
Delay-Aware Task Scheduling for Multi-Access

Edge Computing on the Internet of Vehicles

You-Chiun Wang and Kuan-Yu Chen

Department of Computer Science and Engineering

National Sun Yat-sen University, Kaohsiung, Taiwan

Email: ycwang@cse.nsysu.edu.tw; yoyo126358@gmail.com

Abstract—The demand for computing and networking in cars
has grown with the advancement of the Internet of vehicles (IoV).
Using multi-access edge computing (MEC) can deal with the issue
of high latency in cloud computing. However, fast movement of
cars and limited resources of MEC servers brings challenges. As
a car moves into a cell (i.e., handoff), its MEC server may have
no enough resources to serve the car’s task. Therefore, the paper
proposes a delay-aware task scheduling (DTS) scheme. When an
MEC server has resources in short supply, some tasks are selected
to be offloaded to nearby MEC servers. If a car is about to leave
a cell, its task is offloaded to the MEC server in the car’s target
cell. Otherwise, we choose MEC servers for offloading based on
their resources, bandwidth, and serving tasks. Simulation results
reveal that the DTS scheme can improve the service ratio while
lowering the response latency.

Keywords—delay, handoff, IoV, MEC, scheduling.

I. INTRODUCTION

The Internet of vehicles (IoV) interconnects cars, sensors,

devices, and the Internet through mobile networks (e.g., 5G).

Common applications include road safety, traffic management,

driving assistance, and infotainment services, which have dif-

ferent delay demands [1], [2]. In the past, cloud computing was

viewed as a key computing technique for IoV task execution,

but it incurs network congestion and high latency problems [3].

Multi-access edge computing (MEC) is a promising solution,

which extends capabilities of cloud computing to the edge of a

mobile network. It delivers computing and storage resources in

the proximity of users [4]. MEC servers are often co-located

with base stations (BSs) to support computation-intensive or

data-intensive applications with low latency. We call them BS

and MEC server pairs (BMPs), as shown in Fig. 1.

As cars move at high speeds, the handoff frequency mounts.

Some MEC servers may not have sufficient resources to serve

new tasks when cars enter their cells. This could cause long

response latency or even tasks failed, making a great impact on

certain applications (e.g., road safety). One feasible solution is

to transfer some tasks of heavy-loaded MEC servers to others

(referred to as offloading). How to select MEC servers to of-

fload is a challenge. Greedily picking the one that has the most

resources is not necessarily the best choice. Consider Fig. 1 as

an example. A car u1 is in cell c4, so it selects BMP m4 for

service. Although m4’s BS has enough resource blocks (RBs)

to serve u1, m4’s MEC server has insufficient CPU resources.

Suppose that we want to offload u1’s task to a neighboring

c1 c2 c3

c4

c5

c6

c7 c8

m1

m2

m3

m4 m5 m6

m7 m8

u1

u2
u3

u5

V5,7

V5,5
V5,6

F5

Moving

direction

CPU: 52%

MEM: 37%

CPU: 32%

MEM: 50%

CPU: 96%

MEM: 89%

CPU: 11%

MEM: 20%

Request

CPU: 44%

MEM: 51%

Cell edge

BMP

u4

[Usage]

Fig. 1. Task offloading in an MEC-enabled mobile network.

MEC server. The greedy method picks the MEC server in BMP

m7 to offload. However, since u1 moves towards cell c2, the

communication path is m7 (MEC server) → m2 (BS) → u1.

Doing so significantly raises the response latency, which may

make packets dropped due to expiration. If fact, a good choice

is to select the MEC server in m2 for offloading.

In this paper, we thus design a delay-aware task scheduling

(DTS) scheme. When an MEC server does not possess enough

resources to handle a new task, DTS picks out some tasks to

be offloaded, taking account of cars’ locations and tasks’ delay

budgets. If a car is moving to another cell soon, its task will

be transferred to the MEC server of the target cell. Otherwise,

DTS selects nearby MEC servers for offloading according to

multiple factors, such as residual resources, bandwidth, and the

number of serving tasks. The geographic information system

(GIS) is employed to find target cells for cars. When GIS is not

available, we predict target cells using vector calculation. With

simulations, we display that the DTS scheme can increase the

service ratio and decrease the response latency efficiently.

II. RELATED WORK

Some MEC issues related to IoV have been discussed. The

work [5] implements service migration among MEC servers by

using Docker containers. In [6], software-defined networking

is applied to keep service continuity for cars when they move

between cells. The study [7] proposes a handover method over

MEC servers. These studies have different objectives with ours.

