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Abstract—In a wireless sensor network (WSN), sensors close
to the sink deplete energy quickly as they relay a large amount
of data, causing the energy hole problem. Cluster-based routing
is a common solution that groups sensors into clusters and then
selects cluster heads (CHs) to route packets. Many cluster-based
routing methods consider that sensors are evenly deployed in the
sensing field. However, the distribution of sensors may be non-
uniform. Some clusters would include many sensors, imposing
their CHs with heavy loads and raising packet loss due to buffer
overflow. This paper proposes an energy-efficient routing with
adaptive CH selection (ERAS) strategy, which divides the sensing
field into grids and decides the last grid to the sink. For grids
with more sensors, multiple CHs are chosen to share the routing
work. The selection of CHs considers sensors’ distribution and
remaining energy. Based on the energy status, sensors take turns
to serve as CHs to balance their energy consumption. Simulation
results reveal that the ERAS strategy can efficiently raise WSN
lifetime and diminish packet loss.

Index Terms—cluster, energy, route, wireless sensor network.

I. INTRODUCTION

Wireless sensor networks (WSNs) are frequently employed
to better our lives as a result of the IoT’s growing popularity
[1]. A WSN is made up of numerous small sensors deployed
in a sensing field to gather information about the environment
and send it to a sink. Practical applications for WSNs include,
for instance, air-quality monitoring [2], border surveillance
[3], elder care [4], precision farming [5], smart shopping [6],
building evaluation [7], and pollution tracing [8].

Sensors are powered by tiny batteries, but replacing batter-
ies is usually not cost-effective. As a result, how to conserve
sensors’ energy is crucial to extending a WSN’s lifetime. In
general, communication has a major influence on how much
energy sensors spend [9]. To convey data to the sink, sensors
in a large WSN typically rely on multihop communication.
Most sensors need to relay packets from their upstream nodes
further away from the sink. Those sensors near the sink would
inevitably consume energy more quickly, thereby putting the
WSN at risk of network partition. The above issue is referred
to as the energy hole problem [10].

Cluster-based routing is a prevalent solution to this prob-
lem [11]. Sensors are grouped into clusters such that nearby
sensors belong to the same cluster. In each cluster, a cluster
head (CH) takes charge of the routing work, where it receives
data from other sensors and sends data to the sink. Cluster-
based routing has two benefits. First, since only CHs partake
in routing, other sensors can conserve energy (as they do not
need to relay data from others). Second, CHs can employ a
compression approach to integrate and condense the received

TABLE I: Summary of acronyms.

acronym full name
ARE anticipated residual energy
CH cluster head

ERAS energy-efficient routing with adaptive CH selection
E-DSR energy-efficient routing for sensors with diverse

sensing rates
NRCA node ranking clustering algorithm

O-LEACH optimization of LEACH
PLR packet loss rate
TEE total expected energy
WSN wireless sensor network

data, which helps cut down the quantity of data sent to the
sink and thus reduce energy consumption [12].

How to efficiently select CHs is an important issue. Many
cluster-based routing methods assume that sensors are evenly
distributed in the sensing field, and select CHs based on their
energy or proximity to the sink. In effect, the distribution of
sensors can be random and non-uniform [13]. Some clusters
may include many sensors, which not only burdens their CHs
with heavy loads but also increases packet loss due to buffer
overflow at these CHs. Even worse, after selecting sensors to
be CHs, some methods ask them to serve as CHs for a long
time. Doing so hastens their energy depletion.

This paper proposes an energy-efficient routing with adap-
tive CH selection (ERAS) strategy, which uses a grid structure
in the sensing field and decides the last grid to reach the sink.
Instead of choosing one CH for each grid, we adaptively pick
more CHs in grids with more sensors for load-sharing consid-
eration. The selection of CHs is based on the distribution of
sensors and their residual energy. CH reselection is performed
by referring to the CH’s energy status to avoid some sensors
consuming much energy owing to serving as CHs for a long
time. Our contribution is to design an energy-efficient cluster-
based routing strategy for WSNs whose sensor distributions
can be non-uniform. Simulation results demonstrate that the
ERAS strategy can significantly improve WSN lifetime while
reducing the packet loss rate (PLR) as compared with other
cluster-based routing methods.

