
Efficient Defense Against DNS Floods Using

Machine Learning in SDN-Based Networks

You-Chiun Wang and Chen-I Wei

Department of Computer Science and Engineering,

National Sun Yat-sen University, Kaohsiung, Taiwan

Email: ycwang@cse.nsysu.edu.tw; da30231@gmail.com

Abstract—Distributed denial-of-service (DDoS) attacks are se-
rious network threats. Domain name system (DNS) floods belong
to DDoS attacks, where victim DNS servers are overwhelmed by
lots of malicious DNS queries, making web services unavailable
to hosts. The paper combines machine learning (ML) and
software-defined networking (SDN) to cope with DNS floods. We
analyze the performance of detecting malicious DNS queries
using different ML techniques. Based on the analysis, we
propose an efficient DT-based defense against DNS floods (ED3F)
scheme. The SDN controller checks if the frequency of DNS
queries is high and employs a trained ML model to identify
malicious DNS queries. Moreover, ED3F adjusts its blocking
time depending on the status of a host sending malicious DNS
queries. Using simulation, we show that the ED3F scheme can
quickly and accurately block malicious DNS queries, thereby
defending against DNS floods efficiently.

Keywords—DDoS, DNS flood, machine learning, SDN.

I. INTRODUCTION

Distributed denial-of-service (DDoS) attacks are common

cyberattacks targeting network, transport, or application lay-

ers. Victim servers are deluged with many requests in an

attempt to consume resources, which prevent legitimate re-

quests from being served. Such attacks are usually launched

using a botnet composed of compromised hosts and devices.

Since a DDoS attack’s packets originate from numerous

sources, it cannot be simply resisted using IP filtering (e.g.,

via a firewall).

Domain name system (DNS) floods are a form of DDoS

attack. The attacker aims to obstruct the resolution of re-

source records by a DNS server responsible for a zone. DNS

servers offer the Internet’s roadmap, which helps hosts look

up the IP addresses of destinations (e.g., web servers) to

access contents. In a DNS flood, lots of DNS queries are sent

to the DNS server to drain computing resources, impeding

its ability to process legitimate requests. This forces web

services unavailable to hosts, as they cannot obtain the IP

addresses of web servers.

Machine learning (ML) studies how computers learn from

data and accomplish tasks (e.g., classification and prediction)

using what they have learned. ML has been applied to detect

various cyberattacks, like eavesdropping [1], keylogging [2],

and false data injection [3]. They analyze attack datasets

to find attack signatures. Common ML techniques include

K-means, K-nearest neighbors (KNN), naive Bayes (NB),

support vector machine (SVM), and decision tree (DT) [4].

In software-defined networking (SDN), a controller is used

to supervise switches to make network management easy [5].

It communicates with switches using the OpenFlow protocol.

Each switch has flow tables to store flow entries sent by the

controller. It checks if a packet meets conditions given in a

flow entry. If so, the switch obeys the entry’s instructions

to handle the packet. The controller can also query switches

about the quantity and types of packets transferred via them.

This paper combines ML and SDN to resist DNS floods.

We analyze the performance of recognizing malicious DNS

queries using ML techniques. With the analysis, we design

an efficient DT-based defense against DNS floods (ED3F)

scheme. The controller checks if the frequency of DNS

queries is high (i.e., a symptom of DNS floods). If so, the

controller uses a trained DT model to identify malicious

DNS queries and asks switches to drop them. Since botnet

members may dynamically change, we cannot block DNS

queries of a host for a long time. Hence, ED3F adjusts its

blocking time based on the status of a host sending malicious

DNS queries. Simulation results reveal that our ED3F scheme

can quickly and accurately block malicious DNS queries,

thereby resisting DNS floods efficiently.

II. OVERVIEW OF COMMON ML TECHNIQUES

K-means divides data points into K groups. Beginning

with K random centroids, it assigns each data point to a

group such that the data point is the closest to the group’s

centroid (i.e., mean). Then, the centroid of each group is re-

calculated. The above operation is repeated until all centroids

have stabilized. Fig. 1(a) gives an example, where K = 3.

In KNN, every object is assigned to the class that is most

prevalent among its K closest neighbors. Fig. 1(b) shows an

example, where objects of classes A and B are represented by

triangles and squares. When K = 4, object C is categorized

to class A, since its four neighbors contain three triangles and

one square. If K = 9, object C is assigned to class B, as

there are four triangles and five squares in its neighborhood.

