
Cost-Oriented VNF Placement for Load Balance

You-Chiun Wang and Cheng-Ying Tsai

Department of Computer Science and Engineering,

National Sun Yat-sen University, Kaohsiung, 804, Taiwan

Email: ycwang@cse.nsysu.edu.tw; bernietw123456@gmail.com

Abstract—Network function virtualization (NFV) is a technique
to decouple network functions from hardware and convert them
to software appliances, namely virtual network functions (VNFs).
Network services are carried out through service function chains
(SFCs), each with some VNFs. Given SFCs and physical machines
(PMs), this paper designs a cost-oriented VNF placement (COVP)
method to assign each SFC’s VNFs to PMs, with the objectives of
maximizing served VNFs, balancing loads of PMs, and saving the
total link cost to run SFCs. COVP allocates a PM for each VNF
according to its position in the SFC as well as the PM’s resource
usage status. If a PM is busy, some VNFs are moved to other PMs
in the vicinity for load balance. Both placement and movement of
VNFs take link costs into account. Simulation results demonstrate
that COVP can achieve the objectives efficiently.

Index Terms—cost, load balance, NFV, VNF placement.

I. INTRODUCTION

Traditionally, network functionalities are bundled into dedi-

cated hardware called middle boxes, causing many drawbacks.

For example, middle boxes are expensive and require domain-

specific knowledge to maintain. It is also difficult to customize

or develop network functionalities. Thus, the network function

virtualization (NFV) technique is proposed to replace middle

boxes by software appliances called virtual network functions

(VNFs). They can run on commodity physical machines (PMs)

and move between PMs, thereby decoupling network functions

from the underlying hardware. In this way, NFV can enhance

scalability, facilitate management, and reduce expenditures [1].

Multiple VNFs constitute a service function chain (SFC) to

perform a network service. How to pick PMs to run each SFC’s

VNFs, referred to as VNF placement, significantly affects NFV

performance [2]. Many studies aim to improve PMs’ resource

utilization. Soualah et al. [3] model the placement problem via

an integer linear program, whose goal is to optimize resource

usage and revenue. In [4], a PM with the best-fit resources is

first selected to place the VNFs of an SFC. With deep learning,

the work [5] places VNFs to improve the service ratio and also

decrease working PMs. Both studies [6], [7] improve resource

consumption of PMs while ensuring service latency. The work

[8] assigns every SFC a weight and places VNFs to increase

the total weight of served SFCs. However, these methods may

lead VNFs to gather on a few PMs to raise resource utilization.

Doing so results in imbalanced loads among PMs, where some

PMs are busy whereas others stay idle.

Some studies consider moving VNFs among PMs. The work

[9] moves VNFs to keep high availability against PM failures.

In [10], if a PM is busy, some of its VNFs are moved to other

PMs for load balance. The study [11] restricts the hop counts

for VNF movement to avoid an SFC’s VNFs being placed on

PMs far away from each other. However, these studies do not

take account of the link cost between two adjacent PMs, which

may significantly raise the cost taken to complete some SFCs.

This paper proposes a cost-oriented VNF placement (COVP)

method to address the VNF placement issue with three goals:

• Serve as many VNFs as possible.

• Balance loads among PMs.

• Decrease the total link cost to execute SFCs.

For each SFC, COVP differentiates the placement of its head

VNF from others. Moreover, the placement considers not only

the suitability for a PM to serve that VNF but also the SFC’s

link cost. If a PM has spent many resources to serve VNFs and

becomes overloaded, COVP moves some VNFs to other PMs

without significantly increasing the link cost. With simulations,

we show that our COVP method can serve all VNFs, achieve

load balance among PMs, and save the total link cost.

II. PROBLEM FORMULATION

Consider a network with a set P of PMs. Each PM px ∈ P
has type-α resources with the capacity of Θα

x , where Θα
x ∈ Z

+

and α ∈ R. In particular,R is the set of all resource types, and

R = {CPU,MEM} (i.e., CPU computing power and memory

storage). Moreover, we are given a set S of SFCs, where each

SFC si ∈ S contains a series of VNFs Vi = {vi,1, · · · , vi,m}.
Here, vi,1 is the head VNF of si. Each VNF vi,j ∈ Vi needs

a number θαi,j of type-α resources, where θαi,j > 0, ∀α ∈ R.

