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Using Event Detection Latency to Evaluate the
Coverage of a Wireless Sensor Network

You-Chiun Wang, Kai-Yang Cheng, and Yu-Chee Tseng

Abstract—A wireless sensor network (WSN) consists of many tiny and low-power devices deployed in a sensing field. One of the major tasks
of a WSN is to monitor the surrounding environment and to detect events occurring in the sensing field. Given an event appearing in a WSN,
the event detection latency is to model the time that it takes for the WSN to be aware of the event. In this work, we analyze the latency using
a probabilistic approach under an any-sensor-detection and a k-sensor-detection models, where k > 1 is an integer. Such an analysis can
be used as an index to evaluate a WSN’s coverage and thus can help guide the deployment of a WSN. We also develop simulations to verify
our analytical results.

Index Terms—ad hoc network, network coverage, pervasive computing, ubiquitous computing, wireless sensor network.
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1 INTRODUCTION AND PROBLEM STATEMENT

W IRELESS sensor networks (WSN) have been intensively
studied recently [1]. A WSN consists of many tiny and

lower-power sensor nodes, each of which can collect surround-
ing environmental data and communicate with neighboring
nodes. Communications in a WSN typically takes place in an
ad hoc manner [2]. Applications of WSNs include surveillance
and agriculture, habitat, traffic, and civil infrastructure moni-
toring [3]–[7].

One of the major tasks of a WSN is to detect events
occurring in the sensing field. Given an event appearing in
a WSN, the event detection latency is to model the time that
it takes for the WSN to be aware of the event. Such latency
is an important metric to measure the monitoring capability
of a WSN’s deployment for real-time applications such as
surveillance [8]–[10] or object tracking [11]–[13].

We propose our model to analyze the event detection
latency. Specifically, we are given a sensing field, on which
there are n homogeneous sensors. Each sensor has a sensing
distance of r. Without loss of generality, we assume that these
n sensors form a connected network. To simplify the analysis,
we assume that the time axis is divided into fixed-length slots
and the working schedule of each sensor is modeled by a
sequence of working cycles, each of length T slots. Each working
cycle is led by an active phase followed by an idle phase. The
former consists of the first D slots, and the latter the rest of the
T −D slots. Sensors only conduct detection jobs in their active
phases, and go to sleep in idle phases. However, sensors do
not synchronize their clocks, so their working cycles are not
necessarily aligned. Fig. 1 shows an example. Note that this
model can be applied to most of the MAC/network protocols
that are proposed for WSN recently. For example, for energy
conservation, the Zigbee/IEEE 802.15.4 standard [14] allows
a sensor node to wake up and sleep very similarly to our
working cycles in Fig. 1. In fact, several other protocols (such
as Bluetooth [15] and S-MAC [16]) also have such an awake-
sleep behavior.
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Fig. 1: Modeling of sensors’ working cycles.

Our objective is to evaluate the detection latency when
an event occurs in the sensing field. Note that we make no
assumption on the locations of events. To take errors into
account, we also assume that in an active slot, a sensor has
a probability of p to successfully detect the occurrence of an
event if the event is within this sensor’s sensing range. To
simplify the analysis, we assume that p is a constant but not a
function of the distance between a sensor and the event [17],
[18]. We consider two detection models in this work:

• any-sensor-detection model: To capture the event, the
network needs at least one sensor to successfully detect
the event.

• k-sensor-detection model: To capture the event, the
network needs at least k sensors to successfully detect
the event, where k > 1. (The value of k is application-
dependent. For example, positioning protocols using
triangulation [19]–[21] require at least three sensors.)