A few studies copy task data to other MEC servers before

cars move to their cells (referred to as service replication). The

study [8] compares service migration and replication using an

analytical model. The work [9] designs a replication method

based on the number of unsuccessful tasks and the ratio of read

and write tasks. In [10], an integer linear problem for service

replication is defined with an aim to reduce the response time

of tasks. Dai et al. [11] propose a heterogeneous replication

approach with distributed convex relaxation. However, service

replication may induce a high storage cost for MEC servers.

To find MEC servers to offload tasks, a convolution neural

network is used in [12] to analyze car trajectories, while the

work [13] gathers users’ Wi-Fi traces to discover association

patterns. Both [14] and [15] handle the offloading problem via

deep reinforcement learning. However, they may transfer tasks

to busy MEC servers. Given one grid-based road network, the

work [16] delivers tasks to MEC servers to reduce costs and

ensure response latency. The study [17] picks MEC servers for

offloading using TOPSIS (technique for order of preference by

similarity to ideal solution) [18]. In [19], the policy gradient

mechanism is adopted to find MEC servers for offloading.

Compared to previous studies, our work considers not only

delay budgets of tasks but also multiple factors of MEC servers

for offloading (e.g., resources, bandwidth, and serving tasks).

This can raise the service ratio and reduce the response latency.

III. SYSTEM MODEL

Let us consider one mobile network with a set Ĉ of cells,

as Fig. 1 shows. Each cell ci ∈ Ĉ has a BMP mi whose BS

offers RBs and MEC server supplies CPU and memory (MEM)

resources. Let rRBi , rCPUi , and rMEMi be the residual numbers of

RB, CPU, and MEM resources of mi. There is also a set Û of

cars. Each car uj ∈ Û requires a rate λj for communications

and may issue a task ψj = (dCPUj , dMEMj , sj , τj), where dCPUj and

dMEMj are the requested numbers of CPU and MEM resources,

sj is ψj’s data size, and τj is the delay budget.

Suppose that a car uj is now in cell ci and will move into

cell cl after completing processing ψj . If BMP mi offloads ψj

to BMP mk, the overall flow for ψj is uj ⇒ mi ⇒ mk ⇒
ml ⇒ uj . Let B̃(x, y) be the bandwidth between two items x
and y (e.g., car or BMP). The flow contains five steps, where

the amount of time taken by each step is estimated as follows:

1. Request sending (uj ⇒ mi): t1 = ρREQj /B̃(uj ,mi),

where ρREQj is the length of request packet for ψj .

2. Task offloading (mi ⇒ mk): t2 = sj/B̃(mi,mk).

3. Task handling (at mk): t3 = sj/(d
CPU
j × ε) + β. Here,

ε is the processing capability of a unit of CPU resource (in

bits/s), and β is the delay due to context switch and resource

competition (when mk has multiple tasks). According to [20],

β is about a few microseconds and rises as mk has more tasks.

4. Result passing (mk ⇒ ml): t4 = s′j/B̃(mk,ml), where

s′j is the size of processing result for ψj’s data.

Algorithm 1: The DTS Scheme

1 foreach uj ∈ Û do

2 estimate the number of RBs dRBj for uj to meet λj ;

3 if rRBi < dRBj then

4 continue;

5 rRBi ← rRBi − d
RB
j ;

6 if rCPUi ≥ dCPUj and rMEMi ≥ dMEMj then

7 rCPUi ← rCPUi − dCPUj , rMEMi ← rMEMi − dMEMj ;

8 continue;

9 r
′
CPU
i ← rCPUi − dCPUj , r

′
MEM
i ← rMEMi − dMEMj ;

10 Ψj ← OffloadTask(T̂i ∪ {ψj},mi);
11 sort tasks in Ψj decreasingly by their sizes;

12 foreach ψx ∈ Ψj do

13 mk ← TargetBMP(ψx,mi);
14 if mk 6= null then

15 mark ψx;

16 r
′
CPU
i ← r

′
CPU
i + dCPUx , r

′
MEM
i ← r

′
MEM
i + dMEMx ;

17 if r
′
CPU
i ≥ 0 and r

′
MEM
i ≥ 0 then

18 break;

19 if r
′
CPU
i < 0 or r

′
MEM
i < 0 then

20 drop ψj and continue;

21 foreach marked task ψx in Ψj do

22 offload ψx to its selected BMP mk;

23 rCPUk ← rCPUk − dCPUx , rMEMk ← rMEMk − dMEMx ;

24 rCPUi ← r
′
CPU
i , rMEMi ← r

′
MEM
i ;

5. Reply sending (ml ⇒ uj): t5 = ρREPj /B̃(ml, uj), where

ρREPj is the length of reply packet for ψj .

