlated sources,
each being encoded independently, and then decoded jointly
at a receiver, the Slepian-Wolf theorem proves that it is possible
to achieve lossless encoding of these two sources at a rate
equal to their joint entropy, even though there is no negotiation
between the two encoders. The theorem and its rate-distortion
extension [18] provide a theoretical tool to characterize the
amount of communications required for the distributed source
coding in a network where nodes will generate highly corre-
lated data [19]. Reference [20] adopts this property to provide
distributed compression in a dense sensor network. However,
inherited from the Slepian-Wolf theorem, [20] requires prior
correlation knowledge of the data to be compressed, which
limits its feasibility to be applied to real WSNs.

Compressed sensing: Compressed sensing (or compressive
sensing) [21] is an emerging sampling theory that leverages
compressibility without relying on any specific prior knowl-
edge or assumption on signals. It indicates that any sufficiently
compressible signal can be accurately recovered from a small
number of nonadaptive, randomized linear projection sam-
ples. Specifically, given a set of sparse signal x = (xi,j)n×1,
we can find a random projection matrix A = (Ai,j)k×n with
far fewer rows than columns (i.e., k ≪ n) to obtain a small
compressed data set y = (yi,j)k×1 = Ax. This concept is
adopted in [22] to provide lossless compression in WSNs.
Each of n sensors locally draws a vector with k elements by a
random generator to form matrix A, and then uses A to com-
press its sensing data. This scheme provides a decentralized
compression in WSNs, but it cannot support multiresolution
compression.

Data aggregation: In-network data aggregation for WSNs
[23]–[27] focuses on reducing the message cost by fusing

MULTIRESOLUTION SPATIAL AND TEMPORAL CODING IN A WIRELESS SENSOR NETWORK FOR LONG-TERM MONITORING APPLICATIONS 3

TABLE 1: Comparison of prior work and our MRCQ framework.
work compression lossless low multiresolution

technique compression complexity feature
S-LZW [13] LZW

√ √
DIMENSIONS [11] wavelet compression

√
reference [20] Slepian-Wolf theorem

√
reference [22] compressed sensing

√ √
references [23]–[27] data aggregation

√
our MRCQ DCT, differential, and reverse-exponential

√ √

similar sensing data into some representative values. For ex-
ample, TAG [23] organizes a sensor network into a tree and
proposes SQL-like semantics to aggregate streaming data into
histograms. Nevertheless, such a compression provides only
one level of resolution.

Our MRCQ framework provides multiresolution compres-
sions in both space and time domains. Our spatial compression
algorithm modifies the popular DCT (discrete cosine transform)
method in the image processing field, and our temporal com-
pression algorithm adopts a differential coding to transmit
continuous data and a reverse-exponential concept to store his-
torical data. Table 1 compares the features of prior works and
our MRCQ framework. Since DIMENSIONS is the only work
that possesses the multiresolution feature, we will compare
with it numerically in Section 5.

3 MULTIRESOLUTION COMPRESSION AND

QUERY (MRCQ) FRAMEWORK

Fig. 2 illustrates the system architecture of our MRCQ frame-
work. We assume that sensor nodes are homogeneous and they
are arbitrarily deployed in the sensing field. The network is
recursively divided into α (α > 1) blocks and is organized into
multiple layers, where a block in layer i + 1 contains α blocks
in layer i. In each layer, we select a node in each block as the
processing node (PN) to collect and compress sensing reports
from lower-layer blocks. The number of layers decides the
resolutions and message sizes of sensing reports, and can be
adjusted depending on application requirements.

In the lowest layer 1, the PN is responsible for compressing
sensing reports from leaf sensor nodes (LNs). The area handled
by each PN is divided into k × k grids (called pixels), where
k is a small integer. Ideally, each pixel should contain exact
one LN and the sensing report of this LN is the pixel’s
value. Nevertheless, since LNs are randomly deployed, it is
possible that some pixels contain no or multiple LNs. In a
pixel with multiple LNs, its value is the LNs’ average. In a
pixel containing no LN, its value can be estimated by some
interpolation scheme.

In MRCQ, sensing data is transmitted to the sink layer by
layer. There are three algorithms. Data passing each layer will
be compressed by its PN through a spatial compression algorithm
(discussed in Section 3.1). LNs and layer-1 PNs will compress
their data by a temporal compression algorithm (Section 3.2).
Historical data will be stored by each LN and PN via a reverse-
exponential storage algorithm (Section 3.3). Since the spatial and
temporal compression algorithms may cause loss of precision,
multiple resolutions can be supported. In particular, as we go
deeper into the tree, a finer resolution can be obtained. When a
query arrives at a PN, it can reply if its resolution satisfies the
requirement of the query. Then, the content of the response will
be decompressed at the sink. In this way, both computation
and space complexities of PNs are greatly reduced.

sink

layer 3

layer 2

layer 1

space

time

n
a

rr
o
w

e
r

v
ie

w
,

fi
n

e
r

re
s
o
lu

ti
o
n

b
ro

a
d
e
r

v
ie

w
,

c
o
a
rs

e
r

re
s
o
lu

ti
o
n

k

leaf sensor

node (LN)

pixel

layer-3

processing node (PN)

layer-2 PN

layer-1 PN

.

k

newer data,

finer resolution

older data,

coarser resolution

pixels

.

complete
partial

complete
partial

partial

i∆c
i∆c+∆p i∆c+j∆p

(i+1)∆c
(i+1)∆c+∆p

Fig. 2: System architecture of the MRCQ framework (with three layers and
α = 4).