2 ANALYSIS OF EVENT DETECTION LATENCY

To facilitate the calculation of the event detection latency, we
establish a system clock, which starts at the instant when the
event appears. The system time is also slotted and each set of
continuous T slots forms a system cycle, as shown in Fig. 1.
Suppose that an event appears at location (x, y) in the sensing
field. Let M(x, y) be the number of sensors whose sensing
ranges cover location (x, y). Consider the time slots that these
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M(x, y) sensors start their new working cycles in a system
cycle. We can classify them into T groups such that the ith
group contains the mi sensors that start their working cycles
at the ith slot in a system cycle, i = 1..T . For example, in Fig. 1,
sensor 1 belongs to group 2, sensor 2 belongs to group 1, and

sensor n belongs to group T . Clearly,
∑T

i=1 mi = M(x, y).
Taking all combinations of mi’s into consideration, the event
detection latency under this particular M(x, y) can be written
as

Latency(M(x, y)) =

M(x,y)
∑

m1=0

M(x,y)−m1
∑

m2=0

· · ·

M(x,y)−(m1+···+mT−2)
∑

mT−1=0

(

M(x, y)!

m1! · · ·mT !
× (

1

T
)M(x,y)

)

× δ(m1, · · · ,mT ),

where the first term is the probability to observe a particular
combination (m1, ..., mT ), and the second term δ(m1, · · · ,mT )
is the expected latency for this particular combination.

As the event may appear in any location (x, y) inside the
sensing field, we have to consider all possible M(x, y). Thus,
the overall expected latency of the WSN can be expressed as

ET,D =

∫

x

∫

y

Latency(M(x, y))dxdy

=

n
∑

i=0

Prob[M(x, y) = i] · Latency(i). (1)

When the event appears in a i-covered region, it will be sensed
by i sensors (i.e., M(x, y) = i). Therefore, Prob[M(x, y) = i]
is the ratio of areas that are i-covered in the sensing field. So
Eq. (1) can be simplified as

ET,D =
n
∑

i=0

Ai

A
· Latency(i),

where A is the area of the sensing field, and Ai is the total area
in A in which each point is covered by exactly i sensors.

In Sections 2.1 and 2.2, we will show how to compute
δ(m1, · · · ,mT ) under our two detection models, respectively.
Table 1 summarizes the notations used in this work.

2.1 Any-Sensor-Detection Model

Under this model, the event is considered to be captured by
the network if any sensor successfully detects its existence. Let
xi be the number of active sensors at the ith slot, i = 1..T .
These xi sensors are composed of three types of sensors: (1)
sensors which turn into active at the ith slot, (2) sensors which
turn into active between the first and the (i−1)th slots, and (3)
sensors which turns into active before the first slot. Note that
case (2) can be true if D > 1 and i > 1, while case (3) can only
occur when i < D. This leads to

xi = mi +

min(D−1,i−1)
∑

j=1

mi−j +

D−i−1
∑

j=0

mT−j .

We also define xaT+b as the number of active sensors at the
(aT + b)th slot for any a ≥ 1. Since cycles repeat every T slots,
we have xaT+b = xb.

The probability that there is at least one sensor successfully
detecting the event in the first slot is (1 − (1 − p)x1). For i ≥
2, the probability that the event is not detected in the first

(i − 1) slots but is successfully detected in the ith slot is (1 −
(1− p)xi)(1− p)x1+...+xi−1 . Hence, as the time goes to infinity,
the expected detection latency under the any-sensor-detection
model is

δ(m1, · · · ,mT ) =

∞
∑

a=0

T
∑

b=1

(aT + b)

× (1− (1− p)xb)(1− p)a×(x1+···+xT )+x1+···+xb−1 . (2)

Eq. (2) contains an infinite number of expressions. The follow-
ing theorem shows that it will converge.

Theorem 1. The expected delay δ(m1, · · · ,mT ) under the any-
sensor-detection model is bounded by

δ(m1, · · · ,mT ) ≤
T 2

(1− α)2
,

where α = (1− p)D×M(x,y).

Proof: Since (1− (1− p)xb) ≤ 1 and (1− p) ≤ 1, we can
obtain that

δ(m1, · · · ,mT ) ≤
∞
∑

a=0

T
∑

b=1

(aT + b)(1− p)a×(x1+···+xT )

≤

∞
∑

a=0

(

(1− p)a×D×M(x,y)
T
∑

b=1

(a+ 1)× T

)

=

∞
∑

a=0

αa(a+ 1)T 2 =
T 2

(1− α)2
.

