
ELSEVIER COMPUTER COMMUNICATIONS 1

A Fair Scheduling Algorithm with Traffic
Classification for Wireless Networks

You-Chiun Wang, Shiang-Rung Ye, and Yu-Chee Tseng

Abstract—Wireless channels are characterized by more serious bursty and location-dependent errors. Many packet scheduling algorithms
have been proposed for wireless networks to guarantee fairness and delay bounds. However, most existing schemes do not consider the
difference of traffic natures among packet flows. This will cause the delay-weight coupling problem. In particular, serious queuing delays may
be incurred for real-time flows. To resolve this problem, we propose a Traffic-Dependent wireless Fair Queuing (TD-FQ) algorithm that takes
traffic types of flows into consideration when scheduling packets. The proposed TD-FQ algorithm not only alleviates queuing delay of real-time
flows, but also guarantees bounded delays and fairness for all flows.

Index Terms—data communication, fair queuing, mobile communication system, scheduling, wireless network.

✦

1 INTRODUCTION

TO meet QoS requirements, many packet scheduling algo-
rithms [1]–[6] have been proposed for wireline networks

to guarantee fairness and delay bounds. However, it is not
a trivial task to directly apply these algorithms to wireless
domain. In particular, wireless channels are characterized by
more serious bursty and location-dependent errors [7], [8].
Bursty errors may break a flow’s continuous services, while
location-dependent errors are likely to allow error-free flows
to receive more services than they deserve, thus violating the
fairness and delay bound properties.

To solve these problems, several wireless packet scheduling
algorithms have been proposed [9]–[14]. In IWFQ (Idealized
Wireless Fair Queuing) [9], each packet is associated with a finish
tag, which is computed according to the principles of WFQ
(Weight Fair Queuing) [2]. The scheduler always selects the
error-free packet with the smallest finish tag to serve. When
a flow suffers from channel errors, all its packets will keep
their old tags. Therefore, when the flow exits from errors, its
packets are likely to have smaller finish tags, thus achieving the
compensation purpose. In CIF-Q (Channel-condition Independent
Fair Queuing) [10], fairness is achieved by transferring the
time allocated to those error flows to those error-free flows.
Later on, compensation services will be dispatched to the
former proportional to their weights. However, as [13] shows,
an inherent limitation of fluid fair queuing is that the delay
observed by a flow is tightly coupled with the fraction of
bandwidth given to that flow among all backlogged flows.
Since the fraction is in turn coupled with the weight assigned
to the flow, we call this the delay-weight coupling problem. Both
IWFQ and CIF-Q may suffer from this problem.

In this work, we consider the fair scheduling problem in
a wireless network whose input includes both real-time (RT)
and non-real-time (NRT) traffics. This problem is especially im-
portant with the recently emerging multi-media services (MMS)
in next-generation wireless networks. Real-time applications
are typically delay-sensitive. If wireless fair scheduling is sup-
ported without special consideration for RT flows, the delay-

The authors are with the Department of Computer Science and Information
Engineering, National Chiao-Tung University, Hsin-Chu, 30010, Taiwan.
E-mail: {wangyc, shiarung, yctseng}@csie.nctu.edu.tw

weight dilemma would either hurt RT flows or the system per-
formance. Several wireless scheduling algorithms have been
proposed to address this concern [11]–[14]. However, they still
suffer from certain weaknesses (refer to Section 2).

In this work, we propose a new algorithm called Traffic-
Dependent wireless Fair Queuing (TD-FQ). Traffics arriving at
a base station are mixed with RT and NRT flows. TD-FQ is
developed based on CIF-Q [10], but it adds extra mechanisms
to reduce queuing delays of RT flows by giving them higher
priorities. Nevertheless, TD-FQ guarantees that the special
treatment of RT flows will not starve NRT flows. Thus, it still
maintains fairness and bounded delays for all flows.

The rest of this paper is organized as follows: Related
work is discussed in Section 2. Section 3 presents our TD-FQ
algorithm. Section 4 formally proves several properties of TD-
FQ. Simulation results are presented in Section 5. Conclusions
are drawn in Section 6.

2 RELATED WORK

In SBFA (Server Based Fairness Approach) [11], a fraction of
bandwidth is reserved particularly for compensation purpose.
A number of virtual servers called LTFS (Long Term Fairness
Servers) are created for those flows that experienced errors.
Then the reserved bandwidth will be used to compensate
those LTFS flows. However, since the erroneous flows are
compensated in a first-come-first-served manner, RT lagging
flows may still suffer from long queuing delay.

ELF (Effort-Limited Fair) [12] suggests to adjust each flow’s
weight in response to the error rate of that flow, up to a
maximum defined by that flow’s power factor. However, since
the scheduler does not have immediate knowledge about the
error rates of a flow, there could be some delay in adjusting its
weight to respond to its channel and queue condition. Besides,
when a RT flow just exits from errors, it is emergent to deliver
packets for the flow, or these packets may be dropped. Unfor-
tunately, adjusting weights cannot guarantee higher priorities
for such flows.

WFS (Wireless Fair Service) [13] assigns each flow i with a
rate weight ri and a delay weight Φi, and associates every packet

2 ELSEVIER COMPUTER COMMUNICATIONS

flow queues

mobile

stations

MAC

protocol

RT

flows

NRT

flows

wireless

links

base station

channel state

monitor

TD-FQ

scheduler

Fig. 1: System architecture of TD-FQ.

pki with a start tag S(pki) and a finish tag F (pki),

S(pki) = max

{
V (A(pki)), S(p

k−1
i) +

Lk−1
i

ri

}
,

F (pki) = S(pki) +
Lk
i

Φi

,

where Lk
i is the length of the kth packet of flow i, A(pki) is

the arrival time of the packet, and V (t) is the virtual time
at time t. Essentially, flow i is drained into the scheduler
according to the rate weight ri, but served according to the
delay weight Φi. The flow with the smallest finish tag will
be picked by the scheduler. By introducing the delay weight,
WFS decouples delay and bandwidth to a certain degree.
However, since the computation of start tags is still based on
rate weights, RT flows may not get much benefit. Besides, WFS
adopts a compensation mechanism based on a weighted round
robin approach, where the lagging degree of a flow is used
as its weight. Without distinguishing RT and NRT flows, this
algorithm may still cause serious queuing delays for RT flows.

Reference [14] classifies flows into four groups: poor, poorer,
rich, and normal. A flow is said poor if it receives less service
than it expects. When a poor flow transmitting RT traffic is
about to drop packets due to long waiting time, this flow is
changed to a poorer flow. When there are compensation services
available, the poorer flows always have the highest priority to
receive such services. However, this behavior may cause other
poor flows to starve if there are many poorer flows.

3 THE TD-FQ ALGORITHM

Below, we first introduce the system model and basic opera-
tions of TD-FQ, followed by some special designs of TD-FQ,
including graceful degradation, compensation, and lag redistribu-
tion.

3.1 System Model

We consider a packet-cellular network as in Fig. 1. Packets
arriving at a base station (BS) are classified into RT traffic and
NRT traffic and dispatched into different queues depending on
their destination mobile stations. These traffic flows are sent to
the TD-FQ scheduler, which is responsible for scheduling flows
and transmitting their head-of-line (HOL) packets via the MAC
protocol. The Channel state monitor provides information about
the channel state of each mobile station (there are different
alternatives to achieve this, but this is out of the scope of this
work). For simplicity, we assume that BS has immediate and
accurate knowledge of each channel’s state.

In this paper, we focus on the design of TD-FQ sched-
uler. Mobile stations may suffer from bursty and location-
dependent channel errors. However, error periods are as-
sumed to be sporadic and short relative to the whole lifetime
of flows so that long-term unfairness would not happen.