NB is a probability model, considering that the features of

a target class are conditionally independent. Let a problem in-

stance be represented as a vector v = (v1, v2, · · · , vn) encod-

ing n features (i.e., independent variables). NB gives a prob-

ability for each possible class Xk: P (Xk | v1, v2, · · · , vn) ∝
P (Xk)

∏n

i=1
P (vi |Xk), where ∝ denotes proportionality.

SVM uses a hyperplane for classification, where margin

is the distance between two classification boundaries, as

Fig. 1(c) shows. Data points from each class nearest to its

boundary are support vectors. Training SVM is to find the

maximum margin and pick support vectors (i.e., the most

useful data points, as they are most likely to be classified

incorrectly). Thus, SVM can expedite classification by using

only support vectors.



(a) K-means

Class A

Class B

K = 4

K = 9

C

(b) KNN

Hy
pe
rp
lan
e

M
a
rg

in Support v
ectors

Support v
ectors

Classific
atio

n boundary

Classific
atio

n boundary

(c) SVM

Age

Smoker BMI

No Yes
�24 >24

<18
18-39

�40

Low risk

L

H

H

L

L
L

H High risk

(d) DT

Fig. 1. Examples of ML techniques.

Controller

Switch

OpenFlow 

message

Normal host

Botnet 

member

s1

s2

s3

s4

s5

A
B

DNS server

Target 

network

Internet
Exterior 

hosts

Fig. 2. A schematic diagram of DNS floods in an SDN-based network.

DT has a flowchart-like tree structure. Each internal node

gives one test on an attribute, each branch expresses the

test’s outcome, and each leaf shows a decision made after

evaluation. The path from the root to each leaf indicates a

classification rule. Fig. 1(d) presents an example of using DT

to assess the risk of heart disease. The first attribute is age.

If the age is below 18, the risk is low. When the age falls

between 18 and 39, we judge the risk based on whether the

tester smokes. If the age is 40 or above, we judge the risk

using BMI.

III. RELATED WORK

Various SDN-based solutions to DDoS attacks are de-

signed. The study [6] infers that a UDP flood occurs if a

switch has far more received packets than sent packets. In [7],

when a new host sends UDP packets to a server, the server

transmits a keepalive packet for the host to answer. If some

hosts send many SYN packets without finishing handshakes,

the work [8] treats them as attackers of SYN floods. In

[9], the controller finds anomalous packets via an intrusion

prevention system. The work [10] checks if there are DDoS

flows based on flow sizes, IP variability, and duration. The

study [11] uses principal component analysis to find DDoS

attacks. However, in DNS floods, botnet members behave

like normal hosts, except that they send more DNS queries.

Furthermore, DNS requires only a two-way handshake, that

is, a host sends a DNS query and the server returns a DNS

reply. The two properties make the above methods unable to

effectively solve DNS floods.

Many studies measure the entropy of IP addresses in pack-

ets to find DDoS attacks. The Shannon entropy is adopted

in [12]–[14], as computed by E(Y ) = −
∑n

i=1
pi log2 pi.

In random variable Y = {y1, y2, · · · , yn}, yi (i = 1 . . . n)
denotes the event that packets with a certain IP address

are sent to a server, and pi gives its probability. The

work [15] uses the ϕ-entropy, as defined by Eϕ(Y ) =
−
∑n

i=1
pi sinh(ϕ log2 pi)/ sinh(ϕ). Here, sinh(·) is a hy-

perbolic sine function. In [16], the entropy of flows in a

time window is compared with a threshold to detect attacks.

However, legitimate DNS queries may also be discarded by

the entropy-based methods, causing false alarms.

In [17], if DNS floods occur, DNS queries are passed from

the attacked server to other servers. A program is set on users’

local servers to allow the IP addresses of paid websites to be

maintained in caches. Thus, the websites can be accessed

even if DNS servers are down. However, malicious DNS

queries are not blocked and continue to attack servers. Datta

et al. [18] propose a two-level method called DNSguard.

In the first level, they consider IoT devices connected to

a gateway and authorize MUD-compliant devices to send

DNS queries, where MUD stands for manufacturer usage

description. Then, the second level mitigates DNS floods by

monitoring the rate of DNS traffic. However, MUD is not a

widely used protocol.