2.2 k-Sensor-Detection Model

Under this model, the event is considered to be captured by the
network, once there are at least k sensors successfully detecting
its occurrence. Since the sequence x1, x2, ... has a period of T ,
the expected latency can be written as

δ(m1, · · · ,mT ) =
∞
∑

a=0

T
∑

b=1

(aT + b)× Pk(m1, · · · ,mT , aT + b),

(3)

where Pk(m1, · · · ,mT , aT + b) is the probability that there
are at least k sensors successfully detecting the event at
the (aT + b)th slot, but not so before that slot. To find
Pk(m1, · · · ,mT , aT + b), let Ne be the number of sensors
that have already succeeded in detecting the event before the
(aT + b)th slot, and Nf be the number of sensors that succeed
in detecting this event at the (aT+b)th slot for the first time. We
first categorize sensors according to their behaviors as shown
in Fig. 2. There are xaT+b = xb active sensors at the (aT + b)th
slot, and the rest of M(x, y) − xb sensors are inactive. The
inactive sensors can be further divided into a set of N1 sensors
which have ever succeeded in detecting this event before the
(aT + b)th slot, and a set of M(x, y) − xb −N1 sensors which
have not. Similarly, the active sensors can be divided into a
set of N2 sensors which succeed in detecting this event at this
slot, and a set of xb−N2 sensors which fail to detect this event
at this slot. From the latter set, we further identify a set of
N3 sensors which have ever succeeded in detecting this event
before the (aT + b)th slot, but fail to detect this event at the
current slot.

Based on the above definitions, once the values of
Ne, N1, N2, and N3 are given, the rest of the variables in Fig.
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Notations Definition

n number of sensors in the sensing field
k minimum number of sensors required to successfully detect the event
T number of slots in a working or system cycle
D number of slots that a sensor continues detecting the event
p probability that a sensor successfully detects the event in an active slot

M(x, y) number of sensors that can detect the event when the event occurs at location (x, y)
mi number of sensors in M(x, y) that repeat their working cycles at the ith slot in a system cycle
xi number of sensors detect the event at the ith slot in a working cycle

Pk(m1, · · · ,mT , aT + b) probability that there are at least k sensors succeeding in detecting the event
Ne number of sensors that have ever succeeded in detecting the event before the (aT + b)th slot
Nf number of sensors that first succeed in detecting the event at the (aT + b)th slot
N1 number of sensors that have ever succeeded in detecting the event before but do not detect at the (aT + b)th slot
N2 number of sensors that succeed in detecting the event at the (aT + b)th slot
N3 number of sensors that have ever succeeded in detecting the event before but fail at the (aT + b)th slot
Si number of sensors in the subset i
Ri number of sensors that have succeeded in detecting the event in the subset i

TABLE 1: Summary of notations used in this work.
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Fig. 2: Classification of sensors in the (aT + b)th slot. Numbers in ovals indicate numbers of sensors.

2 will all be fixed. Specifically, the number of sensors that
successfully detect this event at the (aT + b)th slot and have
also succeeded in doing that before is Ne −N1 −N3, and the
number of sensors that succeed in detecting this event for the
first time at the (aT + b)th slot is Nf = N2 − (Ne −N1 −N3).
In Eq. (3), the latency is considered to be aT + b if Ne < k and
Nf = (N1 + N2 + N3) − Ne ≥ k − Ne. By enumerating all
combinations of Ne, N1, N2, and N3, we can derive that

Pk(m1, · · · ,mT , aT + b)

=

k−1
∑

Ne=0

(

Ne
∑

h1=0

Prob[N1 = h1] · (

xb
∑

h2=0

Prob[N2 = h2]

× (

Ne−h1
∑

h3=0

Prob[N3 = h3]× Prob[Nf ≥ k −Ne]))). (4)

Depending on the value of b, we can further derive the
four terms Prob[N1 = h1], Prob[N2 = h2], Prob[N3 = h3],
and Prob[Nf ≥ k −Ne] with three cases.

Case (1): b < D. Consider the set of M(x, y) − xb inactive
sensors at the (aT +b)th slot. We divide them into two subsets:

• S1: The set of sensors whose active phases do not cross
the boundaries of system cycles.