3.1 Spatial Compression Algorithm

The spatial compression algorithm is performed by each PN to
compress sensing data from its lower layer. A compression ratio
γ (0 < γ ≤ 1) can be specified, which is defined as the ratio of
the size of compressed data to the size of uncompressed data.
The spatial correlation of data is exploited in the compression.
There are three components: layer-1 compression, layer-i compres-
sion (i > 1), and decompression.

3.1.1 Layer-1 Compression

A layer-1 PN collects the sensing data from its local LNs and
stores them in a k × k matrix M = (si,j)k×k, where si,j is
the value of the local pixel (i, j). Then, we apply the two-
dimensional discrete cosine transform (2D-DCT) [28] on M to
generate a new matrix M′ = (ti,j)k×k, where

ti,j =
2

k
C(i)C(j)

k−1
∑

x=0

k−1
∑

y=0

sx,y · cos(iπ
2x+ 1

2k
) cos(jπ

2y + 1

2k
),

(1)

4 IEEE TRANSACTIONS ON COMPUTERS

where C(i) = 1√
2

if i = 0 and C(i) = 0 otherwise. The

2D-DCT is widely used in image processing. It can transform
an image from the spatial domain to the frequency domain
and extract significant values of the image. In particular, those
significant values will appear in the upper left part of matrix
M′, while insignificant values will appear in the opposite
part. Therefore, we can preserve most characteristics of M by
truncating the lower right part of M′ for compression purpose.

The cosine operations in Eq. (1) might be too costly for
sensor nodes. Fortunately, the variable k is a pre-defined
system parameter. Since k is a small integer, we can maintain a
small table in each PN to record the results of cosine operations
for each (i, x) and (j, y) pair. Thus, the calculation of Eq. (1) can
be reduced to simple addition and multiplication operations.

After calculating M′, a reduced zigzag scan (RZS) is per-
formed to translate M′ into a one-dimensional array D. RZS
retrieves elements of M′ from the upper left corner toward
the lower right corner along the diagonal direction, as shown
in Fig. 3, until ⌈γ ·k2⌉ elements are scanned. Then, the array D
is transmitted to its layer-2 PN. Due to the property of 2D-DCT,
array D keeps most significant values of M.

start

M
,

more significant values

less significant values

finish

Fig. 3: An example of RZS with compression ratio γ =
20

25
= 0.8.

3.1.2 Layer-i Compression

A layer-i (i > 1) PN will further compress the data from
its α child blocks in layer i − 1. Intuitively, one possible
solution is: 1) decompress the block from each lower-layer
node, 2) combine all α blocks together to form a larger block,
and 3) apply the 2D-DCT method again on the larger block.
Nevertheless, this solution has two drawbacks. First, the 2D-
DCT decompression and compression are too expensive. The
situation becomes worse as we move to the higher layers.
Second, the effectiveness of compression may degrade because
in a larger area, the degree of spatial correlation of sensing data
will decrease.

Here, we propose a simple layer-i compression scheme, as
shown in Fig. 4. Specifically, for each layer-2 PN, it will collect
reduced matrices M′ from its α layer-1 PNs, each with ⌈γ ·k2⌉
pixels. For each reduced layer-1 matrix M′, we transmit the
first ⌈γ(γ · k2)⌉ significant pixels and discard the remaining
⌊γ ·k2−γ2 ·k2⌋ pixels1, as shown in Fig. 4. So, only α · ⌈γ2 ·k2⌉
pixels will be sent to its layer-3 PN. Similarly, for each layer-
i PN, it will collect αi−1 layer-1 matrices, and only preserve
the first most significant ⌈γi · k2⌉ pixels of each layer-1 matrix
to be sent to its layer-(i + 1) PN and discard the remaining
⌊γi−1 · k2 − γi · k2⌋ pixels. The above scheme incurs quite low

1. These discarded pixels will be stored in the PN’s local memory for
further queries.

layer 2

layer 1

k

k

stored in layer 1

pixels2 2
k kgê ú- ×ë û

sent to layer 2

pixels
2

kgé ù×ê ú

stored in layer 2

pixels2 2 2
k kg gê ú× - ×ë û

sent to layer 3

pixels
2()kg gé ù×ê ú

stored in layer 2

pixels2 2 2
k kg gê ú× - ×ë û

sent to layer 3

pixels
2()kg gé ù×ê ú

stored in layer 2

pixels2 2 2
k kg gê ú× - ×ë û

sent to layer 3

pixels
2()kg gé ù×ê ú

stored in layer 2

pixels2 2 2
k kg gê ú× - ×ë û

sent to layer 3

pixels
2()kg gé ù×ê ú

Fig. 4: Layer-i compression scheme.

computation cost. Besides, since entries of a layer-1 matrix are
more spatially correlated, such a compression is more efficient.

Next, we analyze the size of packets transmitted in each
layer. Suppose that the size of a pixel is l bits and each packet
header is h bits. Given a compression ratio of γ, the size of
each packet transmitted by a layer-1 PN is h + ⌈γ · k2l⌉ bits.
For each layer-2 PN, after including a packet header, h + α ·
⌈γ2 · k2l⌉ bits will be sent to its parent. Similarly, the size of
each packet transmitted by a layer-i PN is h+ αi−1 · ⌈γi · k2l⌉
bits. In summary, excluding packet headers, only a γi ratio of
the amount of original sensing data is transmitted by layer-
i PNs. A smaller γ incurs less amount of data transmission
and thus preserves more energy of PNs, but it also reduces
data accuracy. We will discuss this tradeoff by simulations in
Section 5.