Let L be the set of all links between PMs. There exists a

link lx,y in L if PMs px and py are neighbors. It is assigned a

cost cx,y (e.g., lx,y’s average packet delay). We also denote by

ψ(px, py) the required link cost (RLC) between PMs px and

py . We calculate that ψ(px, py) =
∑

lx,y∈L′ cx,y , where L′ is

a set of links that constitute the shortest path from px to py .

Let ζx be the amount of PM px’s load. It can be computed

by ζx = 1

2

∑
∀α∈R(

∑
si∈S

∑
vi,j∈Vi

zxi,jθ
α
i,j/Θ

α
x), where zxi,j

is an indicator to reveal whether vi,j is placed on px (zxi,j = 1
if so or zxi,j = 0 otherwise). In other words, ζx is the average

resource utilization for px to deal with its serving VNFs. Then,

we measure the degree of load balance among PMs in P using

Jain’s fairness index [12] as follows:

J(P) = (
∑

px∈P
ζx)

2/(|P| ×
∑

px∈P
ζ2x), (1)

where 1/|P| ≤ J(P) ≤ 1. If J(P) is larger, then loads of all

PMs in P will be more balanced.

8px p1 p2 p3 p47 9 6

Fig. 1. Example of finding sets PPL

x
and PMV

x
.

Our problem asks how to pick PMs in P for serving VNFs

of each SFC in S to meet three objectives:

maxmize
∑

px∈P

∑
si∈S

∑
vi,j∈Vi

zxi,j , (2)

maxmize J(P), (3)

minimize
∑

si∈S

∑|Vi|−1

j=1
ψ(p̄(vi,j), p̄(vi,j+1)), (4)

with constraints of

cx,y ∈ [cmin, cmax], ∀lx,y ∈ L, (5)

θαi,j ≤ minpx∈P{Θ
α
x}, ∀vi,j ∈ Vi, ∀si ∈ S, ∀α ∈ R, (6)

zxi,j ∈ {0, 1}, ∀vi,j ∈ Vi, ∀si ∈ S, ∀px ∈ P, (7)
∑

px∈P
zxi,j ≤ 1, ∀vi,j ∈ Vi, ∀si ∈ S, (8)

∑
si∈S

∑
vi,j∈Vi

zxi,jθ
α
i,j ≤ Θα

x , ∀px ∈ P, ∀α ∈ R. (9)

Objective functions in Eqs. (2), (3), and (4) indicate serving

the maximum VNFs, balancing loads of PMs, and minimizing

the total link cost to run SFCs. Here, p̄(vi,j) denotes the PM

that serves VNF vi,j . As for constraints, Eq. (5) imposes lower

and upper bounds on the cost of each link in L. Eq. (6) points

out that a VNF cannot ask for more resources than the capacity

of any PM. Eq. (7) restricts zxi,j’s value to 0 or 1. In Eq. (8),

each VNF can be placed on at most one PM. Since a PM may

serve multiple VNFs, Eq. (9) means that the total number of

resources asked by them cannot overtake the PM’s capacity.

III. THE PROPOSED COVP METHOD

To check whether a PM px becomes overloaded, we employ

a threshold δα on type-α resource consumption ratio for px
(0.5 < δα < 1). Let uαx be the number of consumed type-α re-

sources of px, as calculated by uαx =
∑

si∈S

∑
vi,j∈Vi

zxi,jθ
α
i,j .

When uαx/Θ
α
x > δα, where α = CPU or MEM, px is considered

overloaded. In this case, if px still meets Eq. (9)’s constraint,

px is capable of serving additional VNFs. However, we shall

prevent PMs in P from being overloaded as much as possible

for load-balancing purposes.

To efficiently reduce the total link cost to run an SFC si, we

need to constrain the relative positions (i.e., PMs) to place any

two adjacent VNFs of si. Suppose that vi,j ∈ Vi is placed on

PM px. Then, the subsequent PM vi,j+1 ∈ Vi is allowed to be

placed on a PM in set PPL

x , of which any PM whose RLC to

px does not exceed threshold ϕPL. Assume that SFC si has ni
VNFs and no VNFs are moved after being placed. Doing so

ensures that the total link cost to run si is at most (ni−1)ϕPL.