The rest of this paper is organized as follows: Section II
surveys related work, and Section III gives the system model.
We detail our ERAS strategy in Section IV and evaluate per-
formance in Section V. Then, Section VI draws a conclusion.
Tables I and II summarize acronyms and notations.

II. RELATED WORK

Compared to flat routing, which lets each sensor take part
in routing packets, cluster-based routing has the superiority



TABLE II: Summary of notations.

notation definition
Ĝ set of grids whose sensors can directly communicate

with the sink
Nk number of sensors in a grid Gk

Ck number of CHs allocated to Gk , Ck ∈ [Cmin, Cmax]
µN, σN mean and standard deviation of the number of sensors

in each grid
ei residual energy of a sensor si

µE
k , σE

k mean and standard deviation of residual energy of all
sensors in Gk

ΓG(si, λ) energy for si to generate a packet with λ-bits
ΓS(si, sj , λ) energy for si to send a packet with λ-bits to node sj

ΓR(sj , λ) energy for sj to receive a packet with λ-bits
λU, λC lengths of uncompressed and compressed packets

of extending WSN lifetime [14]. LEACH is a representative
of cluster-based routing [15], where each sensor determines a
probability pi. If pi exceeds threshold %, the sensor becomes
a CH, and nearby sensors join its cluster. There are numerous
variations of LEACH. Salim et al. [16] consider decreasing
a LEACH CH’s load through sharing its routing work with
other sensors. In [17], except for the CH, a sensor possessing
the most energy serves as a vice CH for fault tolerance. Tang
et al. [18] use an energy potential function to decide threshold
%, which considers both the mean and variance of sensors’
energy. The work [19] applies fuzzy logic to improve LEACH
performance. Salman et al. [20] propose an optimization of
LEACH (O-LEACH), which picks CHs based on their residual
energy and distances to the sink. However, LEACH and its
variations make CHs directly transmit data to the sink, which
may deplete their energy quickly.

A few studies organize WSNs into special structures. Both
[21] and [22] consider a ring-based topology, where the sink
is located at the ring’s center. They take account of the ring
number when selecting CHs. Chen et al. [23] group sensors
into clusters and use an ant-colony optimization algorithm to
form chains in clusters. The work [24] builds a cluster tree to
collect data based on a bio-inspired method. Evidently, these
studies consider different network structures from ours.

Several studies divide a sensing field into grids. The node
ranking clustering algorithm (NRCA) [25] picks a sensor with
the most energy as the CH in each grid. If events occur, the
work [26] allows sensors to send data to CHs in nearby grids
to facilitate data compression. In [27], some CHs may sleep
to conserve energy, so not all CHs participate in routing. The
energy-efficient routing for sensors with diverse sensing rates
(E-DSR) method [28] splits or merges grids to mitigate buffer
overflow or improve data compression at CHs. Nevertheless,
the above methods assume that sensors are evenly deployed
and select one CH in each grid. This motivates us to propose
the ERAS scheme that considers non-uniform distribution of
sensors and uses multiple CHs for load sharing.

III. SYSTEM MODEL

We are given a sensing field on which sensors are deployed
(may not necessarily be uniformly distributed) for collecting
and reporting data to a sink. Sensors are static and homoge-
neous, meaning that they have the identical hardware, battery
capacity, communication range, and buffer size. If one sensor
has a full buffer, but new packets come (e.g., produced by or
sent to the sensor), they are dropped due to buffer overflow.
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Fig. 1: Grid management and packet forwarding in ERAS.

The sensing field is divided into grids. Sensors’ positions are
known using some localization methods [29]. CHs can adopt
a data compression algorithm to condense packets received
from other sensors and send compressed packets. However,
compressed packets cannot be further condensed.

Regarding the energy consumption model, we consider the
amount of energy for sensors to spend on generating, sending,
and receiving data [30]. Suppose that a sensor si generates
one packet of sensing data whose length is λ bits. Then, si
uses an amount of energy by ΓG(si, λ) =

(
vG
i × cG

i × tGi
)
×

λ, where vG
i , cG

i , and tGi respectively represent the voltage,
current, and time required by si to create the packet. When si
forwards the packet to another node sj (i.e., a sensor or the
sink), si consumes an amount of energy by ΓS(si, sj , λ) =
(αT

i + αA
i × D̃(si, sj)