3.1.3 Decompression

There are two cases where decompression may be taken. The
first case is at the sink based on the αd−1 reduced layer-
1 matrices collected from its children, each with ⌈γd · k2⌉
pixels, where d is the number of layers. Then, each reduced
matrix will be expanded to a k × k matrix M′ = (ti,j)k×k by
appending sufficient 0’s at the end. We then adopt the inverse
2D-DCT to transform M′ to a matrix M = (si,j)k×k, where

si,j =
2

k

k−1
∑

x=0

k−1
∑

y=0

C(x)C(y) · tx,y · cos(xπ
2i+ 1

2k
) cos(yπ

2j + 1

2k
).

(2)

Since Eq. (2) is the inverse of Eq. (1), we can obtain an
approximation of the original matrix of sensing data. The sink
then puts all these recovered αd−1 matrices together to form a
large matrix of approximate sensing data.

The second case happens when we query a certain layer i.
A query will be flooded from the sink to all layer-i PNs. Then,
each layer-i PN will send the discarded part (⌊γi−1 ·k2−γi ·k2⌋
pixels, as shown in Fig. 4) to its layer-(i+1) PN. Such operation
is repeated until the sink receives all discarded pixels of all PNs
from layers i to d. In this way, the sink can have the complete
matrices seen by all layer-i PNs and then recover the sensing

MULTIRESOLUTION SPATIAL AND TEMPORAL CODING IN A WIRELESS SENSOR NETWORK FOR LONG-TERM MONITORING APPLICATIONS 5

data with a resolution of layer i. As can be seen, the above
scheme requires each PN to transmit only few pixels.

3.2 Temporal Compression Algorithm

The aforementioned discussion assumes that LNs and PNs
will periodically report data to their parents. In this section,
we propose a temporal compression algorithm, which tries to
reduce the amount of transmission by exploiting the similarity
of data items that are generated at close times.

The concept of temporal compression is shown in Fig. 2.
The compression is done only between LNs and layer-1 PNs
and between layer-1 PNs and layer-2 PNs. The time axis is
divided into complete reporting intervals of the same length
∆c. Each complete reporting interval is further divided into
smaller partial reporting intervals of length ∆p, where ∆c is a
multiple of ∆p. In the beginning of each complete reporting
interval, LNs and PNs will report and compress data as we
discussed earlier. During each complete reporting interval,
differential compression will be conducted in the beginning
of each partial reporting interval. Specifically, each LN will
decide to report or not to report according to the variance of
its current sensing data and its previous sensing data. If an LN
does not report, its layer-1 PN will assume that its sensing data
are unchanged. Similarly, a layer-1 PN will do the same thing
to its layer-2 PN.

The compression between LNs and layer-1 PNs will be
controlled by a small update threshold δL. An LN will not
report if its current sensing data vcurrent differs from its pre-
vious reported data vrep by an amount no more than δL,
i.e., |vrep − vcurrent| ≤ δL. If so, its layer-1 PN will use vrep
as its current sensing data. The compression between layer-1
PNs and layer-2 PNs will be controlled by a threshold δP . A
layer-1 PN will not report if the difference between its current
matrix Mcurrent = (ti,j)k×k and its previously report matrix
Mrep = (si,j)k×k satisfies the inequality

1

k2

k
∑

i=1

k
∑

j=1

|si,j − ti,j | ≤ δP .

If so, its layer-2 PN will use Mrep as its current sensing matrix.
Note that all layer-i PNs, i ≥ 2, will not conduct tem-

poral compression because the matrices seen by such nodes
have already been compressed by the 2D-DCT method and
computing the difference of two compressed matrices is time-
consuming.

Remark 1. Since sensor nodes will regularly report their sens-
ing data, we can set up timers at PNs and the sink, and
apply a retransmission mechanism to handle the packet
loss problem. The length of timeout can be set to the
reporting interval ∆c. When a node does not respond
after a predefined number of retransmission requests, it is
treated as failure. In the case of an LN failure, the layer-1
PN can use interpolation to estimate its value. In the case
of a PN failure, a new PN can be elected to replace the old
one.

3.3 Reverse-Exponential Storage Algorithm

The above compression and decompression algorithms only
concern the current sensing data. In fact, sensing data is
usually a streaming data. Thus, it is a challenging issue to store
historical data in PNs and LNs under sensors’ limited storages.

local memory

time

. . .

frame

t1t -

.

3t -7t -22 1n
t

-- +12 1n
t

-- +

1234n -1n

2
0

2
1

2
2

2
n -2

ftft-1ft-3ft-7ft-2 +1
n-2ft-2 +1

n-1

Fig. 5: Concept of the reverse-exponential storage algorithm.

In this section, we propose a reverse-exponential storage algorithm
for this purpose. Thus, users can query different resolutions of
sensing data on the time domain.

Let nL and nP be the maximum numbers of frames that
an LN and a PN can store in its local memory, respectively,
where a frame is the unit of sensing data for the node. Below,
for simplicity, we will write both nL and nP as n (it will
be clear from the context). For an LN, a frame is a piece of
sensing data generated by itself. For a PN, a frame is a set of
discarded pixels in the compression process (refer to Fig. 4).
Let fi be the frame stored by an LN/PN at timestamp i.
Suppose that the current time is t. The objective of the reverse-
exponential storage algorithm is to store historical frames at
timestamps with intervals at an exponentially increasing order
from t. Specifically, we would like to store frames ft−2n−1+1,
· · · , ft−3, ft−1, and ft in the node, as shown in Fig. 5. In this
way, users can query sensing data long time ago with different
resolutions. When a query of a past frame fi (i ≤ t) arrives at
a node, two cases may happen:

Case A: The node is an LN. The response includes three
possibilities:

• If fi is stored in the node’s local memory, it can directly
reply fi to the sink.