Evidently, the issue of how to resist DNS floods efficiently

has not been intensively investigated yet. Compared to pre-

vious studies, our work combines ML and SDN to quickly

and accurately identify malicious DNS queries, thereby ef-

fectively defending DNS servers against such attacks.

IV. SYSTEM MODEL

We consider a target network using SDN for management,

as Fig. 2 shows. It contains DNS servers, hosts, and switches.

DNS servers provide DNS services available to the public, so

exterior hosts can also request their services. Switches form

the network backbone and support OpenFlow. The target

network is directed by a controller that issues commands to

switches by sending them flow entries. Moreover, switches

report state-related information (e.g., the number of packets

handled and their types) to the controller. These operations

are done using OpenFlow messages exchanged between the

controller and switches. In this way, the controller can grasp

the overall status and manage flows in the target network.

An attacker will launch DNS floods on some DNS servers

through a botnet. Botnet members may be inside or outside

the target network. They send many DNS queries to DNS

servers to use up their resources, preventing them from

serving hosts. Since botnet members may be unknown and

can change, our objective is to quickly and accurately identify

DNS floods and stop them. Moreover, we shall distinguish

between malicious and legitimate DNS queries, so normal

hosts can still use DNS services when the attack is being

blocked.



K-means KNN NB

SVM DT

TP

0.45

FP

0.19

FN

0.55

TN

0.81

P
o
s
it
iv
e

N
e
g
a
ti
v
e

Positive Negative

TP

0.93

FP

0.12

FN

0.07

TN

0.88

P
o
s
it
iv
e

N
e
g
a
ti
v
e

Positive Negative

TP

0.91

FP

0.10

FN

0.09

TN

0.90

P
o
s
it
iv
e

N
e
g
a
ti
v
e

Positive Negative

TP

0.96

FP

0.08

FN

0.04

TN

0.92

P
o
s
it
iv
e

N
e
g
a
ti
v
e

Positive Negative

TP

0.98

FP

0.01

FN

0.02

TN

0.99

P
o
s
it
iv
e

N
e
g
a
ti
v
e

Positive Negative

(a) confusion matrices

Technique Accuracy Precision Recall F1-score

K-means 0.6300 0.7031 0.4500 0.5488
KNN 0.9050 0.8857 0.9300 0.9073
NB 0.9050 0.9010 0.9100 0.9055

SVM 0.9400 0.9231 0.9600 0.9412
DT 0.9850 0.9899 0.9800 0.9849

(b) evaluation using four metrics

Fig. 3. Detection performance of the five ML techniques.

V. THE PROPOSED ED3F SCHEME

In ED3F, we select an ML technique and train its model

to detect DNS floods. Then, the controller monitors the

frequency of DNS queries sent to each DNS server. Once

the frequency exceeds a threshold δ, the DNS server is

overburdened, and there is a good possibility that DNS floods

are taking place. Hence, the controller identifies malicious

DNS queries using the trained model and issues flow rules

to switches to block the queries. The blocking time will be

adaptively adjusted based on the behavior of a suspicious

host sending DNS queries.

A. Selection of ML Techniques

We measure the performance of K-means, KNN, NB,

SVM, and DT, on detecting DNS floods. A powerful packet

manipulation tool called Scapy [19] is used to generate

legitimate and attack traffics. We refer to the MazeBolt open

dataset [20] to model DNS floods. The controller collects 50

seconds of traffic information during the attacking phase from

each switch and employs 65% of the packets as a training

set to discipline each ML model. The remaining packets are

used as a test set.

Fig. 3(a) shows the confusion matrices of ML techniques.

In a confusion matrix, each row gives an instance (i.e.,

positive or negative) of the predicted class, and each column

displays an instance of the actual class. It has four parts.

True positive (TP) gives the proportion of DNS queries where

an ML model says that they are malicious, and the queries

indeed are. False positive (FP) indicates the proportion

of DNS queries where an ML model states that they are

malicious, yet the queries are legitimate. False negative (FN)

shows the proportion of DNS queries where an ML model

claims that they are legitimate, but the queries are malicious.

True negative (TN) presents the proportion of DNS queries

where an ML model predicts that they are legitimate, and

these queries are legitimate.

As can be seen, K-means has the lowest TP and TN values

(i.e., correct cases) and the highest FP and FN values (i.e.,

error cases). KNN, NB, SVM, and DT perform much better

than K-means on TP and FN. Moreover, DT has the highest

TP and TN values and also the lowest FP and FN values.