3.2 Basic Operations

Following most fair queuing works, each flow i is assigned
a weight ri to represent the ideal fraction of bandwidth that
the system commits to it. However, the real services received
by flow i may not match exactly its assigned weight. So we
maintain a virtual time vi to record the nominal services re-
ceived by it, and a lagging level lagi to record its credits/debits.
The former is to compete with other flows for services, while
the latter is to arrange compensation services. The actual
normalized service received by flow i is vi −

lagi
ri

. Flow i
is called leading if lagi < 0, called lagging if lagi > 0, and
called satisfied if lagi = 0. Further, depending on its queue
content, a flow is called backlogged if its queue is nonempty,
called unbacklogged if its queue is empty, and called active if it
is backlogged or unbacklogged but leading. Note that TD-FQ
will only choose active flows to serve. When an unbacklogged
but leading flow (i.e., an active flow) is chosen, its service
will actually be transferred to another flow for compensation
purpose. Also, following the principle of CIF-Q, whenever a
flow i transits from unbacklogged to backlogged, its virtual
time vi is set to max{vi,minj∈A{vj}}, where A is the set of all
active flows.

Fig. 2 outlines the scheduling policy of TD-FQ. TD-FQ
follows the design principle of CIF-Q. First, the active flow
i with the smallest virtual time vi is selected. If flow i is
backlogged and its channel condition is good, the HOL packet
of flow i can be served if flow i is non-leading, in which case
the service is called a normal service (NS). Then we update

the virtual time vi as (vi +
lp
ri

), where lp is the length of the
packet. In case that flow i has to give up its service due to
an empty queue or a bad channel condition, the service will
become an extra service (ES). On the other hand, if flow i is
over-served (i.e., leading), the Graceful Degradation Scheme will
be activated to check if flow i is still eligible for the service. If
flow i has to give up its service, the service will be transferred
to a compensation service (CS). In both cases of CS and ES, the
Compensation Scheme will be triggered, trying to select another
flow j to serve. If the scheme fails to select any flow, this service
is wasted, called a lost service (LS). If the scheme still selects
flow i to serve, then we update vi and send its HOL packet. If
a flow j (6= i) is selected, flow j’s packet will be sent and the
values of vi, lagi, and lagj are updated as follows:

vi = vi +
lp′

ri
, (1)

lagi = lagi + lp′ , (2)

lagj = lagj − lp′ , (3)

where p′ is the packet being sent. Note that in this case we
charge to flow i by increasing its virtual time, but credit
(respectively, debit) to lagi (respectively, lagj) of flow i (re-
spectively, j).

Whenever the scheduler serves the HOL packet of any flow
i, it has to check the queue size of flow i. If it finds that flow
i’s queue is empty, it will invoke the Lag Redistributing Scheme
to adjust flow i’s lag, if necessary.

A FAIR SCHEDULING ALGORITHM WITH TRAFFIC CLASSIFICATION FOR WIRELESS NETWORKS 3

backlogged &

channel = good ?

select the active flow i with the smallest virtual time

Yes

Yes

Yes

No

select another flow j to transmit

by Compensation Scheme

No

fail

No

send HOL packet of

flow i & Update v i

send HOL packet of flow j &

update vi, lagi, and lagj by Eqs. (1), (2), (3)

j = i

Lag Redistributing Scheme

(NS)

(LS)

(CS)

(ES)

j i

skip this slot0?ilag

run Graceful Degradation

Scheme to check if i can send

Fig. 2: Scheduling policy of TD-FQ.

Below, we introduce the three schemes, Graceful Degrada-
tion Scheme, Compensation Scheme, and Lag Redistributing
Scheme, in TD-FQ. Table 1 summarizes notations used in TD-
FQ.

3.3 Graceful Degradation Scheme

When a leading flow i is selected for service, the Graceful
Degradation Scheme will be triggered to check its leading
amount. Here we adopt the idea in CIF-Q to limit the amount
of such services a leading flow may enjoy. The scheme in CIF-
Q works as follows. A leading flow is allowed to receive an
amount of additional service proportional to its normal ser-
vices. Specifically, when a flow i transits from lagging/satisfied
to leading, we set up a parameter si = α · vi, where α
(0 ≤ α ≤ 1) is a system-defined constant. Later on, flow i’s
virtual time will be increased each time when it is selected
by the scheduler (note that ‘selected’ does not mean that it is
actually served). Let v′i be flow i’s current virtual time when it
is selected. We will allow flow i to be served if si ≤ αv′i. If so,

si is updated as si +
lp
ri

, where lp is the length of the packet.
Intuitively, flow i can enjoy approximately α(v′i − vi) services,
and this is called graceful degradation.

TD-FQ adopts the above idea. Further, to distinguish RT
from NRT flows, we substitute α by a parameter αR for
RT flows, and by αN for NRT flows. We set αR > αN to
distinguish their priorities.

3.4 Compensation Scheme

When the selected flow i has a bad channel or fails to satisfy
the graceful degradation condition, the Compensation Scheme
will be triggered (reflected by ES and CS in Fig. 2). In this case,

lagging flows

R

M

R N

N

S

N

M

R

S

R

RT set

N

NRT set

R

S

seriously
lagging set

R

M

moderately
lagging set

seriously
lagging set

N

S

N

M

moderately
lagging set

Fig. 3: Structure of the class-based weight compensation (CWC) scheme.

lagging flows should always have a higher priority over non-
lagging flows to receive such additional services. Section 3.4.1
discusses how to choose a lagging flow. Section 3.4.2 deals with
the case when all lagging flows are experiencing error.

3.4.1 Dispatching ES and CS to Lagging Flows

The Compensation Scheme first tries to dispatch ES/CS to
lagging flows. We propose a class-based weight compensation
(CWC) mechanism, as illustrated in Fig. 3. CWC first divides
lagging flows into a RT set LR and a NRT set LN . These sets
are each further divided into a seriously lagging set and a
moderately lagging set. Individual flows are at the bottom. The
concept of weight is used to dispatch services to these sets.

To dispatch ES/CS to LR and LN , we assign weights
WR and WN to them, respectively. (Normally, we would set
WR ≥ WN .) Also, a variable GR (respectively, GN) is used
to record the normalized ES/CS received by LR (respectively,
LN). When both LR and LN have error-free flows, the service
will be given to LR if GR ≤ GN , and to LN otherwise. When
only one of LR and LN has error-free flows, the service will be
given to that one, independent of the values of GR and GN .
When LR receives the service, GR is updated as

GR = min

{
GR +

lp
WR

,
B +GNWN

WR

}
, (4)

where lp is the length of the transmitted packet, and B is a
predefined value to bound the difference between GR and GN .
Similarly, when LN receives the service, GN is updated as

GN = min

{
GN +

lp
WN

,
B +GRWR

WN

}
. (5)

Note that to avoid the cases of GR ≫ GN or GN ≫ GR, which
may cause LR or LN to starve when the other set recovers from
error, we set up a bound |GRWR − GNWN | ≤ B. This gives
the second term in the righthand side of Eqs. (4) and (5).

The flows in LR are further divided into a seriously lagging
set LS

R and a moderately lagging set LM
R . We assign a RT

lagging flow i to LS
R if lagi

ri
≥ δ, where δ is a predefined value.

Otherwise, flow i is assigned to LM
R . Similarly, the flows in

LN are divided into a seriously lagging set LS
N and a mod-

erately lagging set LM
N . Again, services are dispatched to sets

LS
R, L

M
R , LS

N , and LM
N according their weights WS

R ,WM
R ,WS

N ,

4 ELSEVIER COMPUTER COMMUNICATIONS

notations definition

vi virtual time of flow i
lagi the credits/debits of flow i
ri weight of flow i
si graceful degradation service index of flow i when lagi < 0

αR, αN graceful degradation ratios for RT and NRT flows
δ the threshold to distinguish seriously/moderately lagging flows

LR, LN , LS
R, LM

R , LS
N , LM

N lagging flows (defined in CWC)
WR, WN , WS

R , WM
R , WS

N , WM
N weights of lagging flows LR, LN , LS

R, LM
R , LS

N , and LM
N , respectively

GR, GN , GS
R, GM

R , GS
N , GM

N normalized amounts of ES/CS received by LR, LN , LS
R, LM

R , LS
N , and LM

N , respectively
B bound of differences of services (used in CWC)

cSi , cMi normalized amounts of ES/CS received by flow i when lagi/ri ≥ δ and 0 < lagi/ri < δ, respectively
fi normalized amount of ES received by flow i when lagi ≤ 0

TABLE 1: Summary of notations used in TD-FQ.

and WM
N , respectively. To favor seriously lagging flows, we

suggest that WS
R ≥ WM

R and WS
N ≥ WM

N . Services are
dispatched to these sets similar to the earlier case (i.e., the
service distribution to LR and LN). We use GS

R, GM
R , GS

N ,
and GM

N to record the services received by these sets. Again
a bound B is set to limit the differences between GS

R and GM
R

and between GS
N and GM

N .
At the bottom of CWC are four groups of individual flows

of the same properties (traffic types and lagging degrees).
Here the scheduler dispatches ES/CS proportional to flows’
weights. Specifically, for each flow i, we maintain two com-
pensation virtual times cSi and cMi , which keep track of the
normalized amount of ES/CS received by flow i when lagi

ri
≥ δ

and 0 < lagi
ri

< δ, respectively. When the scheduler chooses the

seriously lagging set (LS
R or LS

N), it selects the error-free flow
i with the smallest cSi in the set to serve. Similarly, when the
scheduler chooses the moderately lagging set (LM

R or LM
N), it

selects the error-free flow i with the smallest cMi in the set
to serve. When a lagging flow i receives such a service, its
compensation virtual times are updated as

{
cSi = cSi +

lp
ri

if lagi
ri

≥ δ

cMi = cMi +
lp
ri

otherwise.