• If t − 2j + 1 < i < t − 2j−1 + 1, it replies two frames
ft−2j+1 and ft−2j−1+1 to the sink. The sink then applies
a linear interpolation to calculate fi, that is,

fi − ft−2j+1

i− (t− 2i + 1)
=

ft−2j−1+1 − ft−2j+1

t− 2j−1 + 1− (t− 2j + 1)

⇒fi = ft−2j+1+

(ft−2j−1+1 − ft−2j+1)× (i− t+ 2j − 1)

2j−1
. (3)

• If i < t− 2n−1+1, it replies a FAIL message to the sink
since this information is too old.

Case B: The node is a PN. The query should specify a
certain layer i. First, the sink will flood the query to all layer-i
PNs. Then, each layer-i PN will send its frame(s) or a FAIL
message according to the above three cases to its layer-(i + 1)
PN. Note that since data stored in PNs are all compressed
data, each layer-(i + 1) PN also needs to send the similar
frame(s) to its parent. Such operation is repeated until the sink
receives all frames from all layer-i to layer-d PNs. Then, the
sink can combine these frames and recover the historical data
via the inverse 2D-DCT method and a linear interpolation (as
in Eq. (3)).

There are two properties in the reverse-exponential storage
scheme. First, a long history of data can be stored with small
buffers. Second, finer resolutions are available for more recent
data, while coarser resolutions are available for older data.

6 IEEE TRANSACTIONS ON COMPUTERS

The remaining problem is to maintain historical frames in
a node’s memory as time moves on. There are two cases to be
discussed.

Case A: The node is an LN. Suppose that the current time is
t. What are stored locally are frames ft−2n−1+1, · · · , ft−3, ft−1,
and ft. As the time moves to t+ 1, each frame is aged by one.
So, the place for ft should be given to ft+1, and the place for
ft−1 should be given to ft. For each remaining frame ft−2β+2,
β = 2, · · · , n − 1, we can apply the linear interpolation in
Eq. (3) on the frames ft−2β+1 and ft−2β−1+1 to approximate
its value. For example, ft−2 can be interpolated from ft−3 and
ft−1.

Case B: The node is a PN. Recall that frames
ft−2n−1+1, · · · , ft−3, ft−1, and ft are stored locally, where t
is the current time. As the time moves to t+ 1, the place for ft
should be given to ft+1, and the place for ft−1 should be given
to ft. For each remaining frame ft−2β+1, β = 2, · · · , n− 1, we
need to select one frame that has the closest timestamp to it to
represent this frame2. Specifically, for each β = n − 1, · · · , 2,
the place for frame ft−2β+1 will be given to the frame whose
original timestamp is closest to t − 2β + 1 (to make this
possible, we need to store each frame’s original timestamp).
One exception is frame ft−2n−1+1. We will not consider frames
older than timestamp t−2n−1+1 (because such frames are too
old). Fig. 6 illustrates an example, where the number in each
box represents the real age of a frame at each time instance.
Suppose that at time t, we have historical frames with ages
1, 2, 4, 8, and 16 in locations ft, ft−1, ft−3, ft−7, and ft−15,
respectively. As the time moves to t+1, the age of each stored
frame is increased by one. So, frames with ages 1, 2, 3, 5, and
9 are kept. The frame with age 17 is deleted according to
our exceptional rule. Fig. 6 shows the buffering results from
t to t + 10. We can observe that the frames stored in the
places ft and ft−1 are always accurate. For each place ft−2β+1,
β = 2, · · · , n−1, the actual frame fa stored in that place always
satisfies a timestamp |a − (t − 2β + 1)| ≤ 2β−1, because the
original frame stored in the place ft−2β−1+1 will eventually
move to the place ft−2β+1.

Finally, we comment on the values of LN and LP . Suppose
that each node has a buffer space of m bits and the size of a
pixel is l bits. Clearly, LN =

⌊

m
l

⌋

. For LP , recall Fig. 4. Each
layer-i PN should keep αi−1 ·

⌊

(γi−1 − γi) · k2
⌋

pixels after
each compression. Therefore, we have

LP =

⌊

m

maxdi=1{α
i−1 · ⌊(γi−1 − γi) · k2⌋ · l}

⌋

.

4 PROTOTYPING EXPERIENCE

We use the MICAz Motes [29] to build a two-tier, 16-node
WSN, as shown in Fig. 7. Each Mote’s radio is a 2.4 GHz, IEEE
802.15.4-compatible module allowing low-power operations
and offering a data rate of 250 Kbps. We set α = 4 and k = 2,
so there are four layer-1 PNs in our prototype, each being
responsible for collecting and compressing 2 × 2 pieces of
data. We use this network to collect the indoor temperatures
during 45 hours. The complete reporting interval ∆c is set to
ten minutes. The compression ratio γ is set to 0.75 and the
update thresholds δL and δP are set to 0.5 ◦C. For each LN,
a sensing report is 15 bytes, which contains 11 bytes of header
and trailer and 4 bytes of payload. The size of packets reported
from a PN is 19 bytes with 8 bytes of payload.