2) × λ. Here, αT
i and αA

i signify the
power for si’s transmitter and amplifier circuits used to send
a bit, and D̃(si, sj) gives the distance between si and sj . On
the other hand, the amount of energy taken by sj to receive
the packet is ΓR(sj , λ) = αR

j ×λ, where αR
j is the power for

sj’s receiver circuit to acquire one single bit.
Our objective is to choose CHs and find routing paths to

the sink to maximize WSN lifetime and minimize PLR. WSN
lifetime can be defined by the amount of time since the WSN
begins to operate until the first sensor uses up energy. PLR is
calculated by the number of packets successfully sent to the
sink divided by the number of packets generated by sensors.
Since data compression is adopted in CHs and the sink has to
decompress the received packets, we account for the number
of uncompressed packets at the sink’s side in the numerator.

IV. THE PROPOSED ERAS STRATEGY

ERAS contains four modules. The grid management mod-
ule decides the number of CHs in each grid and which grid is
the last to reach the sink. The CH selection module picks out
CHs in each grid. Then, the packet forwarding module deals
with how to send packets to the sink. To prevent CHs from
rapidly depleting energy, the CH alternation module makes
sensors in a grid serve as CHs by turns.

A. Grid Management Module

As discussed in Section II, existing solutions select one CH
in each grid. Actually, we shall pick more CHs for grids with
many sensors to share loads. Suppose that a grid Gk has Nk

sensors. Let µN and σN be the mean and standard deviation



Algorithm 1: K-means Scheme

1 Pick Ck sensors as the initial center of each group;
2 repeat
3 Assign each sensor in Gk to a group whose

distance to the group’s center is the closest;
4 Recompute each group’s center;
5 until sensors in each group do not change;

of the number of sensors in each grid. Then, we compute the
number of CHs for Gk (denoted by Ck) as follows:

Ck =

{
Cmin if Nk ≤ µN

min{Cmin + ζ, Cmax} otherwise, (1)

where Cmin, Cmax, ζ ∈ Z+ and Cmin < Cmax. Moreover, we
have µN +(ζ−1)×σN < Nk ≤ µN +ζ×σN if Nk > µN. The
meaning behind Eq. (1) is as follows: If the number of sensors
in Gk does not overtake the average of all grids (i.e., µN),
Gk is allocated the minimum number of CHs (i.e., Cmin).
Otherwise, Gk has more sensors. Based on the multiple of the
standard deviation (i.e., ζ×σN) that Nk is over the mean µN,
we increase the number of Gk’s CHs accordingly. However,
each grid can be allocated at most Cmax CHs. Fig. 1 presents
an example, where Cmin = 1 and Cmax = 3.

Traditionally, grid Ga next to the sink is viewed as the last
grid (e.g., G12 in Fig. 1), where the last hop of each routing
path to reach the sink takes place. When the distribution of
sensors is not evenly, Ga may have relatively fewer sensors,
thereby worsening the energy hole problem. Hence, we check
if there is another grid with better conditions that can replace
Ga as the last grid. Let Ĝ be the set of grids whose sensors
are capable of directly communicating with the sink. For each
grid Gk in Ĝ, we estimate the amount of total expected energy
(TEE) as follows:

TEEk =
∑

si inGk

ei − ε× ΓS(φk, sink, λC), (2)

where ei gives the residual energy of a sensor si, φk denotes
Gk’s center, and λC is the length of a compressed packet. In
Eq. (2),

∑
si inGk

ei is the amount of energy of all sensors in
Gk, and ε× ΓS(φk, sink, λC) predicts the amount of energy
for these sensors to relay ε compressed packets from other
grids (e.g., ε = 1000). As discussed later in Section IV-C,
all sensors in the last grid have the opportunity to participate
in the last hop. To simplify the calculation in TEE, we take
φk on behalf of Gk’s sensors for packet relay. If a grid has a
larger TEE, it implicitly means that the grid has more sensors,
these sensors possess more residual energy, or they can spend
less energy to send packets to the sink. Naturally, we select
the grid with the largest TEE from Ĝ as the last grid. Fig. 1
gives an example, where Ĝ = {G8, G11, G12}, and we pick
G8 to be the last grid.