This means that DT can identify malicious DNS queries more

accurately while reducing more false alarms.

Through TP, FP, FN, and TN, we can quantify the detection

performance of each ML technique using four metrics:

accuracy = (TP + TN)/(TP + TN + FP + FN), (1)

precision = TP/(TP + FP), (2)

recall = TP/(TP + FN), (3)

F1-score = 2(precision × recall)/(precision + recall). (4)

Fig. 3(b) compares K-means, KNN, NB, SVM, and DT via

the four metrics. Evidently, DT performs the best in all

metrics. Based on the analysis, we thus choose DT as the ML

technique used to detect DNS floods in our ED3F scheme.

B. Model Training and Usage

To produce an attack dataset for training the DT model,

we inject attack traffics and let the controller collect packet

data about DNS queries. In the attack dataset, eight features

are extracted: datapath id, flow id, ip src, ip dst, tp src,

packet count, flow duration sec, and label. Both datapath id

and flow id uniquely identify switches and flows. We know

from ip src and ip dst the hosts that sent DNS queries and

the victim DNS servers, and tp src indicates what services

are employed (tp src is 53 for DNS). In DNS floods, botnet

members transmit many DNS queries over a longer period

of time. Thus, packet count and flow duration sec could be

manifest features. Moreover, DT is a supervised ML tech-

nique, so the label is used to distinguish between malicious

and legitimate DNS queries for learning. Then, a DT model

is trained based on the correlation between the label and the

other seven features of every datum in the attack dataset. The

trained DT model is stored in a PKL (Python pickle) file.

In actual testing applications, the controller gathers packet

data about DNS queries from switches, converts data into

the CSV format, and removes unnecessary fields. Then, it

loads the trained DT model from the PKL file and uses the

model to classify DNS queries into malicious and legitimate

groups. The label is only used to train the DT model. This

feature does not appear in practical packet data. Then, if

the malicious group is not empty, the controller adopts the

mechanism in Section V-C to drop subsequent DNS queries

sent from suspicious hosts.

C. Attack Blocking

Once the controller discovers that some hosts send ma-

licious DNS queries (using the trained DT model), it then

commands responsible switches to drop subsequent DNS

queries sent by these suspicious hosts (as they are possibly

botnet members). More concretely, if a suspicious host, say,

hi is located in the target network, the responsible switch is

the one to which hi attaches. Otherwise, hi is an exterior



host, and the responsible switch will be a gateway switch

(e.g., switch s1 in Fig. 2).

Let ai be the IP address of hi and av be the IP address of

the victim DNS server that hi attacks. The controller installs

a flow entry in the responsible switch as follows:

[Match fields] eth type=0x0800, ipv4 src=ai, ipv4 dst=av,

udp dst=53

[Action] drop [Timeout] hard timeout=T (τ)

In the match fields, the term “eth type = 0x0800” indicates

IPv4 packets. If IPv6 is used, we can set eth type to 0x86DD.

Fields ipv4 src and ipv4 dst designate the packet’s source

and destination IP addresses, which are set to the IP addresses

of the suspicious host (i.e., ai) and the victim server (i.e., av).

When using IPv6, fields ipv4 src and ipv4 dst are replaced

with ipv6 src and ipv6 dst. The term “udp dst = 53” means

that the packet is a DNS query. Then, if a packet meets all

conditions in the match fields, the switch drops that packet,

as indicated in the action field.

The hard timeout field decides the duration (in seconds)

of the flow entry. After T (τ) time, the flow entry is auto-

matically removed [21]. Hence, the amount of time to block

hi’s DNS queries is T (τ). We set T (τ) = Tbase × τ , where

τ ∈ Z
+. Tbase is the basic time length (in seconds), and

τ is initially set to 1. Let fi be the frequency with which

hi previously sent DNS queries. Suppose that Navg is the

average number of DNS queries sent by normal hosts during

T (τ) time. Then, we adjust the τ value to compute the new

blocking time for hi based on four cases:

Case 1: Ni > α(fi × T (τ)), where Ni is the number of

DNS queries sent by hi during the blocking time, and 0.75 <
α ≤ 1. This case indicates that hi continues to send many

malicious DNS queries to the victim DNS server. Therefore,

we set τ to min{τ + 1, τmax} to punish hi by extending its

blocking time, where τmax is the maximum value of τ .