2. Note that linear interpolation is infeasible here because these data are
compressed data.

time

t 1 2 4 8 16

t+1 2 3 5 9 17

ft ft-1 ft-3 ft-7 ft-15

t+2 2 3 4 6 10

t+3 2 3 5 7 11

2 3 6 8 12

2 3 4 9 13

2 3 5 10 14

t+4

t+5

t+6

2 3 6 11 15

2 3 4 7 16

2 3 5 8 17

t+7

t+8

t+9

2 3 4 6 9t+10 1

1

1

1

1

1

1

1

1

1

current data discarded data

Fig. 6: An example of historical data buffering in a PN.

sink

layer-1 PN

LN

P

S

P

PP

P

S

SSSS

S

S

S S

S

SS

Fig. 7: A 16-mote prototype in our experiment.

Fig. 8(a) shows the total amount of data transmitted by
these 16 nodes. We can observe that the amount of data
transmission is greatly reduced by our MRCQ framework.
This is because temperatures have high data correlations and
thus can be compressed in both spatial and temporal domains.
Fig. 8(b) illustrates the average temperatures being reported by
the 16 nodes. The maximum error is 0.189 ◦C. This indicates
that our MRCQ framework can preserve most characteristics
of the sensing reports.

At the remote sink, we provide a user interface to monitor
the network’s status and to query data from sensor nodes,
as shown in Fig. 9. It contains three major components:
monitoring, statistical, and querying areas. The monitoring area
shows the network topology and status. Inside each square, the
corresponding sensor ID, coordinates, and current temperature

MULTIRESOLUTION SPATIAL AND TEMPORAL CODING IN A WIRELESS SENSOR NETWORK FOR LONG-TERM MONITORING APPLICATIONS 7

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45

time (hours)

d
a
ta

tr
a
n
s
m

is
s
io

n
(1

0
K

b
y
te

s
)

with MRCQ

without MRCQ

(a) amount of data transmission

26.8

27.0

27.2

27.4

27.6

27.8

28.0

28.2

0 5 10 15 20 25 30 35 40 45

time (hours)

re
p
o
rt

e
d

te
m

p
e
ra

tu
re

s
(

C
)

with MRCQ

without MRCQ

(b) reported temperatures

Fig. 8: Experimental results from the prototyping system.

are shown. The color of a circle means the corresponding sen-
sor’s status (black = inactive). The statistical area reports the
total amount of data transmission when different compression
algorithms are applied. The querying area allows users to
obtain more in-depth sensing data from the network. Users
can specify the sensor nodes to be queried and add conditions
to restrict the queried data.

5 SIMULATION STUDIES

Since a large-scale deployment is difficult to realize, in this
section, we develop a simulator to verify the efficiency of our
MRCQ framework. We set up a 256 × 256 m2 sensing field,
on which 1000 sensor nodes are randomly deployed. We set
k = 8 and α = 4, and designate 20 and 4 nodes as layer-1
and layer-2 PNs, respectively. The transmission range of each
sensor node is set to 30 m. The size of each packet transmitted
by a PN is 18 bytes containing 16 bytes of payload, whereas
the size of each sensing data reported by an LN is 6 bytes
containing 4 bytes of payload. The sensing field is divided
into 32 × 32 grids. The total simulation time is 100 minutes.
During every minute, the temperature of each grid may be
changed and a number of events will arbitrarily occur in the
sensing field. We measure the total amount of data being
transmitted by sensor nodes and the average errors caused by
the compression algorithms. Here, we define the average error

as 1
K2

∑K

i=1

∑K

j=1 |Msink[i, j] − Mreal[i, j]|, where Msink is a
K × K matrix of sensing data seen by the sink and Mreal

is a matrix of the real temperatures seen by LNs. In these
simulations, K = 32.

5.1 Comparison with DIMENSIONS

We compare our MRCQ framework against DIMENSIONS
[11]. The compression ratio γ is set as 0.75 and 0.5 in both

o o

From Sensor Networks

o o

Fig. 9: User interface at the remote sink in our prototype.

MRCQ and DIMENSIONS. For MRCQ, we set the update
thresholds δL and δP as 0.5 ◦C in the temporal compression
algorithm. Three different environmental scenarios are consid-
ered in this experiment.

In the first scenario, we observe the effect of the ranges
of grid temperatures. Specifically, the average temperature of
each grid is randomly picked from [(25 − x)◦C, (25 + x)◦C],
where the range x is selected from 0.1 to 2.1. In addition,
there are 5 events arbitrarily occurring in the sensing field,
each increasing [1◦C, 3◦C] in its vicinity. Clearly, when the
value of x is larger, it means that the environment changes
more drastically. Fig. 10(a) shows the total amount of data
transmission of MRCQ and DIMENSIONS. As can be seen,
when the compression ratio γ becomes smaller, more data
can be compressed. Our MRCQ framework can have less
amount of data transmission compared with DIMENSIONS
when x ≤ 1.6. This means that MRCQ can compress more data
when the environment is more stable. When the environment
changes more drastically (e.g., x ≥ 1.7), MRCQ will transmit
more data to respond to the change. This will reflect on the
average error of reporting data, as shown in Fig. 10(b). We
can observe that MRCQ always has a lower average error
compared with DIMENSIONS, even when the value of x
exceeds 1.7.