In addition, we define a set PMV

x , where any PM whose RLC

to px is below or equal to threshold ϕMV and ϕMV > ϕPL. When

we need to move vi,j , it will be restricted to moving to a PM

only in PMV

x . Fig. 1 gives an example. By setting ϕPL to 15 and

ϕMV to 25, we have PPL

x = {p1, p2} and PMV

x = {p1, p2, p3}.

Algorithm 1: PM Selection

Data: vi,j (VNF to be served) and po (PM where the

previous VNF vi,j−1 is placed)

Result: py (PM that serve vi,j)

1 if j = 1 then /* vi,j is the head VNF */

2 if PIDL 6= ∅ then

3 PCAN ← PIDL;

4 else if PAVL 6= ∅ then

5 PCAN ← PAVL;

6 else

7 return null;

8 py ← argmaxpx∈PCAN
f(px, vi,j);

9 else /* otherwise (so we have PPL

o 6= ∅) */

10 if PIDL ∩ P
PL

o 6= ∅ then

11 PCAN ← PIDL ∩ P
PL

o ;

12 else if PAVL ∩ P
PL

o 6= ∅ then

13 PCAN ← PAVL ∩ P
PL

o ;

14 else

15 return null;

16 F ← 0, py ← null;

17 foreach px ∈ PCAN do

18 if f(px, vi,j) ≥ F +∆ or (f(px, vi,j) ≥ F −∆
and ψ(po, px) < ψ(po, py)) then

19 py ← px, F ← f(px, vi,j);

20 uαy ← uαy + θαi,j , ∀α ∈ R;

21 return py;

For each VNF vi,j , we adopt a function f(px, vi,j) to assess

the suitability of placing vi,j on a PM px by

f(px, vi,j) = ε1 min
α∈R

e(px, vi,j , α)+

ε2
∑

py∈PPL

x

max{min
α∈R

e(py, vi,j+1, α), 0}, (10)

where 0 ≤ ε1, ε2 ≤ 1 and ε1+ε2 = 1. Moreover, e(px, vi,j , α)
is the proportion of residual type-α resources for px after serv-

ing vi,j , as calculated by e(px, vi,j , α) = 1−((uαx+θ
α
i,j)/Θ

α
x).

In the case that vi,j is the last VNF of its SFC, we set ε1 = 1
and ε2 = 0. The idea behind Eq. (10) is as follows: If px can

have more resources left after serving vi,j and there are more

choices of PMs in PPL

x to place the next VNF vi,j+1, then the

value of f(px, vi,j) becomes larger. In this case, px is a better

candidate to place vi,j .

Given each VNF vi,j (following the sequence) of an SFC

si ∈ S , Algorithm 1 gives the pseudocode of selecting a PM

py from P to serve vi,j . Let us define two sets of PMs: PIDL =
{px ∈ P | u

α
x = 0, ∀α ∈ R} and PAVL = {px ∈ P | u

α
x >

0, ∃α ∈ R and Θα
x − u

α
x ≥ θαi,j , ∀α ∈ R}. Specifically, PIDL

represents the set of idle PMs, and PAVL denotes the set of non-

idle PMs that have enough resources to meet vi,j’s request.

In Algorithm 1, the code in lines 1–8 handles si’s head VNF

(i.e., j = 1 for vi,j). Let PCAN be the set of candidate PMs. To

balance loads among PMs, we shall prioritize idle PMs to take

Algorithm 2: VNF Movement

Data: pb (overloaded PM in terms of type-β resources)

Result: vmv (pb’s VNF to be moved) and pt (target PM

to serve vmv)

1 vmv ← null, pt ← null, C =∞;

2 PCAN ← PNOV ∩ P
MV

b ;

3 if PCAN = ∅ then

4 return null;

5 (py, qβ)← maxpx∈PCAN
δβΘ

β
x − u

β
x ;