Case 2: β(fi × T (τ)) < Ni ≤ α(fi × T (τ)), where 0 <
β < α. Here, the τ value will not change.

Case 3: (1 + γ)Navg < Ni ≤ β(fi × T (τ)), where γ is a

small positive value (e.g., γ = 0.1). This case means that hi

significantly reduces its frequency of sending DNS queries.

However, hi still sends more DNS queries than normal hosts.

Thus, we set τ to max{τ−1, 1} to shorten its blocking time.

Case 4: Ni ≤ (1 + γ)Navg. In this case, hi behaves just

like normal hosts. Hence, we stop blocking hi’s DNS queries.

In cases 1–3, the controller reinstalls a flow entry with the

new blocking time in the switch. Let us consider an example,

where Tbase = 10 s, τ = 3, τmax = 6, fi = 1 query/s,

Navg = 10, α = 0.8, β = 0.5, and γ = 0.1. Then, the

current blocking time is T (τ) = 10 s × 3 = 30 s. If hi sends

28 DNS queries in the 30 s blocking time, since Ni = 28 >
α(fi × T (τ)) = 0.8(1 × 30), case 1 is applied. Hence, the

new blocking time is T (τ) = 10 s × min{3 + 1, 6} = 40 s.

On the other hand, if hi sends 18 DNS queries, case 2 will

be applied, so the new blocking time is kept to 30 s. If hi

sends 13 DNS queries, case 3 is applied. Therefore, the new

blocking time is T (τ) = 10 s×max{3−1, 1} = 20 s. Only if

hi sends no more than 11 DNS queries (i.e., (1 + γ)Navg =
(1+0.1)×10 = 11), its subsequent DNS queries will not be

blocked. Notice that in this example, the maximum blocking

TABLE I
DURATIONS OF TRAFFIC GENERATION STAGES (UNIT: SECOND).

Scenario Stage 1 Stage 2 Stage 3

S1 0th–32nd 33rd–385th 386th–420th
S2 0th–32nd 33rd–385th 386th–420th
S3 N/A 0th–23rd 24th–28th

time is Tbase × τmax = 10 s × 6 = 60 s, and the minimum

blocking time is Tbase × 1 = 10 s.

The adaptive blocking mechanism has two benefits. First,

if a host keeps sending many DNS queries, T (τ) gradually

rises. Hence, the overhead to reinstall flow entries can be cut

off. Second, when the number of DNS queries reduces, T (τ)
decreases. This helps ED3F recognize the termination of an

attack more quickly.

VI. PERFORMANCE EVALUATION

Our simulation runs on a computer with an Intel-i7

3.6 GHz CPU and 32 GB RAM. The operating system is

Ubuntu, whose Linux kernel version is 4.4. The controller

is implemented via Ryu [22], and Open vSwitch [23] helps

create multi-layer virtual switches. To emulate hosts, we em-

ploy Docker containers [24], where a container provides an

isolated environment to execute programs. DNS servers are

implemented using BIND 9 [25], which can resolve domain

names to IP addresses and respond to DNS queries. Pipework

[26] is used to attach hosts and DNS servers (realized by

containers) to switches. There are two ways to generate DNS

queries. One is to produce attack and legitimate traffics using

Scapy [19], as mentioned in Section V-A. The other is to

use Tcprewrite and Tcpreplay [27] to inject traffics into the

target network based on PCAP (packet capture) files of attack

datasets, as discussed later.

Fig. 2 shows the network topology, where a target network

has five switches. Switch s1 is a gateway linking to exterior

networks. Except s1, each switch connects with three interior

hosts. DNS servers A and B connect with switches s3 and

s4. There is a controller to monitor DNS queries sent to DNS

servers and identify DNS floods.

Each normal host asks a DNS server for services. Botnet

members also pick a DNS server to attack. For each botnet

member, its traffic generation can be divided into three stages.

In stage 1, the botnet member pretends to be a normal host

and sends a few DNS queries. It launches the attack in stage

2, sending many DNS queries to the victim DNS server. In

stage 3, the botnet member stops attacking and returns to

the same state as a normal host. Three scenarios for traffic

generation and attacks are considered:

S1. Hosts linked to switches s2 and s3 send DNS queries to

server A. This scenario considers a private DNS server

handles DNS queries only from the target network.

S2. Exterior hosts and the hosts connected to switches s4
and s5 choose server B to send DNS queries. This

scenario considers a public DNS server.