Some steps may be skipped. If uj stays in ci and mi has

enough resources, we have t2 = t4 = 0, mk = mi (in step 3),

and ml = mi (in step 5). Obviously, the response latency of

task ψj is
∑

5

z=1
tz . If this latency exceeds τj (i.e., ψj’s delay

budget), ψj is viewed as failed. Then, our problem asks how

to schedule tasks for cars (including task offloading) such that

the service ratio, which is the ratio of non-failed tasks to the

total tasks, can be maximized.

IV. THE PROPOSED DTS SCHEME

Algorithm 1 presents DTS’s pseudocode. Suppose that a car

uj moves to a cell ci (whose BMP is mi), and uj also issues a

new task ψj . Line 2 estimates the number of RBs (denoted by

dRBj) that mi’s BS shall allot to uj to meet its communication

rate λj . Due to page limits, we leave the detail of computing

dRBj in [21]. If the BS does not have enough RBs (i.e., line 3),

uj cannot be served. Otherwise, we update the BS’s residual

RBs (i.e., rRBi) by line 5. Then, we check if mi’s MEC server

has enough CPU and MEM resources to handle uj’s task ψj . If

so, we let mi’s MEC server process ψj and update its residual

CPU and MEM resources (i.e., rCPUi and rMEMi) accordingly. The

code is given in lines 6–8.

Procedure OffloadTask(T̂ , mi):

1 Ψ← ∅;

2 foreach ψx ∈ T̂ do

3 if ζi,x ≤ ζth then

4 Ψ← Ψ ∪ {ψx};

5 if Ψ = ∅ then

6 foreach ψx ∈ T̂ do

7 if τx ≥ τth then

8 Ψ← Ψ ∪ {ψx};

9 return Ψ;

Once mi’s MEC server has insufficient resources, some of

its tasks (possibly including ψj) need to be offloaded to other

MEC servers. To do so, we use two variables r
′
CPU
i and r

′
MEM
i

to store mi’s residual CPU and MEM resources if mi accepts

ψj , as line 9 shows. Note that at least one of r
′
CPU
i and r

′
MEM
i is

negative. Then, line 10 finds a subset Ψj of candidate tasks to

be offloaded from the union of T̂i (i.e., the set of mi’s current

tasks) and ψj . This is done via the OffloadTask procedure. Line

11 sorts tasks in Ψj decreasingly by their sizes (i.e., sj). For

each task ψx in Ψj , we use the TargetBMP procedure to select

a BMP mk, where ψx will be offloaded to its MEC server later.

Then, we mark ψx and increase r
′
CPU
i and r

′
MEM
i by dCPUx and dMEMx

(i.e., ψx’s demand for CPU and MEM resources). When both

r
′
CPU
i and r

′
MEM
i become non-negative, mi has enough resources

to process tasks. Hence, we stop finding MEC servers to offload

mi’s tasks (in Ψj). The code is shown in lines 12–18.

If r
′
CPU
i or r

′
MEM
i is still negative (i.e., line 19), mi cannot have

enough resources even if we offload all tasks in Ψj . Thus, ψj

is dropped. Otherwise, we transfer each marked task ψx to its

target BMP mk and update mk’s residual resources in line 23.

Afterward, line 24 sets rCPUi and rMEMi to r
′
CPU
i and r

′
MEM
i , as the

marked tasks are offloaded to other MEC servers.

A. The OffloadTask Procedure

Given a set T̂ of tasks, this procedure helps a BMP mi select

a subset Ψ from T̂ as candidates to offload, which considers

two cases. For case 1, we choose the tasks whose requestors

(i.e., cars) are in the cell edge [22]. The reason is that these cars

are about to leave mi’s cell. Fig. 1 gives an example, where a

car u2 will leave cell c3 soon. Thus, BMP m3 can offload u2’s

task ψ2 to BMP m2 (whose cell is u2’s handoff target). This

way, when u2 enters cell c2, m2 can directly reply to it (after ψ2

is processed), thereby reducing the response latency. For case

2, there is no car in the cell edge. We pick those tasks with

large delay budgets as they can tolerate longer response latency.

For instance, the delay budgets of u3’s task (i.e., ψ3) and u4’s

task (i.e., ψ4) are 100 ms and 300 ms in Fig. 1. Suppose that

BMP m1 chooses m2 to offload a task, and u3 and u4 do not

leave cell c1. It is better to pick ψ4 to offload, since ψ4 could

tolerate long latency for flow u4 ⇒ m1 ⇒ m2 ⇒ m1 ⇒ u4.