6 qβ′ ← δβ′Θβ′

y − u
β′

y ;

7 SORT(Ωb, β);

8 foreach vi,j ∈ Ωb do

9 if θβi,j ≤ qβ and θβ
′

i,j ≤ qβ′ then

10 vmv ← vi,j and break;

11 if vmv = null then

12 return null;

13 foreach px ∈ PCAN do

14 if δβΘ
β
x − u

β
x < θβ

mv
or δβ′Θβ′

x − u
β′

x < θβ
′

mv
then

15 continue;

16 if pt = null or ψ(pb, px) < C then

17 pt ← px, C ← ψ(pb, px);

18 uαb ← uαb − θ
α
mv

, uαt ← uαt + θα
mv

, ∀α ∈ R;

19 return vmv and pt;

charge of vi,j . In the case of no idle PM, the candidate set will

be PAVL. However, if PAVL is empty, meaning that no PM has

enough resources to serve vi,j , the PM selection algorithm will

return null. The code is shown in lines 2–7. Then, among all

candidates in PCAN, line 8 picks out the one whose f(px, vi,j)
value is the maximum (i.e., with the most suitability).

On the other hand, the code in lines 9–19 deals with si’s
other VNFs (i.e., j > 1 for vi,j). In this situation, since vi,j’s

previous VNF vi,j−1 has been placed on PM po, we can obtain

the set PPL

o . Like lines 2–7, the code in lines 10–15 finds the

candidate set PCAN. The difference is that we need to consider

the intersection of PIDL (or PAVL) and PPL

o . Then, the for-loop

in lines 17–19 chooses a PM from PCAN such that the PM has

a larger f(px, vi,j) value while its RLC to po can be smaller

(to reduce si’s total link cost). To do so, we use a variable F
to store the f(px, vi,j) value of the currently selected PM in

PCAN (i.e., py). Initially, we have F = 0 and py = null (thereby,

ψ(po, py) = ∞). There are two cases to make us replace py
by px and update F ’s value accordingly: 1) px has obviously

larger suitability than py (i.e., f(px, vi,j) ≥ F +∆, where ∆
is a small value), and 2) the suitability difference between px
and py is insignificant and px has a smaller RLC to po than py
to po (i.e., f(px, vi,j) ≥ F −∆ and ψ(po, px) < ψ(po, py)).
Finally, line 20 updates the amount of resource usage for the

selected PM py (i.e., uαy), and line 21 returns py .

If a PM pb is overloaded in terms of type-β resources (i.e.,

uβb > δβΘ
β
b), Algorithm 2 helps select one of its serving VNFs

(i.e., vmv) and move vmv to another PM pt. Let PNOV be the set of

non-overloaded PMs: PNOV = {px ∈ P | u
α
x/Θ

α
x < δα, ∀α ∈

R}. Evidently, the candidate set PCAN will be the intersection

of PNOV and PMV

b , as presented in line 2. If PCAN is not empty,

line 5 finds the PM (i.e., py) in PCAN such that it has the most

supportable type-β resources (i.e., δβΘ
β
x − u

β
x , and this value

is stored in qβ). Then, line 6 stores the number of supportable

type-β′ resources of py , where β′ ∈ R \ {β}.
Let Ωb denote the set of VNFs currently served by pb. The

code in lines 7–12 picks out a VNF from Ωb whose request for

type-β resources can be “best fit” to qβ . More concretely, line

7 sorts VNFs in Ωb decreasingly based on their numbers of

requested type-β resources. The for-loop in lines 8–10 picks

VNF vmv such that its requested number of type-β resources is

the closest to (but not above) qβ and that of type-β′ resources

does not exceed qβ′ . This guarantees that there exist PMs in

PCAN with enough resources to serve vmv. If no such VNF can

be found, Algorithm 2 returns null, as shown in lines 11–12.

The for-loop in lines 13–17 chooses the target PM (i.e., pt)
to take over vmv. The if-statement in lines 14–15 excludes those

PMs without sufficient supportable resources to serve vmv (that

is, once such a PM serves vmv, the PM will become overloaded

or even run out of resources). Among other PMs in PCAN, we

pick the one that has the smallest RLC to pb (i.e., ψ(pb, px) is

the minimum). Then, line 18 updates resource usage of both

pb and pt (as vmv is moved from pb to pt).