S3. Only hosts attached to switch s3 send DNS queries to

server A. In this scenario, we use an open attack dataset.

In scenarios S1 and S2, traffics are generated via Scapy. In

scenario S3, we employ an open dataset for DNS floods [20].

Tcprewrite is applied to modify IP and MAC addresses (based



0

500

1000

1500

2000

2500

3000

3500

4000

0 60 120 180 240 300 360 420

R
e
c
e
iv

e
d
 D

N
S

 q
u
e
ri
e
s

Time (second)

No defense

EBDD

DNSguard

ED3F

(a) scenario S1 (DNS server A)

0

500

1000

1500

2000

2500

3000

3500

4000

0 60 120 180 240 300 360 420

R
e
c
e
iv

e
d
 D

N
S

 q
u
e
ri
e
s

Time (second)

No defense

EBDD

DNSguard

ED3F

(b) scenario S2 (DNS server B)

0

10

20

30

40

50

60

70

0 4 8 12 16 20 24 28

R
e
c
e
iv

e
d
 D

N
S

 q
u
e
ri
e
s

Time (second)

No defense EBDD DNSguard ED3F

(c) scenario S3 (DNS server A)

Fig. 4. DNS queries received by a victim DNS server in each scenario.

on the topology in Fig. 2) in the dataset’s PCAP file. Then, we

replay traffics from the modified PCAP file using Tcpreplay.

This way, we can inject attack traffics (using an open dataset)

into the target network. Table I presents durations of traffic

generation stages in each scenario. In scenario S3, there is no

stage 1, so attacks occur at the beginning of the simulation.

We choose two methods in Section III for comparison.

The entropy-based DDoS detection (EBDD) method [14]

computes the entropy of IP addresses in packets and then

compares the entropy with a threshold to identify attacks.

The DNSguard method [18] has two levels. In the first level,

only authorized devices (using MUD) can send DNS queries.

In the second level, it monitors DNS traffic rate and mitigates

DNS floods. DNSguard does not permit exterior hosts to use

DNS services (as they are not MUD-compliant), so we only

implement its second level for fair comparison.

A. Comparison in Scenario S1 (Private Server)

Fig. 4(a) presents the number of DNS queries received by

DNS server A as time goes by. For comparison, we also

show the result when no malicious DNS queries are blocked

TABLE II
DEFENSE PERFORMANCE OF EBDD, DNSGUARD, AND ED3F.

(a) scenario S1
Method Accuracy Precision Recall F1-score

EBDD 0.4100 0.4318 0.5700 0.4914
DNSguard 0.5150 0.5138 0.5600 0.5359

ED3F 0.9850 1.0000 0.9700 0.9848

(b) scenario S2
Method Accuracy Precision Recall F1-score

EBDD 0.2550 0.2906 0.3400 0.3134
DNSguard 0.3950 0.3793 0.3300 0.3529

ED3F 0.9800 1.0000 0.9600 0.9796

(c) scenario S3
Method Accuracy Precision Recall F1-score

EBDD 0.5400 0.5541 0.4100 0.4713
DNSguard 0.6050 0.6082 0.5900 0.5990

ED3F 0.9950 1.0000 0.9900 0.9950

(called no defense). In stage 1, botnet members pretend to

be normal hosts, so all methods perform the same before the

32nd second. After the 33rd second, the attack starts. Except

for no defense, other methods block malicious DNS queries

at different times. Specifically, EBDD, DNSguard, and ED3F

begin to react (i.e., dropping DNS queries) at 13, 9, and 6

seconds after the attack is launched. Here, EBDD reacts the

slowest, as it needs to collect packets for a while to estimate

IP entropy. By checking the frequency of DNS queries sent

to a DNS server, our ED3F scheme can react faster than

DNSguard.

In stage 2 (i.e., the attacking stage), the number of DNS

queries received by DNS server A per second keeps above

1,000 when using EBDD and DNSguard. This reflects that

many malicious DNS queries cannot be efficiently blocked.

Most malicious DNS queries are blocked by ED3F, and the

number of DNS queries received by DNS server A per second

is below 200. After the 386th second, we enter stage 3,

and the attack ends. The number of DNS queries sent to

DNS server A in ED3F is slightly higher than that in EBDD

and DNSguard. Thanks to the adaptive blocking mechanism,

ED3F can be quickly aware of the attack’s termination,

so it stops blocking DNS queries. By contrast, EBDD and

DNSguard still drop some legitimate DNS queries even if

there is no attack, causing false alarms.