In Fig. 10(a), we can observe that the amount of data
transmission in DIMENSIONS is irrelevant to the range of
grid temperatures, because it periodically compresses data in
a constant manner. This will make DIMENSIONS difficult to
respond to environmental changes, and causes more data inac-
curacy when the environment is more unstable. On the other

8 IEEE TRANSACTIONS ON COMPUTERS

0

5

10

15

20

25

30

35

40

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1

range x of average temperature

d
a
ta

tr
a
n
s
m

is
s
io

n
(1

0
K

b
y
te

s
) without compression

DIMENSIONS (r = 0.75)
DIMENSIONS (r = 0.5)
MRCQ (r = 0.75)
MRCQ (r = 0.5)

(a) amount of data transmission

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1

range x of average temperature

a
v
e
ra

g
e

e
rr

o
r

(0
.0

1
C

)

DIMENSIONS (r = 0.75)
DIMENSIONS (r = 0.5)
MRCQ (r = 0.75)
MRCQ (r = 0.5)

(b) average errors

Fig. 10: Comparison of MRCQ and DIMENSIONS under different ranges
of grid temperatures.

hand, the temporal compression algorithm can help MRCQ
flexibly respond to environmental changes. In Fig. 10(a), when
the environment is almost stable (e.g., x ≤ 1.3), the temporal
compression algorithm can help MRCQ reduce a large amount
of data transmission. When 1.4 ≤ x ≤ 1.8, since the difference
between successive sensing data in each grid could often
exceed the threshold δL, the effect of temporal compression
decreases and thus the amount of data transmission in MRCQ
grows. As x ≥ 1.9, the temporal compression becomes almost
of no effect so the data compression in MRCQ is dominated by
the spatial compression. Thus, the amount of data transmission
in MRCQ becomes constant. The above behavior can help
MRCQ flexibly reduce more data when the environment is
stable and render more accurate reports when the environment
changes drastically.

In the second scenario, we observe the effect of the increas-
ing temperatures of events. Specifically, there are 20 events
arbitrarily appearing in the sensing field, and each event will
cause an increase of y◦C in its vicinity, where y is ranged
from 0.2 to 4.2. The average temperature of each grid is ran-
domly selected from [24.8◦C, 25.2◦C]. Clearly, a larger value
of y means that the events will cause a larger difference in
temperatures in their vicinity. Fig. 11 shows the amount of data
transmission and average errors of MRCQ and DIMENSIONS.
We can observe that MRCQ outperforms DIMENSIONS in this
scenario. Since the temperature range in each grid is limited
to 0.4◦C and the number of events is fixed, the effect of
temporal compression in MRCQ will be almost constant. So,
the amount of data transmission changes slowly in MRCQ,

as shown in Fig. 11(a). The average errors of MRCQ and
DIMENSIONS increase as y increases, because these events
will introduce more difference in temperatures inside their
neighboring regions.

0

5

10

15

20

25

30

35

40

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2

increasing temperature y of events

d
a
ta

tr
a
n
s
m

is
s
io

n
(1

0
K

b
y
te

s
) without compression

DIMENSIONS (r = 0.75)
DIMENSIONS (r = 0.5)
MRCQ (r = 0.75)
MRCQ (r = 0.5)

(a) amount of data transmission

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2

increasing temperature y of events

a
v
e
ra

g
e

e
rr

o
r

(0
.0

1
C

)

DIMENSIONS (r = 0.75)
DIMENSIONS (r = 0.5)
MRCQ (r = 0.75)
MRCQ (r = 0.5)

(b) average errors

Fig. 11: Comparison of MRCQ and DIMENSIONS under different increas-
ing temperatures of events.

In the third scenario, we observe the effect of the number of
events. The average temperature of each grid is randomly set
among [24◦C, 26◦C]. In addition, there are 0 to 100 events ran-
domly occurring in the sensing field. When an event happens,
an increase of 1◦C to 3◦C can be seen in its vicinity. Fig. 12(a)
shows the total amount of data transmission in MRCQ and
DIMENSIONS. We can observe that MRCQ has less amount
of data transmission compared with DIMENSIONS when
γ = 0.75 and when the number of events is smaller than 70 as
γ = 0.5. Similar to the first scenario, the amount of data trans-
mission grows in MRCQ as the number of events increases,
because of the effect of the temporal compression algorithm.
This flexibility can help MRCQ result in a smaller average error
when there are more events, as shown in Fig. 12(b).

In summary, MRCQ can compresses more data when the
environment is stable, and preserve more accuracy on reports
by transmitting more data when the environment changes
drastically. In the following experiments, we will measure
the effects of spatial and temporal compression algorithms in
MRCQ. The simulation settings are the same as that in the
third scenario.

5.2 Effect of the Spatial Compression Algorithm

We then evaluate the effect of the spatial compression algo-
rithm in MRCQ. We set the update thresholds δL and δP

MULTIRESOLUTION SPATIAL AND TEMPORAL CODING IN A WIRELESS SENSOR NETWORK FOR LONG-TERM MONITORING APPLICATIONS 9

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

number of events

d
a
ta

tr
a
n
s
m

is
s
io

n
(1

0
K

b
y
te

s
) without compression

DIMENSIONS (r = 0.75)
DIMENSIONS (r = 0.5)
MRCQ (r = 0.75)
MRCQ (r = 0.5)

(a) amount of data transmission

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100

number of events

a
v
e
ra

g
e

e
rr

o
r

(0
.0

1
C

)

DIMENSIONS (r = 0.75)
DIMENSIONS (r = 0.5)
MRCQ (r = 0.75)
MRCQ (r = 0.5)

(b) average errors

Fig. 12: Comparison of MRCQ and DIMENSIONS under different numbers
of events.

as zero to eliminate the effect of the temporal compression
algorithm. Fig. 13(a) shows the total amount of data transmis-
sion of MRCQ under different number of events and different
compression ratios γ. Clearly, when γ becomes smaller, the
spatial compression algorithm can reduce more data. The data
transmission of the spatial compression algorithm is irrelevant
to the number of events because it discards a constant number
of pixels depending on the value of γ. However, this behavior
will affect the average errors, as shown in Fig. 13(b). We can
observe that when the value of γ becomes larger, the spatial
compression algorithm can keep lower errors because PNs
can transmit more data to reflect the changes of environment.
However, when γ becomes too small (for example, γ = 0.2),
the average error grows fast as the number of events increases.
In this case, since each PN can only transmit a small portion
of the compressed matrix, only a small number of significant
values can be kept and thus the error increases.