• S2: The set of sensors whose active phases cross the
boundaries of system cycles.

Clearly, |S1| = mb+1 +mb+2 + ...+mT−(D−1) and |S2| =
mT−(D−1)+1 + mT−(D−1)+2 + ... + mT−(D−b). For example,
when b = 2, Fig. 3 shows the above two subsets in case 1.
Recall the definition of N1. Among these N1 sensors, let R1 be
the number of sensors belonging to S1, and R2 the number of
sensors belonging to S2. Since R1 + R2 = N1, we can expand
Eq. (4) as follows:

Pk(m1, · · · ,mT , aT + b)

=

k−1
∑

Ne=0

(

Ne
∑

h1=0

(

h1
∑

r1=0

Prob[R1 = r1]× Prob[R2 = h1 − r1])

× (

xb
∑

h2=0

Prob[N2 = h2]× (

Ne−h1
∑

h3=0

Prob[N3 = h3]

× Prob[Nf ≥ k −Ne]))). (5)

Given two integers x and y such that x ≥ y and a
probability value z, let us define

Bino(x, y, z) =
(

x
y

)

zy · (1− z)x−y.

The probability functions in Eq. (5) are derived as follows:

Prob[R1 = r1] = Bino(|S1|, r1, 1− (1− p)aD),

P rob[R2 = h1 − r1] =
D−2
∑

i=1

mT−(D−1)+i

|S2|
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Fig. 3: Classification of sensors in a network with T = 8 and D = 3.

×Bino(|S2|, h1 − r1, 1− (1− p)aD+i),

P rob[N2 = h2] = Bino(xb, h2, p),

P rob[N3 = h3] = Bino(xb − h2, h3,

b−1
∑

i=0

mb−i

xb

(1− (1− p)aD+b−i)+

D−b−1
∑

i=0

mT−i

xb

(1− (1− p)aD+b)),

P rob[Nf ≥ k −Ne] = Bino(h2, Nf ,

b−1
∑

i=0

mb−i

xb

(1− p)aD+b−i +
D−b−1
∑

i=0

mT−i

xb

(1− p)aD+b−1).

P rob[R1 = r1] is the probability that r1 sensors in S1 have
ever succeeded in detecting this event before the (aT + b)th
slot, where 1 − (1 − p)aD is the probability that such a sensor
has ever successfully detected this event before the (aT + b)th
slot. Prob[R2 = h1 − r1] is derived similarly, except that we
are concerned about sensors in S2 and, among these sensors,
there is a ratio of

mT−(D−1)+i

|S2|
of sensors which have tried to

detect this event for aD + i slots (and we take their average).
Prob[N2 = h2] is the probability that there are h2 sensors
among xb sensors successfully detecting the event at the
(aT + b)th slot. Prob[N3 = h3] is the probability that there are
h3 sensors among xb − h2 sensors that have ever successfully
detected the event before the (aT + b)th slot. Note that the
third term in Bino(·) is to take care of those sensors whose
active slots do not (the first expression) and do (the second
expression) cross the boundaries of system cycles, and we take
their average. Prob[Nf ≥ k −Ne] is similar to the previous
probability except that these sensors succeed for the first time
at the (aT + b)th slot.

Case (2): D ≤ b ≤ T − D + 1. In this case, we divide the
set of inactive M(x, y) − xb sensors at the (aT + b)th slot into
three subsets according to whether their active slots cross the
boundaries of system cycles:

• S1: The set of sensors which have finished their active
slots in the current system cycle and whose active slots
do not cross the boundaries of system cycles.

• S2: The set of sensors which have not started their
active slots in the current system cycle and whose active
slots do not cross the boundaries of system cycles.

• S3: The set of sensors whose active slots cross the
boundaries of system cycles.