Table II(a) shows the defense performance of each method

in scenario S1. EBDD is designed for general DDoS attacks,

while DNSguard takes account of DNS floods, so DNSguard

performs better than EBDD. Our ED3F scheme has the

highest values in each metric, which verifies its effectiveness

against DNS floods in scenario S1.

B. Comparison in Scenario S2 (Public Server)

Fig. 4(b) displays the number of DNS queries received by

DNS server B every second. Overall, the performance trends

of all methods in Fig. 4(b) are similar to those in Fig. 4(a).

The difference is that DNS server B receives far more DNS

queries than DNS server A. The reason is that two and three

botnet members send malicious DNS queries to DNS servers

A and B. Totally, 865,063 and 1,298,774 DNS queries are

generated in stage 2 of scenarios S1 and S2. As can be seen

in Fig. 4(b), our ED3F scheme performs better than EBDD

and DNSguard in the light of reacting to the attack, blocking

malicious DNS queries, and reducing false alarms.



Table II(b) lists the defense performance of all methods in

scenario S2. Compared to Table II(a), defense performance

degrades as there are more DNS queries produced in scenario

S2. For both EBDD and DNSguard, the value of each metric

is below 0.4. On the other hand, ED3F keeps the values of

all metrics above 0.96. This result shows the superiority of

our ED3F scheme over others in scenario S2.

C. Comparison in Scenario S3 (Open Dataset)

Fig. 4(c) presents the number of DNS queries received by

DNS server A in scenario S3. As there are fewer DNS queries

produced, each method can quickly identify attacks. EBDD,

DNSguard, and ED3F start blocking DNS queries at the 7th,

4th, and 2nd seconds. Compared with EBDD and DNSguard,

our ED3F scheme can filter out most malicious DNS queries

during the attacking stage (i.e., 0th–23rd seconds). After the

24th second, the attack ends, and the number of DNS queries

received by DNS server A in ED3F and in no defense is the

same. This implies that ED3F can swiftly check if an attack

is over to avoid discarding legitimate DNS queries.

Table II(c) presents the defense performance of EBDD,

DNSguard, and ED3F in scenario S3. Our ED3F scheme

performs the best, meaning that it can efficiently resist DNS

floods in this scenario (i.e., using the open attack dataset).

VII. CONCLUSION

DNS floods aim to consume the resources of DNS servers

by sending lots of DNS queries, making web services unavail-

able to hosts. They cannot be well resolved using firewalls

and most DDoS countermeasures. With ML and SDN, we

propose the ED3F scheme to defend against DNS floods. If

the frequency of sending DNS queries is high, the controller

uses a trained DT model to differentiate between malicious

and legitimate DNS queries. The amount of time to block

DNS queries from a suspicious host is adjusted based on its

frequency of sending DNS queries. Simulation results display

that the ED3F scheme can quickly and accurately restrain

malicious DNS queries compared to EBDD and DNSguard.

For future work, we will study other performance aspects of

ED3F, such as scalability and real-time reaction in a large

network.

ACKNOWLEDGMENT

This work was supported by National Science and Tech-

nology Council, Taiwan under Grant 113-2221-E-110-056-

MY3.

REFERENCES

[1] T. M. Hoang, T. Q. Duong, H. D. Tuan, S. Lambotharan, and L. Hanzo,
“Physical layer security: Detection of active eavesdropping attacks by
support vector machines,” IEEE Access, vol. 9, pp. 31 595–31 607,
2021.

[2] Y. C. Wang and P. Y. Su, “Collaborative defense against hybrid network
attacks by SDN controllers and P4 switches,” IEEE Transactions on

Network Science and Engineering, vol. 11, no. 2, pp. 1480–1495, 2024.

[3] Z. Zhang, J. Hu, J. Lu, J. Cao, and F. E. Alsaadi, “Preventing
false data injection attacks in LFC system via the attack-detection
evolutionary game model and KF algorithm,” IEEE Transactions on

Network Science and Engineering, vol. 9, no. 6, pp. 4349–4362, 2022.

[4] K. Shaukat, S. Luo, V. Varadharajan, I. A. Hameed, and M. Xu, “A
survey on machine learning techniques for cyber security in the last
decade,” IEEE Access, vol. 8, pp. 222 310–222 354, 2020.