Fig. 14 shows the effect of compression ratio γ on the spatial
compression algorithm when the number of events are 20 and
80. From Fig. 14, we can find that the suitable value of γ is
around 0.35 to 0.4 since both the amount of data transmission
and average error can be kept quite small.

5.3 Effect of the Temporal Compression Algorithm

Finally, we evaluate the effect of the temporal compression
algorithm in MRCQ. We set the compression ratio γ = 0.8
to fix the effect of the spatial compression algorithm and set
δL = δP = δ. Fig. 15(a) shows the total amount of data
transmission of MRCQ under different number of events and

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

number of events

d
a
ta

tr
a
n
s
m

is
s
io

n
(1

0
K

b
y
te

s
) without compression MRCQ (r = 0.4)

MRCQ (r = 0.8) MRCQ (r = 0.2)
MRCQ (r = 0.6)

(a) amount of data transmission

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90 100

number of events

a
v
e
ra

g
e

e
rr

o
r

(0
.0

1
C

)

MRCQ (r = 0.8)

MRCQ (r = 0.6)

MRCQ (r = 0.4)

MRCQ (r = 0.2)

(b) average errors

Fig. 13: Effect of the spatial compression algorithm.

different update thresholds δ. We can observe that when δ is
very small (for example, δ = 0.1), the effect of the temporal
compression algorithm becomes insignificant and thus the
amount of data transmission remains constant under different
number of events. However, as δ becomes larger, the temporal
compression algorithm can reduce more data when the num-
ber of events is smaller. When the number of events increases,
the amount of data transmission also increases because the
difference between two sequential sensing reports may often
exceed the update threshold. Fig. 15(b) shows the average
errors. We can observe that the errors can be kept quite
small because in the temporal compression algorithm, LNs
and layer-1 PNs will periodically report complete data to their
upper PNs.

6 CONCLUSIONS

In this paper, we have proposed an MRCQ framework to
provide multiresolution data compression and data storage in
a WSN by spatial and temporal coding techniques. The pro-
posed multiresolution idea can significantly extend a WSN’s
lifetime, especially in long-term monitoring applications with
a slowly changed environment. Our in-network compression
algorithms adopt the concepts of DCT and differential cod-
ing to reduce data redundancy. Our storage algorithm helps
sensor nodes to store historical data in their small memories
by a reverse-exponential solution. We have implemented a
prototyping system on the MICAz platform to demonstrate
the flexibility of MRCQ. Extensive simulation results have also
been presented to verify the efficiency of MRCQ. They show
that our MRCQ framework can flexibly adjust the amount of

10 IEEE TRANSACTIONS ON COMPUTERS

0

5

10

15

20

25

30

35

40

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

compression ratio r

d
a
ta

tr
a
n
s
m

is
s
io

n
(1

0
K

b
y
te

s
)

0

2

4

6

8

10

12

14

16

a
v
e
ra

g
e

e
rr

o
r

(0
.0

1
C

)

amount of data transmissions
average error

(a) event number: 20

0

5

10

15

20

25

30

35

40

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

compression ratio r

d
a
ta

tr
a
n
s
m

is
s
io

n
(1

0
K

b
y
te

s
)

0

2

4

6

8

10

12

14

16
a
v
e
ra

g
e

e
rr

o
r

(0
.0

1
C

)

amount of data transmissions

average error

(b) event number: 80

Fig. 14: Effect of compression ratio γ on the spatial compression algorithm.

data transmission according to the environmental stability and
preserve important characteristics of sensing reports.

REFERENCES

[1] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring,
and D. Estrin, “Habitat monitoring with sensor networks,” Comm. of
the ACM, vol. 47, no. 6, pp. 34–40, 2004.

[2] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler,
“An analysis of a large scale habitat monitoring application,” Proc.
ACM Int’l Conf. Embedded Networked Sensor Systems (SenSys ’04), pp.
214–226, 2004.

[3] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli, O. Couach, and
M. Parlange, “SensorScope: out-of-the-box environmental monitor-
ing,” Proc. IEEE Int’l Conf. Information Processing in Sensor Networks
(IPSN ’08), pp. 332–343, 2008.

[4] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A
survey on sensor networks,” IEEE Comm. Magazine, vol. 40, no. 8,
pp. 102–114, 2002.

[5] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and
E. Jansen, “The gator tech smart house: a programmable pervasive
space,” IEEE Computer, vol. 38, no. 3, pp. 50–60, 2005.

[6] C.C.Y. Poon, Y.T. Zhang, and S.D. Bao, “A novel biometrics method
to secure wireless body area sensor networks for telemedicine and
m-health,” IEEE Comm. Magazine, vol. 44, no. 4, pp. 73–81, 2006.