B. CH Selection Module

As mentioned in Section IV-A, a grid Gk is allocated Ck

CHs. If Ck > 1, based on the distribution of sensors in Gk,
we group them into Ck clusters using the K-means scheme.
Algorithm 1 shows the pseudocode. However, the number of
sensors in each cluster could vary significantly [31], making

the routing burden unbalanced. Thus, we do an enhancement
as follows: Let Nk be the number of sensors in Gk. Suppose
that a cluster Q̂j has fewer than bNk/Ckc sensors. We pick
a sensor si from another cluster with the most sensors, such
that si is the closest to Q̂j . Then, si is moved from its cluster
to Q̂j . This iteration is repeated until Q̂j contains bNk/Ckc
sensors. Doing so ensures that the number of each cluster in
Gk can be as close as possible.

Let us analyze the time complexity of this enhancement.
Given Nk sensors in grid Gk, K-means takes O(N2

k ) time to
group them [32]. Since there are Ck groups in Gk and each
group contains at least one sensor, no more than (Nk −Ck)
sensors will be moved between different groups. Hence, the
time complexity is O(N2

k ) +O(Nk − Ck) = O(N2
k ).

For each cluster Q̂j in Gk, we find a CH to take charge of
Q̂j’s routing work. In particular, we compute the anticipated
residual energy (ARE) of each sensor si ∈ Q̂j by

AREi = ei − x1 × ΓG(si, λU)− x2 × ΓR(si, λU)

− x3 × ΓS(si, sy, λC), (3)

where λU is the length of an uncompressed packet. Here, si’s
ARE will be equal to its current energy (i.e., ei) deducted
from the amount of energy for si to generate x1 packets, to
receive x2 packets from other sensors in Q̂j , and to send x3
compressed packets to the next node (i.e., sy , where we will
discuss how to find this node in Section IV-C). Given a period
of time T (in seconds, e.g., T = 300 s), we can derive that 1)
x1 = briT c, where ri denotes si’s sensing rate, as defined by
the reciprocal of the interval between two successive packets
of sensing data produced by si; 2) x2 = (|Q̂j |−1)×bµR

j T c,
where µR

j is the average sensing rate of sensors in Q̂j ; and 3)
x3 = dx2/ϑe, where ϑ is the maximum number of packets
that can be condensed in a single compressed packet. Then,
the sensor with the maximum ARE value acts as Q̂j’s CH.

C. Packet Forwarding Module

The packet forwarding module is composed of two parts:
intra-grid and inter-grid. For the intra-grid part, each sensor
sends packets to its CH in a grid via one-hop communication.
On the other hand, after receiving a predefined number of
packets (according to the data compression method), the CH
combines and condenses them into a compressed packet.

The inter-grid part deals with how compressed packets are
sent from each CH to the sink. There are two cases:

Case 1: Grids in Ĝ. Sensors in these grids can directly
communicate with the sink. To reduce the burden of relaying
packets in the last grid, CHs thus send compressed packets to
the sink by employing one-hop communication. Let us take
Fig. 1 as an example. CHs in grids G8, G11, and G12 straight
send their compressed packets to the sink.

Case 2: Grids not in Ĝ. CH picks an adjacent grid nearest
to the sink. As it does not know who acts as a CH in that grid,
the CH sends compressed packets to a sensor si closest to it.
If si is not a CH, si forwards compressed packets to its CH.
Notice that these compressed packets will not be compressed
again. One exception occurs in the last grid. Specifically, if
a sensor in the last grid gets compressed packets from other
grids, the sensor directly forwards them to the sink (instead
of relaying them to its CH). Doing so helps reduce the burden
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on CHs in the last grid. Fig. 1 demonstrates an example. For
a CH h1,1 in G1, the routing path for sending its compressed
packets is h1,1 → s1 (a sensor in G6) → h6,1 (s1’s CH) →
h7,1 (a CH in G7)→ s2 (a sensor in the last grid)→ sink.

D. CH Alternation Module

Since CH takes on most of the routing work, they consume
energy faster than others. To balance the energy consumption
of sensors in a grid, the CH alternation module gives them
the opportunity to take turns serving as CHs.

Suppose that a sensor si has consumed a certain proportion
of energy while serving as a CH for grid Gk in this round (for
example, 1% of its energy). Then, si computes the z-score in
terms of residual energy by zi = (ei−µE

k)/σE
k , where µE

k and
σE
k are the mean and standard deviation of residual energy of

sensors in Gk. If zi ≥ 0.253, it implies that si’s energy falls
within the first 40% of all sensors in Gk. Hence, si can still
act as a CH since si has relatively sufficient energy compared
with most sensors in Gk. Otherwise, the reselection of CH is
necessary. As a result, we employ the CH selection module
in Section IV-B to pick out a new CH to replace si.