[5] Y. C. Wang and H. Hu, “An adaptive broadcast and multicast traffic
cutting framework to improve Ethernet efficiency by SDN,” Journal

of Information Science and Engineering, vol. 35, no. 2, pp. 375–392,
2019.

[6] Y. H. Tung, H. C. Wei, Y. W. Ti, Y. T. Tsou, N. Saxena, and C. M.
Yu, “Counteracting UDP flooding attacks in SDN,” Electronics, vol. 9,
no. 8, pp. 1–27, 2020.

[7] E. Biagioni, “Preventing UDP flooding amplification attacks with weak
authentication,” in International Conference on Computing, Network-

ing and Communications, 2019, pp. 78–82.
[8] R. Mohammadi, R. Javidan, and M. Conti, “SLICOTS: An SDN-based

lightweight countermeasure for TCP SYN flooding attacks,” IEEE

Transactions on Network and Service Management, vol. 14, no. 2,
pp. 487–97, 2017.

[9] P. Rengaraju, V. R. Ramanan, and C. H. Lung, “Detection and
prevention of DoS attacks in software-defined cloud networks,” in
IEEE Conference on Dependable and Secure Computing, 2017, pp.
217–223.

[10] Y. C. Wang and Y. C. Wang, “Efficient and low-cost defense against
distributed denial-of-service attacks in SDN-based networks,” Interna-

tional Journal of Communication Systems, vol. 33, no. 14, pp. 1–24,
2020.

[11] L. Q. Han and Y. Zhang, “PCA-based DDoS attack detection of SDN
environments,” in International Conference on Big Data Analytics for

Cyber-Physical-Systems, 2020, pp. 1413–1419.
[12] A. Mishra, B. B. Gupta, D. Perakovic, S. Yamaguchi, and C. H.

Hsu, “Entropy based defensive mechanism against DDoS attack in
SDN-cloud enabled online social networks,” in IEEE International

Conference on Consumer Electronics, 2021, pp. 1–6.
[13] C. S. Whittle and H. Liu, “Effectiveness of entropy-based DDoS

prevention for software defined networks,” in IEEE International

Symposium on Technologies for Homeland Security, 2021, pp. 1–7.
[14] G. Fioravanti, M. G. Spina, and F. D. Rango, “Entropy based DDoS

detection in software defined networks,” in IEEE Consumer Commu-

nications & Networking Conference, 2023, pp. 636–639.
[15] R. Li and B. Wu, “Early detection of DDoS based on ϕ-entropy in SDN

networks,” in IEEE Information Technology, Networking, Electronic

and Automation Control Conference, 2020, pp. 731–735.
[16] H. Lotfalizadeh and D. S. Kim, “Investigating real-time entropy

features of DDoS attack based on categorized partial-flows,” in In-

ternational Conference on Ubiquitous Information Management and

Communication, 2020, pp. 1–6.
[17] T. Mahjabin, Y. Xiao, T. Li, and C. L. P. Chen, “Load distributed

and benign-bot mitigation methods for IoT DNS flood attacks,” IEEE

Internet of Things Journal, vol. 7, no. 2, pp. 986–1000, 2020.
[18] S. Datta, A. Kotha, K. Manohar, and U. Venkanna, “DNSguard: A

Raspberry Pi-based DDoS mitigation on DNS server in IoT networks,”
IEEE Networking Letters, vol. 4, no. 4, pp. 212–216, 2022.

[19] Scapy. [Online]. Available: https://scapy.net/
[20] MazeBolt Knowledge Base, “DNS request flood.” [Online]. Available:

https://kb.mazebolt.com/knowledgebase/dns-request-flood/
[21] Y. C. Wang and S. Y. You, “An efficient route management framework

for load balance and overhead reduction in SDN-based data center
networks,” IEEE Transactions on Network and Service Management,
vol. 15, no. 4, pp. 1422–1434, 2018.

[22] Ryu. [Online]. Available: https://ryu-sdn.org/
[23] Open vSwitch. [Online]. Available: https://www.openvswitch.org/
[24] Docker Container. [Online]. Available: https://docs.docker.com/
[25] BIND 9. [Online]. Available: https://www.isc.org/bind/
[26] Pipework. [Online]. Available: https://github.com/jpetazzo/pipework
[27] Tcpreplay. [Online]. Available: https://tcpreplay.appneta.com/