We can obtain that |S1| =
∑b−D

i=1 mi, |S2| =
∑T−(D−1)

i=b+1 mi,

and |S3| =
∑T

i=T−(D−1)+1 mi. For example, when b = 4, Fig. 3
shows these subsets in case 2. Again, let R3 be the number of
sensors belonging to S3. Since R1 + R2 + R3 = S1, we can
expand Eq. (4) as follows:

Pk(m1, · · · ,mT , aT + b)

=

k−1
∑

Ne=0

(

Ne
∑

h1=0

(

h1
∑

r1=0

h1−r1
∑

r2=0

Prob[R1 = r1]Prob[R2 = r2]

× Prob[R3 = h1 − r1 − r2])

× (

xb
∑

h2=0

Prob[N2 = h2]× (

Ne−h1
∑

h3=0

Prob[N3 = h3]

× Prob[Nf ≥ k −Ne]))),

where

Prob[R1 = r1] = Bino(|S1|, r1, 1− (1− p)(a+1)D),

P rob[R2 = r2] = Bino(|S2|, r2, 1− (1− p)aD),

P rob[R3 = h1 − r1 − r2] =

D−2
∑

i=0

mT−(D−1)+1+i

|S3|

×Bino(|S3|, h1 − r1 − r2, 1− (1− p)aD+i+1),

P rob[N2 = h2] = Bino(xb, h2, p),

P rob[N3 = h3] = Bino(xb − h2, h3,

D−1
∑

i=0

mb−i

xb

(1− (1− p)aD+i)), and

Prob[Nf ≥ k −Ne] = Bino(h2, Nf ,

D−1
∑

i=0

mb−i

xb

(1− p)aD+i).

Again, Prob[R3 = h1 − r1 − r2] is the probability that h1 −
r1 − r2 sensors in S3 have ever succeeded in detecting this
event before the (aT + b)th slot, where 1− (1−p)aD+i+1 is the
probability that such a sensor have ever successfully detected
this event before the (aT + b)th slot. However, among these
sensors in S3, there is a ratio of

mT−(D−1)+1+i

|S3|
of sensors which

have tried to detect this event for aD + i slots, and thus we
take their average.

Case (3): b > T − D + 1. In this case, we divide the set
of inactive M(x, y) − xb sensors at the (aT + b)th slot into
two subsets according to whether their active slots cross the
boundaries of system cycles:

• S1: The set of sensors whose active slots do not cross
the boundaries of system cycles.

• S2: The set of sensors whose active slots cross the
boundaries of system cycles.

We have S1 =
∑b−D

i=1 mi and S2 =
∑T

i=b+1 mi. Fig. 3 gives
an example when b = 7. We derive Eq. (4) as follows:

Pk(m1, · · · ,mT , aT + b) =
k−1
∑

Ne=0

(

Ne
∑

h1=0

(

h1
∑

r1=0

Prob[R1 = r1]× Prob[R2 = h1 − r1])
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× (

xb
∑

h2=0

Prob[N2 = h2]× (

Ne−h1
∑

h3=0

Prob[N3 = h3]

× Prob[Nf ≥ k −Ne]))),

where

Prob[R1 = r1] = Bino(|S1|, r1, 1− (1− p)(a+1)D),

P rob[R2 = h1 − r1] =
D−2
∑

i=1

mT−(D−1)+1+i

|S2|

×Bino(|S2|, h1 − r1, 1− (1− p)aD+i+1),

P rob[N2 = h2] = Bino(xb, h2, p),

P rob[N3 = h3] = Bino(xb − h2, h3,

T−b
∑

i=0

mT−(D−1)−i

xb

(1− (1− p)aD+i+1)+

b−T+(D−1)−1
∑

i=0

mT−(D−1)+1+i

xb

(1− (1− p)aD+i+1)), and

Prob[Nf ≥ k −Ne] = Bino(h2, Nf ,

T−b
∑

i=0

mT−(D−1)−i

xb

(1− p)aD+i+1+

b−T+(D−1)−1
∑

i=0

mT−(D−1)+1+i

xb

(1− p)aD+i+1).

Finally, by replacing Pk(m1, · · · ,mT , aT + b) in Eq. (3)
with one of the above three cases, we can obtain the expected
latency δ(m1, · · · ,mT ) under the k-sensor-detection model.