IV. PERFORMANCE EVALUATION

In the simulation, we consider a network with 99 PMs. Each

PM has 32 and 64 units of CPU and memory resources. These

PMs are arranged into two topologies popularly used in large

networks (e.g., data center networks): fat tree and jellyfish. In

a fat tree, PMs form a three-layer tree structure. Any two leaf

PMs have multiple shortest paths between them [13]. Jellyfish

considers a random regular graph. Non-leaf PMs are randomly

connected and have the same degree [14]. Every link is given

a cost arbitrarily chosen from [1, 20]. There are 25 SFCs, each

with 10∼12 VNFs. A VNF requires [5, 7] and [9, 11] units of

CPU and memory resources, respectively. The total number of

VNFs is set to 275.

Three methods are chosen for comparison:

• Best-fit [4]: Find a PM with the best-fit resources to serve

VNFs of an SFC.

• Efficient VNF deployment (EVD) [10]: Move VNFs from

overloaded PMs to lightly loaded PMs.

• Load-balanced VNF deployment (LBVD) [11]: Consider

placing VNFs on PMs with high scores and move VNFs

for load-balancing purposes.

In EVD, LBVD, and COVP, δα is set to 0.8, ∀α ∈ R. Besides,

we set ϕPL = 20 (i.e., the maximum link cost) and ϕMV = 40.

Table I compares the number of served VNFs, the fairness

index J(P) on PMs’ loads, and the total link cost to run SFCs.

As can be seen, each method serves a total of 275 VNFs in S .

Regarding fairness, all methods perform better in the fat-tree

topology, where PMs form a well-structured tree. The best-fit

method places VNFs of an SFC on the same PM, which results

TABLE I
PERFORMANCE COMPARISON (LEFT: FAT TREE, RIGHT: JELLYFISH).

method VNFs J(P) link cost VNFs J(P) link cost

best-fit 275 0.73 1404 275 0.56 1977
EVD 275 0.89 3334 275 0.71 4324

LBVD 275 0.97 2869 275 0.93 3145
COVP 275 0.98 1730 275 0.96 2424

0.0

0.2

0.4

0.6

0.8

1.0

1 5 9 13 17 21 25

J
(P

)

Number of SFCs

best-fit

EVD

LBVD

COVP

(a) fat tree

0.0

0.2

0.4

0.6

0.8

1.0

1 5 9 13 17 21 25

J
(P

)

Number of SFCs

best-fit

EVD

LBVD

COVP

(b) jellyfish

Fig. 2. Effect of the number of SFCs on J(P).

in the worst fairness. EVD can move VNFs from overloaded

PMs to other PMs, which improves fairness. Both LBVD and

COVP choose PMs with more resources to serve VNFs first.

This way, they can significantly raise the J(P) value. For the

total link cost, due to the nature of a random regular graph, all

methods perform worse in the jellyfish topology. The best-fit

method has the lowest link cost, as it prefers placing VNFs of

each SFC on the same PM. EVD may move some VNFs of an

SFC to those PMs far away from each other. Doing so greatly

raises the total link cost. LBVD considers hop counts between

PMs when placing and moving VNFs of each SFC, thereby

reducing the total link cost. Instead of simply considering hop

counts, COVP takes account of the real costs of links. Hence,

it can substantially save the total link cost compared to LBVD.

To sum up, our COVP method performs the best among all

methods in terms of improving fairness and total link cost.

We also evaluate the effect of the number of SFCs on J(P)
(i.e., fairness). To do so, starting from 1 SFC, we iteratively

add one SFC to the network until there are 25 SFCs. Fig. 2

shows the experimental result. EVD outperforms the best-fit

method since it can move VNFs for load sharing among PMs.

LBVD considers resource usage of PMs when placing VNFs,

so it can significantly increase the J(P) value. Compared to

LBVD, COVP is capable of finding out more suitable VNFs

of overloaded PMs to be moved, which helps further improve

the fairness. The result in Fig. 2 demonstrates that our COVP

scheme can efficiently achieve load balance among PMs when

there are different numbers of SFCs in the network.