When a flow i newly enters one of the sets LS
R, LM

R , LS
N ,

and LM
N or transits from one set to another, we have to assign

its cSi or cMi as follows. If flow i is seriously lagging (i.e., lagi
ri

≥
δ), we set

cSi =

{
max{cSi , c

SR
min} if flow i is RT

max{cSi , c
SN
min} if flow i is NRT.

Otherwise, we set

cMi =

{
max{cMi , cMR

min } if flow i is RT
max{cMi , cMN

min } if flow i is NRT,

where cSR
min (respectively, cSN

min) is the minimum value of
cSj such that j ∈ LS

R (respectively, j ∈ LS
N), and

cMR
min (respectively, cMN

min) is the minimum value of cMj
such that j ∈ LM

R (respectively, j ∈ LM
N). One ex-

ception is when the set LS
R/LS

N/LM
R /LM

N is empty, in
which case cSR

min/cSN
min/cMR

min /cMN
min is undefined. If so, we set

cSR
min/cSN

min/cMR
min /cMN

min to the value of cSj /cMj of the last flow j
that left the set LS

R/LS
N/LM

R /LM
N .

The main contribution of CWC is that it compensates more
services for RT flows and for seriously lagging flows, thus
alleviating these flows’ queuing delays. Besides, CWC does
not starve other lagging flows because these flows can still
share a fraction of ES/CS.

3.4.2 Dispatching ES to Non-lagging Flows
If there is no lagging flow selected in the previous stage (due to
errors), the service will be dispatched according to its original
type. If the service comes from CS, it will be returned back
to the originally selected flow. Otherwise, the (ES) service
will be given to a non-lagging flow. Just like CIF-Q, TD-FQ
also dispatches ES proportional to those non-lagging flows’
weights. That is, each flow i is assigned with an extra virtual
time fi to keep track of the normalized amount of ES received
by flow i when it is non-lagging (lagi ≤ 0). Whenever a
backlogged flow i becomes error-free and non-lagging, fi is
set to

fi = max{fi,min{fj | flow j is error-free, backlogged,

and non-lagging, j 6= i}}.

The scheduler selects the flow i with the smallest fi value
among all error-free, backlogged, and non-lagging flows to serve.

When flow i receives the service, fi is updated as (fi +
lp
ri

). An
exception occurs when there is no selectable non-lagging flow,
in which case this time slot will simply be wasted.

3.5 Lag Redistributing Scheme

After a flow is served, if its queue state changes to unback-
logged and it is still lagging, we will distribute its credit to
other flows that are in debet and reset its credit to zero. This is
because the flow does not need the credit any more [15]. This
is done by the Lag Redistribution Scheme.

The scheme examines the flow i that is actually served in
this round. After the service, if flow i’s queue becomes empty
and lagi > 0, we will give its credit to other flows in debet
proportional to their weights, i.e., for each flow k such that
lagk < 0, we set

lagk = lagk + lagi ×
rk∑

lagm<0 rm
.

Then we reset lagi = 0. Our redistribution rule is slightly
different from CIF-Q (where all flows, including lagging ones,
will share the credit). We feel that it makes sense to give these
credits to only those flows in need of services.

Table 2 summarizes the major differences between TD-FQ
and CIF-Q.

4 THEORETICAL ANALYSES

In this section, we analyze the fairness and delay properties
of TD-FQ. Our proof relies on the following assumptions: 1)
αR ≥ αN , 2) WR ≥ WN , 3) WS

R ≥ WM
R , 4) WS

N ≥ WM
N , and 5)

B ≥ L̂max, where L̂max is the maximum length of a packet.

A FAIR SCHEDULING ALGORITHM WITH TRAFFIC CLASSIFICATION FOR WIRELESS NETWORKS 5

Schemes TD-FQ CIF-Q

Graceful Degradation RT leading flows can receive more ES/CS each leading flow receives the same ratio of ES/CS
Scheme

Compensation dispatch ES/CS to lagging flows by CWC, which dispatch ES/CS to lagging flows propositional to their weights
Scheme treats RT and NRT flows in different ways

Lag Redistributing distribute the lag of an unbacklogged lagging flow distribute the lag of an unbacklogged lagging flow to all
Scheme to all other leading flows other flows

TABLE 2: Major differences between TD-FQ and CIF-Q.

4.1 Fairness Properties

The following three lemmas give bounds on the differences
between virtual times (vi’s), extra virtual times (fi’s), and
compensation virtual times (cSi ’s and cMi ’s) of any two active
flows.

Lemma 1. Let vi(t) be the virtual time of flow i at time t. For
any two active flows i and j such that t ≥ 0, we have

−
L̂max

rj
≤ vi(t)− vj(t) ≤

L̂max

ri
. (6)

Proof: This proof is by induction on t.
Basic step. When t = 0, all virtual times are 0, so Eq. (6) holds
trivially.

Induction step. Suppose that at time t, Eq. (6) holds. Let t+∆t

be the nearest time when any flow changes its virtual time. We
want to prove Eq. (6) for time t + ∆t. Observe that a flow’s
virtual time may be updated in two cases: (1) it is selected by
the scheduler and the service does not become a lost service,
and (2) it becomes active.

In case (1), let flow i be selected by the scheduler. Then its
virtual time becomes

vi(t+∆t) = vi(t) +
lp
ri
,

where lp is the length of the packet being transmitted (not
necessarily flow i’s). By TD-FQ, it follows that vi(t) ≤ vj(t),
for all j ∈ A. Since vi is increased, by induction hypothesis,
we have

−
L̂max

rj
≤ vi(t+∆t)− vj(t) = vi(t+∆t)− vj(t+∆t).

Further, since vi(t) ≤ vj(t), we have

vi(t+∆t)− vj(t+∆t) =

(
vi(t) +

lp
ri

)
− vj(t) ≤

lp
ri

≤
L̂max

ri
.

So Eq. (6) holds at t+∆t.

In Eq. (6), if flow j is selected by the scheduler, then vi(t+

∆t)− vj(t+∆t) ≤
L̂max

ri
holds trivially. Further,

vi(t+∆t)− vj(t+∆t)

= vi(t)−

(
vj(t) +

lp
rj

)
≥ −

lp
rj

≥ −
L̂max

rj
.

So Eq. (6) still holds at t+∆t.

In case(2), suppose that flow i becomes active at t+∆t. By
TD-FQ, vi(t+∆t) is set to max{vi(t),mink∈A−{i}{vk(t+∆t)}}.
If vi(t + ∆t) = mink∈A−{i}{vk(t + ∆t)}, then Eq. (6) holds

trivially . Otherwise, vi(t + ∆t) = vi(t), which means that
vi(t) ≥ mink∈A−{i}{vk(t+∆t)}. So we have

vi(t+∆t)− vj(t+∆t)

≥ min
k∈A−{i}

{vk(t+∆t)} − vj(t+∆t) ≥ −
L̂max

rj
.

Since the virtual time is non-decreasing, we have

vi(t+∆t)− vj(t+∆t) ≤ vi(t)− vj(t) ≤
L̂max

ri
.

So Eq. (6) holds at t+∆t. When flow j (instead of i) becomes
active, the proof is similar, so we can conclude the proof.