Table 2 summarizes the four terms Prob[N1 = h1],
Prob[N2 = h2], Prob[N3 = h3], and Prob[Nf ≥ k −Ne] in
Eq. (4) under the three cases.

3 USING DETECTION LATENCY TO GUIDE

DEPLOYMENT

Event detection latency can be used as an index to evaluate
a WSN’s coverage and thus can help guide the deployment
of a WSN. Below, we briefly discuss how to improve the
coverage of a WSN. First, we can partition the sensing field into
several subregions. Then, we can evaluate the event detection
latency of each subregion. If the expected latency of a region
is larger than a tolerable threshold, it means that there are not
enough sensors deployed in the region. For such regions, we
can deploy more sensors to improve their expected detection
latencies.

Beside, the event detection latency can also be used to
measure the latency to detect a node newly joining a wire-
less personal area network (WPAN). We observe that for a
device to join a WPAN, usually a network discovery procedure
needs to be taken. To facilitate network discovery, coordinators
in a WPAN normally need to send beacons periodically to
announce their presence (for example, Bluetooth, WiMedia
[22], and ZigBee follow this model). If we regard the beacon
windows as our active phases, then the event detection latency
under our any-sensor-detection model is the latency for a new
node to discover the WPAN.

4 SIMULATION RESULTS

We have developed a simulator using C++ language to verify
our analytical results. In the simulations, we set up a sensing

field of size 10 × 10, on which there are 50 sensors randomly
deployed. Each sensor has a sensing distance of 3 units. Events
may appear in any location inside the sensing field. Given a
network configuration, we evaluate the event detection latency
by both Eq. (1) and the simulations. For each simulation, at
least 1000 experiments are repeated, and we take their average.

Fig. 4 shows the event detection latencies under different
values of detection probability p. The simulation results co-
incide well with the analytical results, except when p = 0.1
under the 5-sensor-detection model. This is because the simu-
lator only simulates 1000 possible locations that an event may
occur, while the analysis (Eq. (1)) has to consider all possible
locations inside the sensing field. Since the value of p is small,
the network requires longer time to capture the event than we
expect.

Fig. 5 shows the event detection latencies under different
values of M(x, y). In the simulation, when an event occurs
within i sensors’ sensing ranges, we record the detection la-
tency in the corresponding M(x, y) = i statistics. From Fig. 5,
we can observe that the simulation results coincide well with
the analytical results, except when p = 0.1 and M(x, y) ≤ 5
under 3-sensor-detection model. This is because our analysis
assumes a larger-scale network. It can be observed that a larger
M(x, y), which implies a higher network density, can help
reduce the detection latency. A larger detection probability p,
which reflects the sensibility of sensors, can also reduce the
detection latency. The result can be used to determine how
sensors should be arranged at the deployment stage.

In both Figs. 4 and 5, we can observe that the event
detection latency can be greatly reduced when we increase
the number of active slots D, especially when the detection
probability p is small. Thus, we have interest in observing
the effect of D on the event detection latency under different
values of M(x, y) and p, as shown in Fig. 6. To show the effect
of D, we set the period T as a constant of 16 slots. From
Fig. 6, we can observe that the latencies drop as the value
of D increases, but this effect becomes less significant when
D ≥ 4. Since a sensor will consume more energy as the length
of active slots D increases, this result can be used to decide the
length of a sensor’s active phase to reduce both event detection
latency and energy consumption of a WSN.

5 CONCLUSIONS

We have proposed a methodology to analyze the event detec-
tion latency of a WSN. Such a latency analysis can be used to
measure the network coverage and the time that a new node
needs to discover a network. We have adopted a probabilistic
approach to analyze the latency under an any-sensor-detection
and a k-sensor-detection models. We have also developed a
simulator to verify our analyses. Simulation results not only
coincide well with the analyses, but also indicate the potential
factors that affect the latency.

Our analysis assumes that the detection probability p is a
constant. It deserves to further study the same problem when
the value of p is a function of the distance between a sensor and
the event. Also, our analysis models time in a discrete manner
(by fixed-length slots). It is also interesting to investigate the
continuous time case.
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