V. CONCLUSION

To facilitate resource and service management in a network,

NFV carries out the abstraction of network functions as VNFs.

The VNF placement problem, which determines how to assign

PMs to serve the VNFs of each SFC, has a significant impact

on NFV’s performance. Consequently, this paper proposes the

COVP method with the objectives of serving as many VNFs as

possible, balancing loads among PMs, and reducing the total

link cost to run SFCs. It assesses the suitability of placing a

VNF on each PM and also distinguishes the placement of the

head VNF from others in each SFC. Once a PM is overloaded,

COVP finds its appropriate VNFs to be moved to other PMs in

the vicinity. Simulation results reveal that COVP can improve

fairness while reducing the total link cost as compared to the

best-fit, EVD, and LBVD methods.

ACKNOWLEDGMENT

This work was supported by National Science and Technol-

ogy Council, Taiwan under Grant 113-2221-E-110-056-MY3.

REFERENCES

[1] M. Zoure, T. Ahmed, and L. Reveillere, “Network services anomalies in
NFV: survey, taxonomy, and verification methods,” IEEE Trans. Network

and Service Management, vol. 19, no. 2, pp. 1567–1584, 2022.
[2] J. Sun et al., “A survey on the placement of virtual network functions,”

Journal of Network & Computer Applications, vol. 202, pp. 1–37, 2022.
[3] O. Soualah, M. Mechtri, C. Ghribi, and D. Zeghlache, “Online and batch

algorithms for VNFs placement and chaining,” Computer Networks, vol.
158, pp. 98–113, 2019.

[4] C. Pham et al., “Traffic-aware and energy-efficient VNF placement for
service chaining: joint sampling and matching approach,” IEEE Trans.

Services Computing, vol. 13, no. 1, pp. 172–185, 2020.
[5] S. Qi et al., “Energy-efficient VNF deployment for graph-structured

SFC based on graph neural network and constrained deep reinforce-
ment learning,” in Asia-Pacific Network Operations and Management

Symposium, 2021, pp. 348–353.
[6] L. Liu, S. Guo, G. Liu, and Y. Yang, “Joint dynamical VNF placement

and SFC routing in NFV-enabled SDNs,” IEEE Trans. Network and

Service Management, vol. 18, no. 4, pp. 4263–4276, 2021.
[7] S. Yang, F. Li, R. Yahyapour, and X. Fu, “Delay-sensitive and

availability-aware virtual network function scheduling for NFV,” IEEE

Trans. Services Computing, vol. 15, no. 1, pp. 188–201, 2022.
[8] D. H. P. Nguyen el al., “Virtual network function placement for serving

weighted services in NFV-enabled networks,” IEEE Systems Journal,
vol. 17, no. 4, pp. 5648–5659, 2023.

[9] M. A. Abdelaal, G. A. Ebrahim, and W. R. Anis, “High availability
deployment of virtual network function forwarding graph in cloud
computing environments,” IEEE Access, vol. 9, pp. 53 861–53 884, 2021.

[10] J. Fu and G. Li, “An efficient VNF deployment scheme for cloud net-
works,” in IEEE International Conference on Communication Software

and Networks, 2019, pp. 497–502.
[11] Y. C. Wang and S. H. Wu, “Efficient deployment of virtual network

functions to achieve load balance in cloud networks,” in Asia-Pacific

Network Operations and Management Symposium, 2022, pp. 1–6.
[12] Y. C. Wang and D. R. Jhong, “Efficient allocation of LTE downlink

spectral resource to improve fairness and throughput,” International

Journal of Communication Systems, vol. 30, no. 14, pp. 1–13, 2017.
[13] Y. C. Wang and S. Y. You, “An efficient route management framework

for load balance and overhead reduction in SDN-based data center
networks,” IEEE Trans. Network and Service Management, vol. 15,
no. 4, pp. 1422–1434, 2018.

[14] Z. Alzaid, S. Bhowmik, and X. Yuan, “Multi-path routing in the jellyfish
network,” in IEEE International Parallel and Distributed Processing

Symposium, 2021, pp. 832–841.