Because TD-FQ updates fi, c
S
i , and cMi similarly to that of

the vi, proofs of the next two lemmas are similar to that of
Lemma 1. So we omit the proofs.

Lemma 2. Let fi(t) be the extra virtual time of flow i at time t.
For any two active flows i and j such that t ≥ 0, we have

−
L̂max

rj
≤ fi(t)− fj(t) ≤

L̂max

ri
.

Lemma 3. Let cSi (t) and cMi (t) be the compensation virtual
times of flow i at time t. For any two active flows i and
j which have the same traffic type (RT or NRT) such that
t ≥ 0, we have

−
L̂max

rj
≤ cSi (t)− cSj (t) ≤

L̂max

ri
,

if both flows are seriously lagging, and

−
L̂max

rj
≤ cMi (t)− cMj (t) ≤

L̂max

ri
,

if both flows are moderately lagging.

The next lemma gives bounds on the difference between
the normalized services received by a leading flow i (i.e., si)
and the maximum amount that it can receive (i.e., αivi).

Lemma 4. Let si(t) be the value of si at time t. For any flow i
that is error-free, backlogged, and leading during the time
interval t ∈ [t1, t2), we have

(α− 1)
L̂max

ri
≤ αvi(t)− si(t) ≤ α

L̂max

ri
, (7)

where α = αR if flow i is a RT flow, and α = αN otherwise.

Proof: The proof is by induction on time t ∈ [t1, t2).
Basic step. When t = t1, flow i just becomes leading, and the
Graceful Degradation Scheme will set si(t) = αvi(t), so the
lemma is trivially true.

6 ELSEVIER COMPUTER COMMUNICATIONS

Induction step. Suppose that at time t, the lemma holds.
Observe that vi and/or si change only when flow i is selected.
So we consider two cases: 1) flow i is actually served, and 2)
another flow j 6= i is served. Let t + ∆t ≤ t2 be the nearest
time that vi and/or si are updated. We want to prove that the
lemma still holds at t+∆t.

According to TD-FQ, case 1) occurs only when si(t) ≤
αvi(t), so we have

αvi(t+∆t)− si(t+∆t) = α

(
vi(t) +

lp
ri

)
−

(
si(t) +

lp
ri

)

= (α− 1)
lp
ri

+ αvi(t)− si(t) ≥ (α− 1)
L̂max

ri
,

where lp represents the length of the packet being transmitted.

Case 2) implies si(t) > αvi(t). Also, vi is updated but si is
not. So we have

αvi(t+∆t)− si(t+∆t)

= α(vi(t) +
lp
ri
)− si(t) < α

lp
ri

≤ α
L̂max

ri
.

Theorems 1–3 show the fairness property guaranteed by
TD-FQ. Theorem 1 is for flows of the same traffic type, while
Theorem 2 is for flows of different types. Theorem 3 provides
some bounds on differences of services received by LR, LN ,
LS
R, LM

R , LS
N , and LM

N .

Theorem 1. For any two active flows i and j of the same
traffic type, the difference between the normalized services
received by flows i and j in any time interval [t1, t2) during
which both flows are continuously backlogged, error-free,
and remain in the same state (leading, seriously lagging,
moderately lagging, or satisfied) satisfies the inequality:

∣∣∣∣
Φi(t1, t2)

ri
−

Φj(t1, t2)

rj

∣∣∣∣ ≤ ε ·

(
L̂max

ri
+

L̂max

rj

)
,

where Φi(t1, t2) represents the services received by flow
i during [t1, t2), ε = 3 if both flows belong to the same
lagging set (LS

R, LM
R , LS

N , or LM
N) or both flows are satisfied,

ε = 3 + αR if both flows are RT leading flows, and ε =
3 + αN if both flows are NRT leading flows.

Proof: We consider the four cases: flows i and j are both
1) seriously lagging, 2) moderately lagging, 3) satisfied, and 4)
leading and backlogged during the entire time interval [t1, t2).

Case 1): In this case, any flow i that is seriously lagging can
receive services each time when it is selected (by vi), or when
it receives ES/CS from another flow (by cSi). Since vi and cSi
are updated before a packet is transmitted, the services received
by flow i may deviate from what really reflects by its virtual
times by one packet, so

vi(t2)− vi(t1) + cSi (t2)− cSi (t1)−
L̂max

ri
≤

Φi(t1, t2)

ri

≤ vi(t2)− vi(t1) + cSi (t2)− cSi (t1) +
L̂max

ri
. (8)

Applying Eq. (8) to flows i and j, we have

vi(t2)− vi(t1) + cSi (t2)− cSi (t1)−
L̂max

ri

−

(
vj(t2)− vj(t1) + cSj (t2)− cSj (t1) +

L̂max

rj

)

≤
Φi(t1, t2)

ri
−

Φj(t1, t2)

rj

≤ vi(t2)− vi(t1) + cSi (t2)− cSi (t1) +
L̂max

ri

−

(
vj(t2)− vj(t1) + cSj (t2)− cSj (t1)−

L̂max

rj

)
.

By Lammas 1 and 3, the leftmost term can be reduced to

vi(t2)− vj(t2)− (vi(t1)− vj(t1)) + cSi (t2)

− cSj (t2)−
(
cSi (t1)− cSj (t1)

)
−

(
L̂max

ri
+

L̂max

rj

)

≥ −3(
L̂max

ri
+

L̂max

rj
).

Similarly, the rightmost term would be less than or equal to

3
(

L̂max

ri
+ L̂max

rj

)
, which leads to

∣∣∣∣
Φi(t1, t2)

ri
−

Φj(t1, t2)

rj

∣∣∣∣ ≤ 3

(
L̂max

ri
+

L̂max

rj

)
.

Case 2): This case is similar to case 1. So we can replace cSi
and cSj by cMi and cMj , respectively, and obtain an inequality
similar to Eq. (8). This will lead to a ε = 3 too.

Case 3): In this case, both flows can receive services each
time when they are selected (by vi), or when they receive ES
from another flow (by fi). So we have

vi(t2)− vi(t1) + fi(t2)− fi(t1)−
L̂max

ri
≤

Φi(t1, t2)

ri

≤ vi(t2)− vi(t1) + fi(t2)− fi(t1) +
L̂max

ri
.

Consequently, similar to case 1, by Lemmas 1 and 2, we can
obtain

∣∣∣∣
Φi(t1, t2)

ri
−

Φj(t1, t2)

rj

∣∣∣∣ ≤ 3

(
L̂max

ri
+

L̂max

rj

)
.

Case 4): An error-free, backlogged, and leading flow i can
receive NS (by si) and ES from other flows (by fi). So the total
services received by flow i during [t1, t2) is bounded as

si(t2)− si(t1) + fi(t2)− fi(t1)−
L̂max

ri
≤

Φi(t1, t2)

ri

≤ si(t2)− si(t1) + fi(t2)− fi(t1) +
L̂max

ri
. (9)

Applying Lemma 4 twice to flows i and j and subtracting one
by the other, we have

α (vi(t)− vj(t)) + α

(
L̂max

rj
−

L̂max

ri

)
−

L̂max

rj

≤ si(t)− sj(t)

≤ α (vi(t)− vj(t)) + α

(
L̂max

rj
−

L̂max

ri

)
+

L̂max

ri
.

A FAIR SCHEDULING ALGORITHM WITH TRAFFIC CLASSIFICATION FOR WIRELESS NETWORKS 7

By Lemma 1, we can rewrite the inequality as

−α
L̂max

ri
−

L̂max

rj
≤ si(t)− sj(t) ≤ α

L̂max

rj
+

L̂max

ri
. (10)

Applying Eq. (10) and Lemma 2 to Eq. (9), we have
∣∣∣∣
Φi(t1, t2)

ri
−

Φj(t1, t2)

rj

∣∣∣∣ ≤ (3 + α)

(
L̂max

ri
+

L̂max

rj

)
,

where α = αR if these flows are RT, and α = αN if they are
NRT.

Theorem 2. For any RT flow i and NRT flow j, the difference
between the normalized services received by flows i and j
in any time interval [t1, t2) during which both flows are
continuously backlogged, error-free, and remain leading
satisfies the inequality:
∣∣∣∣
Φi(t1, t2)

ri
−

Φj(t1, t2)

rj

∣∣∣∣ ≤ 3

(
L̂max

ri
+

L̂max

rj

)
+ 2αN

L̂max

rj
.