V. PERFORMANCE EVALUATION

In simulations, we consider a 400 m× 400 m sensing field,
which is divided into 4× 4 grids, as shown in Fig. 2. To study
the effect of the number of sensors on system performance,
we deploy 400, 500, 600, 700, 800, 900, and 1000 sensors on
the sensing field. Each sensor has the communication range
of 80 m, buffer size of 600 packets, and battery capacity of
6480 J. The sensing rate of each sensor is randomly picked
from {1/90, 1/120, 1/150}. In other words, the sensor may
generate one packet of sensing data every 90 s, 120 s, or 150 s.
The packet length of sensing data is 200 bytes. Moreover, the
relevant parameter settings for the energy consumption model
discussed in Section III are listed as follows:

• Data generating: vG
i = 1.5 V, cG

i = 25 mA, and tGi =
0.25 ms in ΓG(si, λ).

• Packet sending: αT
i = 50 nJ/bit and αA

i = 100 pJ/bit
per m2 in ΓS(si, sj , λ).

• Packet receiving: αR
j = 50 nJ/bit in ΓR(sj , λ).

A sink is located not far from the bottom right of the sensing
field. Regarding the distribution of sensors, we partition the
sensing field into four equal regions, namely R1, R2, R3, and
R4, and deploy a different number of sensors in each region.
Three scenarios D1, D2, and D3 are considered, where Fig. 2
shows the proportion of the number of sensors in each region
under each scenario.

We choose three cluster-based routing methods mentioned
in Section II for comparison. O-LEACH [20] is an improve-

ment of LEACH, which selects CHs according to their resid-
ual energy and distances to the sink. Both NRCA [25] and
E-DSR [28] divide the sensing field into grids. NRCA picks a
sensor with the most energy to be the CH in each grid. On the
other hand, E-DSR respectively splits and merges some grids
to alleviate buffer overflow and facilitate data compression at
CHs. Each CH can employ a data compression algorithm to
condense packets received from its cluster members, where
the data compression ratio is set to 0.5. Notice that O-LEACH
asks CHs to straight send compressed packets to the sink. To
achieve this, we extend the maximum communication range
of a CH to 566 m (≈ 400 m×

√
2) in the O-LEACH method.

For NRCA, E-DSR, and ERAS, the communication range of
a CH is kept as 80 m (i.e., the same as an ordinary sensor).
In the ERAS scheme, we set Cmin = 2 and Cmax = 4.

A. Comparison of WSN Lifetime

Fig. 3(a) presents WSN lifetimes of different methods in
scenario D1, where sensors are evenly distributed throughout
the sensing field. Overall, WSN lifetime abates as the number
of sensors grows. Recall that WSN lifetime is calculated as
the amount of time since the WSN starts operating until the
first sensor drains of energy. When there are more sensors in
the sensing field, some sensors will inevitably deplete energy
more quickly because they have to relay more packets from
upstream nodes. O-LEACH asks each CH to directly forward
packets to the sink. Hence, those CHs far away from the sink
have to consume more energy to send packets. That explains
why O-LEACH results in a pretty low WSN lifetime. NRCA
chooses a sensor possessing the most energy to be the CH in
each grid and makes the sensor serve as the CH for a long
time. When a grid has more sensors, the routing burden rises
accordingly, forcing the CH to use up energy more quickly.
Thanks to grid splitting and CH reelection, E-DSR can deal
with the problem in NRCA and greatly raise WSN lifetime. In
addition to reselect CHs depending on their energy statuses,
our ERAS scheme adaptively picks multiple CHs to share the
routing work in each grid. Consequently, ERAS can further
improve WSN lifetime compared to E-DSR.