[7] Y.C. Tseng, Y.C. Wang, K.Y. Cheng, and Y.Y. Hsieh, “iMouse: an
integrated mobile surveillance and wireless sensor system,” IEEE
Computer, vol. 40, no. 6, pp. 60–66, 2007.

[8] C.T. Ee and R. Bajcsy, “Congestion control and fairness for many-
to-one routing in sensor networks,” Proc. ACM Int’l Conf. Embedded
Networked Sensor Systems (SenSys ’04), pp. 148–161, 2004.

[9] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Hei-
demann, “An evaluation of multi-resolution storage for sensor net-
works,” Proc. ACM Int’l Conf. Embedded Networked Sensor Systems
(SenSys ’03), pp. 89–102, 2003.

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

number of events

d
a
ta

tr
a
n
s
m

is
s
io

n
(1

0
K

b
y
te

s
)

without compression
MRCQ (ä= 0.1)
MRCQ (ä= 0.5)
MRCQ (ä= 1.0)
MRCQ (ä= 1.5)

(a) amount of data transmission

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 10 20 30 40 50 60 70 80 90 100

number of events

a
v
e
ra

g
e

e
rr

o
r

(0
.0

1
C

)

MRCQ (ä= 0.1)
MRCQ (ä= 0.5)
MRCQ (ä= 1.0)
MRCQ (ä= 1.5)

(b) average errors

Fig. 15: Effect of the temporal compression algorithm.

[10] D. Ganesan, D. Estrin, and J. Heidemann, “Dimensions: why do we
need a new data handling architecture for sensor networks?” ACM
SIGCOMM Computer Comm. Review, vol. 33, no. 1, pp. 143–148, 2003.

[11] D. Ganesan, B. Greenstein, D. Estrin, J. Heidemann, and R. Govindan,
“Multiresolution storage and search in sensor networks,” ACM Trans.
Storage, vol. 1, no. 3, pp. 277–315, 2005.

[12] T.A. Welch, “A technique for high-performance data compression,”
IEEE Computer, vol. 17, no. 6, pp. 8–19, 1984.

[13] C.M. Sadler and M. Martonosi, “Data compression algorithms for
energy-constrained devices in delay tolerant networks,” Proc. ACM
Int’l Conf. Embedded Networked Sensor Systems (SenSys ’06), pp. 265–
278, 2006.

[14] D.S. Taubman and M.W. Marcellin, JPEG2000: fundamentals, standards
and practice, Kluwer Academic Publishers, 2002.

[15] R.M. Rao and A.S. Bopardikar, Wavelet transforms: introduction to
theory and applications, Addison Wesley Publications, 1998.

[16] G. Davis, “Wavelet image compression construction kit,”
http://www.geoffdavis.net/dartmouth/wavelet/wavelet.html.

[17] D. Slepian and J.K. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Information Theory, vol. 19, no. 4, pp. 471–480,
1973.

[18] A.H. Kaspi and T. Berger, “Rate-distortion for correlated sources with
partially separated encoders,” IEEE Trans. Information Theory, vol. 28,
no. 6, pp. 828–840, 1982.

[19] R. Cristescu, B. Beferull-Lozano, and M. Vetterli, “Networked
Slepian-Wolf: theory, algorithms, and scaling laws,” IEEE Trans. In-
formation Theory, vol. 51, no. 12, pp. 4057–4073, 2005.

[20] S.S. Pradhan, J. Kusuma, and K. Ramchandran, “Distributed com-
pression in a dense microsensor network,” IEEE Signal Processing
Magazine, vol. 19, no. 2, pp. 51–60, 2002.

[21] D. Donoho, “Compressed sensing,” IEEE Trans. Information Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[22] J. Haupt, W.U. Bajwa, M. Rabbat, and R. Nowak, “Compressed
sensing for networked data,” IEEE Signal Processing Magazine, vol. 25,
no. 2, pp. 92–101, 2008.

[23] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong, “TAG: a
tiny aggregation service for ad-hoc sensor networks,” ACM SIGOPS
Operating Systems Review, vol. 36, pp. 131–146, 2002.

MULTIRESOLUTION SPATIAL AND TEMPORAL CODING IN A WIRELESS SENSOR NETWORK FOR LONG-TERM MONITORING APPLICATIONS 11

[24] S. Lindsey, C. Raghavendra, and K.M. Sivalingam, “Data gathering
algorithms in sensor networks using energy metrics,” IEEE Trans.
Parallel and Distributed Systems, vol. 13, no. 9, pp. 924–935, 2002.

[25] R. Kumar, M. Wolenetz, B. Agarwalla, J. Shin, P. Hutto, A. Paul, and
U. Ramachandran, “DFuse: a framework for distributed data fusion,”
Proc. ACM Int’l Conf. Embedded Networked Sensor Systems (SenSys ’03),
pp. 114–125, 2003.

[26] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and
F. Silva, “Directed diffusion for wireless sensor networking,”
IEEE/ACM Trans. Networking, vol. 11, no. 1, pp. 2–16, 2003.

[27] K.W. Fan, S. Liu, and P. Sinha, “Structure-free data aggregation in
sensor networks,” IEEE Trans. Mobile Computing, vol. 6, no. 8, pp.
929–942, 2007.

[28] N. Ahmed, T. Natarajan, and K.R. Rao, “Discrete cosine transfom,”
IEEE Trans. Computers, vol. 1, no. C-23, pp. 90–93, 1974.

[29] Crossbow, “MOTE-KIT2400 - MICAz Developer’s Kit,”
http://www.xbow.com.