(11)

Proof: Applying Lemma 4 to flows i and j and taking a
subtract leads to

αRvi(t)− αR

L̂max

ri
−

(
αNvj(t)− (αN − 1)

L̂max

rj

)

≤ si(t)− sj(t)

≤ αRvi(t)− (αR − 1)
L̂max

ri
−

(
αNvj(t)− αN

L̂max

rj

)
= T.

(12)

By Lemma 1 and the αR ≥ αN principle, the left-hand side of
Eq. (12) becomes

αRvi(t)− αNvj(t) + αN

L̂max

rj
− αR

L̂max

ri
−

L̂max

rj

≥ αN (vi(t)− vj(t)) + αN

L̂max

rj
− αR

L̂max

ri
−

L̂max

rj

≥ −αR

L̂max

ri
−

L̂max

rj
.

Consider the right-hand side of Eq. (12). There are two cases
for the term αRvi(t) − αNvj(t). If αRvi(t) − αNvj(t) ≥ 0, we
have vi(t) ≥

αN

αR
vj(t). By Lemma 1,

T ≤ αN (vj(t)− vi(t)) + αN

L̂max

rj
− αR

L̂max

ri
+

L̂max

ri

≤ 2αN

L̂max

rj
− αR

L̂max

ri
+

L̂max

ri
.

If αRvi(t)− αNvj(t) < 0, we have

T ≤ αN

L̂max

rj
− αR

L̂max

ri
+

L̂max

ri
.

These two cases together imply T ≤ 2αN
L̂max

rj
− αR

L̂max

ri
+

L̂max

ri
. So we have

− αR

L̂max

ri
−

L̂max

rj
≤ si(t)− sj(t)

≤ 2αN

L̂max

rj
+ (1− αR)

L̂max

ri
.

Similar to the proof of Theorem 1, the service received by any
leading flow i during [t1, t2) satisfies Eq. (9). Subtracting Eq. (9)
of flow i by Eq. (9) of flow j leads to

si(t2)− si(t1) + fi(t2)− fi(t1)−
L̂max

ri

−

(
sj(t2)− sj(t1) + fj(t2)− fj(t1) +

L̂max

rj

)

≤
Φi(t1, t2)

ri
−

Φj(t1, t2)

rj

≤ si(t2)− si(t1) + fi(t2)− fi(t1) +
L̂max

ri

−

(
sj(t2)− sj(t1) + fj(t2)− fj(t1)−

L̂max

rj

)
,

The leftmost term can be reduced to

si(t2)− sj(t2)− (si(t1)− sj(t1)) + fi(t2)− fj(t2)

− (fi(t1)− fj(t1))−

(
L̂max

ri
+

L̂max

rj

)

≥ −αR

L̂max

ri
−

L̂max

rj
− 2αN

L̂max

rj
+ (αR − 1)

L̂max

ri

− 2

(
L̂max

ri
+

L̂max

rj

)

= −3

(
L̂max

ri
+

L̂max

rj

)
− 2αN

L̂max

rj
.

Similarly, the rightmost term would be less than or equal to

3
(

L̂max

ri
+ L̂max

rj

)
+ 2αN

L̂max

rj
. Thus, Eq. (11) holds.

Lemma 5. Let GR(t), GN (t), GS
R(t), G

M
R (t), GS

N (t), and GM
N (t)

be the value of GR, GN , GS
R, GM

R , GS
N , and GM

N at time t,
respectively. For t ≥ 0, we have





− B
WN

≤ GR(t)−GN (t) ≤ B
WR

− B
WM

R

≤ GS
R(t)−GM

R (t) ≤ B
WS

R

− B
WM

N

≤ GS
N (t)−GM

N (t) ≤ B
WS

N

.

Proof: This proof is by induction on time t ≥ 0.
Basic step. When t = 0, GR(t) = GN (t) = 0, so the lemma is
trivially true.
Induction step. Assume that the lemma holds at time t. GR

(respectively, GN) is updated only when LR or LN is non-
empty. We consider two cases: (1) only one set is non-empty,
and (2) two sets are non-empty. Let t+∆t be the nearest time
that GR or GN is updated. We want to prove the lemma to be
true at time t+∆t.

In case (1), if LR is active, then ES/CS will be given to LR.
In TD-FQ, we bound the total difference of ES/CS received by
LR and LN at any time by |WRGR −WNGN | ≤ B. So at time
t+∆t, WRGR(t+∆t)−WNGN (t+∆t) ≤ B. Since WR ≥ WN ,
we have

WRGR(t+∆t)−WRGN (t+∆t)

≤ WRGR(t+∆t)−WNGN (t+∆t) ≤ B

⇒ GR(t+∆t)−GN (t+∆t) ≤
B

WR

.

8 ELSEVIER COMPUTER COMMUNICATIONS

On the other hand, if LN is active, we can similarly derive that

GR(t+∆t)−GN (t+∆t) ≥ −
B

WN

.

So the first inequality in the lemma holds at t+∆t.
In case (2), since both sets are non-empty, the scheduler

gives ES/CS to LR if GR(t) ≤ GN (t). Let lp represent the
length of the packet being transmitted. We have

GR(t+∆t)−GN (t+∆t) =

(
GR(t) +

lp
WR

)
−GN (t)

≤
lp
WR

≤
L̂max

WR

≤
B

WR

.

Note that it is trivially true that − B
WN

≤ GR(t+∆t)−GN (t+
∆t). Similarly, if GR(t) > GN (t), the service is given to LN , so
we have

GR(t+∆t)−GN (t+∆t) = GR(t)−

(
GN (t) +

lp
WN

)

> −
lp
WN

≥ −
L̂max

WN

≥ −
B

WN

.

Note that it is trivially true that GR(t+∆t)−GN (t+∆t) ≤
B
WR

.
Therefore, the first inequality in this lemma still holds at t+∆t.
The other two inequalities in this lemma can be proved in a
similar way.

Theorem 3. The difference between normalized ES/CS received
by any two lagging sets in any time interval [t1, t2) during
which both sets remain active satisfies the inequalities:
(1) for LR and LN :
∣∣∣∣
ΦR(t1, t2)

WR

−
ΦN (t1, t2)

WN

∣∣∣∣ ≤
B + L̂max

WR

+
B + L̂max

WN

,

(2) for LS
R and LM

R :

∣∣∣∣
ΦS

R(t1, t2)

WS
R

−
ΦM

R (t1, t2)

WM
R

∣∣∣∣ ≤
B + L̂max

WS
R

+
B + L̂max

WM
R

,

(3) for LS
N and LM

N :

∣∣∣∣
ΦS

N (t1, t2)

WS
N

−
ΦM

N (t1, t2)

WM
N

∣∣∣∣ ≤
B + L̂max

WS
N

+
B + L̂max

WM
N

,

where ΦR(t1, t2), ΦN (t1, t2), ΦS
R(t1, t2), ΦM

R (t1, t2),
ΦS

N (t1, t2), and ΦM
N (t1, t2) represents ES/CS received by

LR, LN , LS
R, LM

R , LS
N , and LN

M during [t1, t2), respectively.

Proof: Since GR is updated before a packet is transmitted,
it follows that the total ES/CS received by LR during [t1, t2) is
bounded by

GR(t2)−GR(t1)−
L̂max

WR

≤
ΦR(t1, t2)

WR

≤ GR(t2)−GR(t1) +
L̂max

WR

.

Similarly, for GN , we have

GN (t2)−GN (t1)−
L̂max

WN

≤
ΦN (t1, t2)

WN

≤ GN (t2)−GN (t1) +
L̂max

WN

.

Therefore, we have

GR(t2)−GR(t1)−
L̂max

WR

−

(
GN (t2)−GN (t1) +

L̂max

WN

)

≤
ΦR(t1, t2)

WR

−
ΦN (t1, t2)

WN

≤ GR(t2)−GR(t1) +
L̂max

WR

−

(
GN (t2)−GN (t1)−

L̂max

WN

)
.