Fig. 3(b) compares the WSN lifetime of every method in
scenario D2. In this scenario, the region adjacent to the sink
(i.e., region R1) contains 30% of sensors in the WSN, which
helps mitigate the energy hole problem. Thus, WSN lifetime
can be significantly improved, especially for grid-based rout-
ing methods (i.e., NRCA, E-DSR, and ERAS). More specifi-
cally, as compared with scenario D1, O-LEACH, NRCA, E-
DSR, and ERAS improve WSN lifetime by 11.80%, 58.71%,
27.52%, and 30.04%, respectively, in scenario D2. Evidently,
our ERAS scheme has the highest WSN lifetime among all
methods in scenario D2.

Then, Fig. 3(c) displays a comparison of WSN lifetime in
scenario D3. In contrast to scenario D2, region R1 includes
10% of the WSN’s sensors in scenario D3. It is conceivable
that the energy hole problem in scenario D3 will get worse.
In particular, compared with scenario D1, O-LEACH, NRCA,
E-DSR, and ERAS reduce WSN lifetime by 6.24%, 74.34%,
35.45%, and 20.39%, respectively, in scenario D3. Moreover,
NRCA always loses to O-LEACH. This phenomenon exposes
the deficiency of traditional grid-based routing when region
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Fig. 3: Comparison of WSN lifetimes in different scenarios.
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Fig. 4: Comparison of PLRs in different scenarios.

R1 contains too few sensors. E-DSR uses dynamical grid par-
tition to alleviate the above issue. However, its effectiveness
will become worse when the number of sensors increases. As
can be seen, the performance gap between E-DSR and ERAS
significantly increases as the number of sensors grows. This
result reveals the superiority of using multiple CHs by Eq. (1)
to improve WSN lifetime in our ERAS scheme.

B. Comparison of PLR
Fig. 4(a) shows the PLR of every method in scenario D1.

For cluster-based routing, packet loss is typically caused by
data collision at underlying layers (e.g., MAC layer) or buffer
overflow at CHs. Since O-LEACH may form many clusters
and lets CHs directly send packets to the sink, the probability
of buffer overflow is relatively low. Hence, O-LEACH has the
lowest PLR among all methods. On the other hand, NRCA,
E-DSR, and ERAS employ grid partition and select CH(s) to
take charge of routing work for each grid. Since sensors are
uniformly distributed in scenario D1, each grid could contain
a similar number of sensors. Naturally, the chances of buffer
overflow in these grid-based routing methods may be similar,
thereby resulting in similar PLRs.

In Fig. 4(b), we present the PLRs of different methods in
scenario D2. According to Fig. 2, region R4 contains 40% of
the sensors in a WSN, which means that the sensor densities
of those girds in R4 are high. As a result, when there are more
than 800 sensors, the PLR of NRCA increases significantly.
By splitting grids, the growth of PLR in E-DSR is slower than

NRCA. Our ERAS scheme picks out more CHs for grids with
high sensor densities, so it further reduces PLR than E-DSR.
In particular, ERAS can reduce PLR by 11.29% and 5.82%
compared with NRCA and E-DSR in scenario D2.

In scenario D3, there are two regions, R2 and R3, whose
grids have high sensor densities. Hence, PLR’s growth trend
in Fig. 4(c) is similar to Fig. 4(b); in particular, packet loss in
NRCA becomes more serious. Thanks to adaptively choosing
multiple CHs via Eq. (1), ERAS can keep a lower PLR than
both NRCA and E-DSR. Specifically, our ERAS scheme can
respectively decrease PLR by 16.67% and 10.35% compared
to NRCA and E-DSR in scenario D3.

VI. CONCLUSION

Sensors possess tiny batteries, but they shall keep sending
data to a sink using multihop communication. Hence, energy-
efficient routing is necessary to prolong a WSN’s lifetime. In
view that many cluster-based routing methods presume that
sensors are evenly deployed in a sensing field, we propose the
ERAS strategy that takes account of non-uniform distribution
of sensors. ERAS divides the sensing field into grids, decides
the last grid to reach the sink, and picks out multiple CHs in
some grids to share the routing work. The selection of CHs
considers not only the distribution of sensors in each grid but
also their AREs. Depending on their energy statuses, sensors
take turns to serve as CHs for balancing energy consumption.
Simulation results reveal that the ERAS strategy substantially



improves WSN lifetime as compared to O-LEACH, NRCA,
and E-DSR methods. Besides, ERAS can keep a lower PLR
than other grid-based methods (i.e., NRCA and E-DSR). For
future work, we will consider that sensor densities may vary
over time (e.g., caused by sensor mobility [33]).
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