By Lemma 5, we can rewrite the inequality as

−

(
B + L̂max

WR

+
B + L̂max

WN

)
≤

ΦR(t1, t2)

WR

−
ΦN (t1, t2)

WN

≤
B + L̂max

WR

+
B + L̂max

WN

⇒

∣∣∣∣
ΦR(t1, t2)

WR

−
ΦN (t1, t2)

WN

∣∣∣∣ ≤
B + L̂max

WR

+
B + L̂max

WN

.

This concludes the first inequality. The other two inequalities
in this theorem can be proved similarly.

4.2 Delay Bounds

When a backlogged flow suffers from errors, it becomes lag-
ging. Theorem 4 shows that if a lagging flow becomes error-
free and has sufficient service demand, it can get back all its
lagging services within bounded time.

Theorem 4. If an active but lagging flow i becomes error-free
at time t and remains backlogged continuously after time
t, it is guaranteed that flow i will become non-lagging (i.e.,
lagi ≤ 0) within time ∆t, where

∆t ≤
ϕ(Ψ + 2L̂max)

rmin(1− αR)Ĉ
+ (n+ 1 +

ϕ

rmin

)
L̂max

Ĉ
,

n is the number of active flows, Ĉ is the channel capacity,
ϕ is the aggregate weight of all flows, ϕR is the aggregate
weight of all RT flows, ϕN is the aggregate weight of all
NRT flows, rmin is the minimum weight of all flows, and

Ψ =
(WR +WN)(WS

R +WM
R)

WRWS
R

×

(
lagi(t)

ri
ϕR + (

ϕR

ri
+ n− 2)L̂max +B

)

+
WR +WN

WR

(
δϕR + (

2ϕR

ri
+ n− 1)L̂max +B

)

if flow i is RT, and

Ψ =
(WR +WN)(WS

N +WM
N)

WNWS
N

×

(
lagi(t)

ri
ϕN + (

ϕN

ri
+ n− 2)L̂max +B

)

+
WR +WN

WN

(
δϕN + (

2ϕN

ri
+ n− 1)L̂max +B

)

if flow i is NRT.

Proof: Assume that flow i is a RT flow. Consider the
worst case: flow i has the maximum lag among all flows and
lagi/ri ≥ δ at time t. Since flow i becomes error-free after time
t, lagi is decreased each time when it receives CS. Now let flow
i becomes moderately lagging at time tM , and further become
non-lagging at time tN , t < tM < tN , i.e., i ∈ LS

R during

A FAIR SCHEDULING ALGORITHM WITH TRAFFIC CLASSIFICATION FOR WIRELESS NETWORKS 9

[t, tM) and i ∈ LM
R during [tM , tN). Also, let ΦC(t, tN) be the

total CS received by all lagging flows during [t, tN).
To prove this theorem, observe that ∆t should be an upper

bound of tN − t. The largest value of tN occurs when all flows
in the system are error-free (i.e., no ES) and there is only one
leading flow, say k, who provides CS such that flow k is a RT
flow and rk = rmin. Since flow k can still receive a fraction αR

of its NS when it is leading and flow k uses sk to keep track of
the amount of such NS when it is leading, this leads to

ΦC(t, tN) ≥ rmin(vk(tN)− vk(t))

− rmin(sk(tN)− sk(t))− L̂max. (13)

By Lemma 1, for any active flow j during [t, tN), we have

vj(tN)− vj(t) ≤ vk(tN)− vk(t) +
L̂max

rj
+

L̂max

rmin
.

This inequality helps to derive the total amount of services
provided by the system during [t, tN):

Ĉ(tN − t) ≤


∑

j∈A

rj(vj(tN)− vj(t))


+ L̂max

≤


∑

j∈A

rj(vk(tN)− vk(t) +
L̂max

rj
+

L̂max

rmin
)


+ L̂max

≤ (vk(tN)− vk(t))
∑

j∈A

rj + nL̂max +
L̂max

rmin

∑

j∈A

rj + L̂max

≤ (vk(tN)− vk(t))ϕ+ (n+ 1 +
ϕ

rmin
)L̂max

⇒ vk(tN)− vk(t) ≥
1

ϕ

(
Ĉ(tN − t)− (n+ 1 +

ϕ

rmin
)L̂max

)
.

(14)

Applying Lemma 4 to flow k at times t and tN and taking a
subtract, we obtain

sk(tN)− sk(t) ≤ αRvk(tN)− αRvk(t) +
L̂max

rmin
. (15)

By combining Eqs. (14) and (15) into Eq. (13), we can obtain

ΦC(t, tN)

≥ rmin (vk(tN)− vk(t)− (sk(tN)− sk(t)))− L̂max

≥ rmin

(
vk(tN)− vk(t)− αRvk(tN) + αRvk(t)−

L̂max

rmin

)

− L̂max

= rmin(1− αR) (vk(tN)− vk(t))− 2L̂max

≥
rmin(1− αR)

ϕ

(
Ĉ(tN − t)− (n+ 1 +

ϕ

rmin
)L̂max

)

− 2L̂max

⇒ tN − t ≤
ϕ(ΦC(t, tN) + 2L̂max)

rmin(1− αR)Ĉ
+ (n+ 1 +

ϕ

rmin
)
L̂max

Ĉ
.

(16)

It remains to derive an upper bound for ΦC(t, tN) in
Eq. (16). Note that there are n − 1 lagging flows who are
allowed to share the ΦC(t, tN) services. The worst case hap-
pens when (1) exactly one of these n− 1 flows remains in LN

during [t, tN), (2) exactly n− 3 flows remain in LS
R and 1 flow

remains in LM
R during [t, tM), and (3) no flow remains in LS

R

and exactly n − 2 flows remain in LM
R during [tM , tN). Note

that in this case LR can share at most a fraction WR

WR+WN
of

ΦC(t, tN) during [t, tN), and LS
R can share at most a fraction

WS
R

WS
R
+WM

R

of CS received by LR during [t, tM).

Let ΦR(t, tN) and ΦN (t, tN) be CS received by LR and LN

during [t, tN), respectively, ΦC(t, tN) = ΦR(t, tN)+ΦN (t, tN).
According to the first inequality of Theorem 3, we have

ΦN (t, tN) ≤ WN

(
ΦR(t, tN)

WR

+
B + L̂max

WR

+
B + L̂max

WN

)

⇒ ΦC(t, tN) ≤
WR +WN

WR

(
ΦR(t, tN) +B + L̂max

)
. (17)

Next, we derive the ΦR(t, tN) in Eq. (17). It can be divided
into two terms,

ΦR(t, tN) = ΦR(t, tM) + ΦR(tM , tN). (18)

Let ΦS
R(t, tM) and ΦM

R (t, tM) be CS received by LS
R and LM

R

during [t, tM), respectively. Again, by Theorem 3, we have

ΦR(t, tM) = ΦS
R(t, tM) + ΦM

R (t, tM)

≤ ΦS
R(t, tM) +WM

R

(
ΦS

R(t, tM)

WS
R

+
B + L̂max

WS
R

+
B + L̂max

WM
R

)

=
WM

R +WS
R

WS
R

(
ΦS

R(t, tM) +B + L̂max

)
. (19)

We further expand the term ΦS
R(t, tM) in Eq. (19) as follows:

ΦS
R(t, tM) ≤

∑

j∈LS
R
(t,tM)

rj(c
S
j (tM)− cSj (t))

≤
∑

j∈LS
R
(t,tM)

rj

(
cSi (tM)− cSi (t) +

L̂max

ri
+

L̂max

rj

)

= (cSi (tM)− cSi (t))
∑

j∈LS
R
(t,tM)

rj +
L̂max

ri

∑

j∈LS
R
(t,tM)

rj

+
∑

j∈LS
R
(t,tM)

L̂max

< ϕR(c
S
i (tM)− cSi (t)) + (

ϕR

ri
+ n− 3)L̂max. (20)

Note that the fourth term in Eq. (20) is obtained by applying
Lemma 3 twice on flow i and any flow j ∈ LS

R

cSj (tM)− cSj (t) ≤ cSi (tM)− cSi (t) +
L̂max

ri
+

L̂max

rj
.

Since LS
R is empty during [tM , tN), ΦR(tM , tN) =

ΦM
R (tM , tN). Similarly to the derivation of Eq. (20), we have

ΦR(tM , tN) = ΦM
R (tM , tN)

≤
∑

j∈LM
R

(tM ,tN)

rj(c
M
j (tN)− cMj (tM))

≤ ϕR(c
M
i (tN)− cMi (tM)) + (

ϕR

ri
+ n− 2)L̂max. (21)

By Eqs. (19) and (20), we have

ΦR(t, tM) <
WM

R +WS
R

WS
R

×

(
ϕR(c

S
i (tM)− cSi (t)) + (

ϕR

ri
+ n− 2)L̂max +B

)
. (22)

10 ELSEVIER COMPUTER COMMUNICATIONS

Furthermore, by combining Eqs. (21) and (22) into Eq. (18), we
have

ΦR(t, tN)

≤
WM

R +WS
R

WS
R

(ϕR(c
S
i (tM)− cSi (t)) + (

ϕR

ri
+ n− 2)L̂max

+B) + ϕR(c
M
i (tN)− cMi (tM)) + (

ϕR

ri
+ n− 2)L̂max

= ϕR

(
WS

R +WM
R

WS
R

(cSi (tM)− cSi (t)) + cMi (tN)− cMi (tM)

)

+
2WS

R +WM
R

WS
R

(
ϕR

ri
+ n− 2

)
L̂max +

(WS
R +WM

R)B

WS
R

.

(23)

By combining Eqs. (17) and (23), we have

ΦC(t, tN) ≤
WR +WN

WRWS
R

(ϕR((W
S
R +WM

R)(cSi (tM)− cSi (t))

+WS
R(cMi (tN)− cMi (tM))) + ((2WS

R +WM
R)(

ϕR

ri
+ n− 2)

+WS
R)L̂max + (2WS

R +WM
R)B). (24)

Since flow i is still lagging after time tM , it means that 0 <
lagi(tM) < lagi(t). So

cSi (tM)− cSi (t) =
|lagi(tM)− lagi(t)|

ri

=
lagi(t)− lagi(tM)

ri
<

lagi(t)

ri
. (25)

After time tN , flow i becomes non-lagging, so −L̂max <
lagi(tN) ≤ 0. Besides, 0 < lagi(tM) < riδ since flow i becomes
moderately lagging after time tM , so we have

cMi (tN)− cMi (tM) =
|lagi(tN)− lagi(tM)|

ri

=
lagi(tM)− lagi(tN)

ri
< δ +

L̂max

ri
. (26)

By combining Eqs. (25) and (26) into Eq. (24), we have

ΦC(t, tN) <
(WR +WN)(WS

R +WM
R)

WRWS
R

×

(
lagi(t)

ri
ϕR + (

ϕR

ri
+ n− 2)L̂max +B

)

+
WR +WN

WR

(
δϕR + (

2ϕR

ri
+ n− 1)L̂max +B

)
. (27)

By combining Eqs. (16) and (27), the first part of this theorem
is proved. When flow i is a NRT flow, the proof is similar and
we omit the details.

5 SIMULATION RESULTS

In this section, we present some experimental results to verify
the effectiveness of the proposed algorithm. The first one
observes the packet dropping ratios and queuing delays of
RT flows in TD-FQ and CIF-Q, respectively. The second one
compares the throughput of flows in these two algorithms.
The last one gives a comparison on different compensation
strategies for lagging flows.

5.1 Dropping Ratios and Delays for RT Flows

In this experiment, we mix RT and NRT traffics together. We
observe the packet dropping ratios and queuing delays of
RT flows in TD-FQ and CIF-Q, respectively. Eight flows are
used, as shown in Table 3. The first six flows are RT flows,
which have two traffic models: constant-bit-rate (CBR) and
ON-OFF model. The latter is to model voice communication.
The average durations of ON and OFF states are set to 2.5
and 0.5 seconds, respectively. During ON period, packets are
generated with fixed intervals. No packet is generated during
OFF period. The last two flows are NRT FTP flows, and their
traffics are modeled as greedy sources whose queues are never
empty. As for error scenarios, we use two parameters Pgood

and Pbad to control the average time when the channel stays
in error-free and error states, respectively. The total channel
capacity is set to 5 Mb/s. The total simulation time in this
experiment is 100 seconds.

flow bandwidth packet size error scenario

voice1 64 Kb/s 2 Kb no error occurs
voice2 32 Kb/s 1 Kb Pgood = 6 sec., Pbad = 1.5 sec.
voice3 32 Kb/s 1 Kb Pgood = 5 sec., Pbad = 0.5 sec.
CBR1 512 Kb/s 2 Kb no error occurs
CBR2 256 Kb/s 1 Kb Pgood = 6 sec., Pbad = 1.5 sec.
CBR3 256 Kb/s 1 Kb Pgood = 5 sec., Pbad = 0.5 sec.
FTP1 2 Mb/s 4 Kb no error occurs
FTP2 2 Mb/s 4 Kb Pgood = 6 sec., Pbad = 1.5 sec.

TABLE 3: Traffic specification of the flows used in experiment 1.

For CIF-Q, we set α = 0.5, while for TD-FQ we set
αR = 0.8 and αN = 0.2, respectively. The weights assigned
to lagging sets are WR : WN = 3 : 1, WS

R : WM
R = 3 : 1, and

WS
N : WM

N = 3 : 1. The packet dropping ratios and queuing
delays of RT flows are shown in Fig. 4 and Fig. 5, respectively,
where the packet dropping ratio is defined as the ratio of the
number of packets dropped due to exceeding deadlines to the
number of packet generated, where the deadline of a packet
is set to twice of the packet interarrival time. From Fig. 4 and
Fig. 5, we can observe that the packet dropping ratios and
queuing delays of RT flows in TD-FQ are smaller than those
in CIF-Q, especially when the flows are voice traffic. This is
because TD-FQ not only lets RT flows give up less services to
compensate other lagging flows, but also gives more services
to RT lagging flows for compensation. From this observation,
we conclude that TD-FQ can alleviate the packet dropping
ratios and queuing delays of RT flows as compared to CIF-Q.

2.2

30.3

18.5

11.2

34.2

22.7

0.7

22.6

11.0 10.9

31.6

20.3

0

5

10

15

20

25

30

35

40

voice1 voice2 voice3 CBR1 CBR2 CBR3

p
a

c
k
e

t
d

ro
p

p
in

g
ra

ti
o

(%
)

CIF-Q

TD-FQ

Fig. 4: Packet dropping ratios of RT flows.

A FAIR SCHEDULING ALGORITHM WITH TRAFFIC CLASSIFICATION FOR WIRELESS NETWORKS 11

24.9

35.0

30.0

3.4
4.7 4.03.2 3.6

29.7

4.2

25.8

23.0

0

5

10

15

20

25

30

35

40

voice1 voice2 voice3 CBR1 CBR2 CBR3

a
v
e

ra
g

e
d

e
la

y
(m

s
)

CIF-Q

TD-FQ

Fig. 5: Average queuing delays of RT flows.

5.2 Throughputs of Flows

In this experiment, we observe the throughputs of flows in TD-
FQ and CIF-Q. Four flows are used, as shown in Table 4. The
first two flows are RT CBR flows, and the last two flows are
NRT FTP flows. Suffering from channel errors during [0, 15)
period, flows CBR2 and FTP2 will become active but lagging
after the 15th second. The other flows are all leading in this
experiment. For CIF-Q, we set α = 0.5, while for TD-FQ we
set αR = 0.8, αN = 0.2, WR = 3, and WN = 1. The channel
capacity in this experiment is set to 2 Mb/s.

flow bandwidth packet size error scenario

CBR1 1.25 Mb/s 4 Kb no error occurs
CBR2 1.25 Mb/s 4 Kb error occurs during [0,15) sec.
FTP1 2 Mb/s 8 Kb no error occurs
FTP2 2 Mb/s 8 Kb error occurs during [10,15) sec.

TABLE 4: Traffic specification of the flows used in experiment 2.

Fig. 6 shows the throughput of flows after the 16th second.
We see that RT flows can receive more services in TD-FQ as
compared to CIF-Q. This is because TD-FQ favors RT flows
over NRT flows. However, the cost, as shown in Fig. 6(b), is at
lower throughputs for NRT flows.

5.3 Effect of Compensation

We compare three compensation strategies for lagging flows:
(1) TD-FQ, (2) CIF-Q (which dispatches services proportional
to flows’ weights), and (3) Max-lag (which always selects the
error-free flow with the maximum normalized lag to serve).

flow no. traffic type bandwidth error scenario

1 FTP 1 Mb/s no error occurs
2 FTP 1 Mb/s error occurs during [0,15) sec.
3 FTP 1 Mb/s error occurs during [5,15) sec.

4–6 FTP 1 Mb/s error occurs during [10,15) sec.

TABLE 5: Traffic specification of the flows used in experiment 3.

Six FTP flows are used. Table 5 shows the traffic specifica-
tion of these flows. Each flows has unlimited data to transmit
and each packet is of size 1Kb. The bandwidth of the base
station is set to 1 Mb/s. From Table 5, it is clear that flow 1 will
become a leading flow after the 15th second. Flow 2 and 3 are
treated as seriously lagging flows in TD-FQ, while other flows
are treated moderately lagging. To let lagging flows receive
the maximum compensation services, we set α = 0 for both

0

5

10

15

20

25

30

35

40

16 18 20 22 24 26 28 30

time (second)

th
ro

u
g
h
p
u
t
(M

b
)

CBR1 (CIF-Q)

CBR1 (TD-FQ)

CBR2 (CIF-Q)

CBR2 (TD-FQ)

0

10

20

30

40

50

60

70

80

16 18 20 22 24 26 28 30

time (second)

th
ro

u
g

h
p

u
t
(M

b
)

FTP1 (CIF-Q)

FTP1 (TD-FQ)

FTP2 (CIF-Q)

FTP2 (TD-FQ)

(a)

(b)

Fig. 6: Throughputs of (a) RT flows and (b) NRT flows.

CIF-Q and TD-FQ. In TD-FQ, we assign weights WS
N = 2 and

WM
N = 1.

Fig. 7(a) shows the total compensation services that flow
2 receives after the 15th seconds. We see that flow 2 enjoys
the most compensation services in the Max-lag scheme. This
remains true until flow 2’s lag lowers down to the lags of
other lagging flows. On the contrary, CIF-Q gives the least
compensation services to flow2 because it dispatches compen-
sation services proportional to flows’ weights. So flow 2 may
suffer from more serious queuing delays during this period.
TD-FQ performs in between what CIF-Q and Max-lag perform
because it separates seriously lagging flows from moderately
lagging flows. Note that after the 32th second, the behavior of
flow 2 in TD-FQ is similar to that in CIF-Q. This is because
after the 32th second, flows 4 – 6 have become non-lagging
both in TD-FQ and CIF-Q (refer to Fig. 7(c)), and flows 2 and 3
become moderately lagging in TD-FQ. So in this case, TD-FQ
works similarly to CIF-Q. Fig. 7(b) shows the behavior of flow
3, which is also seriously lagging but has less lag compared
to flow 2. From Fig. 7(b), we can observe that even flow 3
is seriously lagging, it is starved until the 20th second in the
Max-lag scheme. Fig. 7(c) shows our observation for flows 4 –
6. The result does verify that CIF-Q favors moderately lagging
flows over seriously lagging flows. Besides, Fig. 7(c) shows
that moderately lagging flows will be starved for longer time
when Max-lag is used.

From this experiment, we conclude that CIF-Q addresses
the fairness issues purely based on weights to dispatch com-

12 ELSEVIER COMPUTER COMMUNICATIONS

0

500

1000

1500

2000

2500

16 20 24 28 32 36 40

time (second)

re
c
e

iv
e

d
C

S
(k

b
) CIF-Q

TD-FQ
MaxLag

0

200

400

600

800

1000

1200

1400

1600

16 20 24 28 32 36 40

time (second)

re
c
e

iv
e

d
C

S
(k

b
)

CIF-Q
TD-FQ
MaxLag

0

50

100

150

200

250

300

16 20 24 28 32 36 40

time (second)

re
c
e

iv
e

d
C

S
(k

b
)

CIF-Q
TD-FQ
MaxLag

(a)

(b)

(c)

Fig. 7: Received compensation services by (a) the seriously lagging flow 2,
(b) seriously lagging flow 3, and (c) moderately lagging flows 4–6.

pensation services. So it may incur higher queuing delays
for seriously lagging flows. The Max-lag scheme can alleviate
the queuing delays of seriously lagging flows, but it violates
the fairness principle and may starve other lagging flows
when compensating the former. The proposed TD-FQ not only
provides fairness in dispatching compensation services, but
also alleviates the queuing delays of seriously lagging flows.

6 CONCLUSIONS

We have addressed the delay-weight coupling problem that ex-
ists in many existing fair-queuing schemes. A new algorithm,
TD-FQ, is proposed to solve this problem. By taking traffic
types of flows into consideration when scheduling packets,
TD-FQ not only alleviates queuing delay of RT flows, but also
guarantees bounded delays and fairness for all flows. We have
derived analytically the fairness properties and delay bounds
of TD-FQ. Simulation results have also shown that TD-FQ
incurs less packet dropping and queuing delay for RT flows
when compared to CIF-Q.

REFERENCES

[1] A.K. Parekh and R.G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: the single-
node case,” IEEE/ACM Trans. Networking, vol. 1, no. 3, pp. 344–357,
1993.

[2] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of
a fair queueing algorithm,” J. Internetworking Research and Experience,
vol. 1, pp. 3–26, 1990.

[3] P. Goyal, H.M. Vin, and H. Cheng, “Start-time fair queueing: a
scheduling algorithm for integrated services packet switching net-
works,” IEEE/ACM Trans. Networking, vol. 5, no. 5, pp. 690–704, 1997.

[4] S.J. Golestani, “A self-clocked fair queueing scheme for broadband
applications,” Proc. IEEE INFOCOM, pp. 12–16, 1994.

[5] J. Bennett and H. Zhang, “WF2Q: worst-case fair weighted fair
queueing,” Proc. IEEE INFOCOM, vol. 1, pp. 120–128, 1996.

[6] J.C.R. Bennett and H. Zhang, “Hierarchical packet fair queueing
algorithms,” IEEE/ACM Trans. Networking, vol. 5, no. 5, pp. 675–689,
1997.

[7] V. Bharghavan, S. Lu, and T. Nandagopal, “Fair queuing in wireless
networks: issues and approaches,” IEEE Personal Comm., vol. 6, pp.
44–53, 1999.

[8] Y. Cao and V.O.K. Li, “Scheduling algorithms in broadband wireless
networks,” Proc. IEEE, vol. 89, no. 1, pp. 76–87, 2001.

[9] S. Lu, V. Bharghavan, and R. Srikant, “Fair scheduling in wireless
packet networks,” IEEE/ACM Trans. Networking, vol. 7, no. 4, pp. 473–
489, 1999.

[10] T.S.E. Ng, I. Stoica, and H. Zhang, “Packet fair queueing algorithms
for wireless networks with location-dependent errors,” Proc. IEEE
INFOCOM, vol. 3, pp. 1103–1111, 1998.

[11] P. Ramanathan and P. Agrawal, “Adapting packet fair queuing al-
gorithms to wireless networks,” Proc. ACM/IEEE Int’l Conf. Mobile
Computing and Networking, pp. 1–9, 1998.

[12] D.A. Eckhardt and P. Steenkiste, “Effort-limited fair (ELF) scheduling
for wireless networks,” Proc. IEEE INFOCOM, vol. 3, pp. 1097–1106,
2000.

[13] S. Lu, T. Nandagopal, and V. Bharghavan, “A wireless fair service
algorithm for packet cellular networks,” Proc. ACM/IEEE Int’l Conf.
Mobile Computing and Networking, pp. 10–20, 1998.

[14] S. Lee, K. Kim, and A. Ahmad, “Channel error and handoff compen-
sation scheme for fair queueing algorithms in wireless networks,”
Proc. IEEE Int’l Conf. Comm., vol. 5, pp. 3128–3132, 2002.

[15] Y. Yi, Y. Seok, T. Kwon, Y. Choi, and J. Park, “W2F2Q: packet fair
queuing in wireless packet networks,” Proc. ACM Int’l Workshop
Wireless Mobile Multimedia, pp. 2–10, 2000.