Procedure TargetBMP(ψx, mi):

1 if ζi,x ≤ ζth then

2 find ux’s target cell ck;

3 if rCPUk ≥ dCPUx and rMEMk ≥ dMEMx then

4 return mk;

5 return null;

6 M̂ ← ∅;

7 foreach cy ∈ Ĉ
N
i do

8 if rCPUy ≥ dCPUx and rMEMy ≥ dMEMx then

9 M̂ ← M̂ ∪ {my};

10 if M̂ = ∅ then

11 return null;

12 Compute the score αy for each BMP my ∈ M̂ ;

13 return argmax
my∈M̂

αy;

In the pseudocode, lines 1–4 handle case 1, where ζi,x is the

SINR between BMP mi’s BS and car ux (whose task is ψx).

If ζi,x is below threshold ζth, ux is in the cell edge. Thus, ψx

is added to Ψ. However, if no task is found using case 1 (i.e.,

Ψ = ∅ in line 5), we pick tasks whose delay budgets (i.e., τx)

are above threshold τth (i.e., case 2), as shown in lines 5–8.

B. The TargetBMP Procedure

This procedure selects an MEC server to offload a task ψx

(issued by car ux in cell ci whose BMP is mi). Lines 1–5 are

for case 1 (i.e., ux is in the cell edge). In line 2, we find ux’s

target cell ck. If ck’s MEC server has enough resources to serve

ψx (i.e., line 3), we return mk. Otherwise, ψx is not suitable to

be offloaded, so line 5 returns null. Here, GIS can be used to

find the target cell in line 2. If GIS is unavailable, we predict

the target cell via vector calculation. Let ~Fx be the vector for

ux’s moving direction and ĈN
i be the set of cells adjacent to ci.

For each cell cy ∈ Ĉ
N
i , we build a vector ~Vx,y (from ux to my)

and calculate the cosine value of the angle θ between vectors
~Fx and ~Vx,y by cos θ = (~Fx · ~Vx,y)/(‖~Fx‖ · ‖~Vx,y‖). A larger

cos θ value means that ~Fx and ~Vx,y are more similar. Hence,

among all cells in ĈN
i , we pick the one with the largest cos θ

value. Fig. 1 gives an example, where vectors ~F5 and ~V5,7 are

the most similar, so car u5’s target cell is c7.

The residual code is for case 2. We use a set M̂ to record

adjacent cells in ĈN
i whose MEC servers have enough resource

to process task ψx. The code is in lines 6–9. If M̂ is empty, line

11 returns null, as nearby MEC servers are all busy. Otherwise,

for each BMP my ∈ M̂ , we compute a score αy by

ω1η(r
CPU
k) + ω2η(r

MEM
k) + ω3η(B̃(mi,my)) + ω4η(Ny)

∑
4

z=1
ωz

, (1)

where Ny is the number of my’s tasks and η(X) denotes a nor-

malization function defined as η(X) = (X −Xmin)/(Xmax −
Xmin). As can be seen, Eq. (1) takes account of residual CPU

and MEM resources of my , the bandwidth between mi and

my (which affects the task offloading time t2 and the result

passing time t4), and the number of serving tasks. As discussed

in Section III, the task handling time (i.e., t3) rises as an MEC

server handles more tasks. Thus, ω4 is set to a negative value.

Coefficients ω1, ω2, and ω3 are set to positive values. Besides,

we have
∑

3

z=1
ωz > ω4. Finally, we pick the BMP with the

highest score, as shown in line 13.

V. PERFORMANCE EVALUATION

In the simulation, SUMO [23] is adopted to model roads and

car traffic. Specifically, we pick a 4 km× 4 km area A from the

downtown of Kaohsiung, Taiwan, as shown in Fig. 2. The road

map can be obtained using OpenStreetMap and then imported

to SUMO via its road-network importer called netconvert [24].

Each road has a speed limit of 50 or 60 km/h. We place traffic

lights on A, whose cycles are 60 to 90 seconds. The maximum

number of cars in A is 120 (i.e., |Û | ≤ 120), where they move

following the Manhattan grid model [25].

There are 18 cells deployed on A (i.e., |Ĉ| = 18). As Fig. 2

shows, 16 cells (i.e., green ones) offer seamless coverage and

2 cells (i.e., red ones) are placed on hotspots. The cell range is

750 m. For a BS, the operating band, channel bandwidth, and

transmission power is set to 2.6 GHz, 20 MHz, and 46 dBm,

respectively. Each BS can provide 100 RBs/ms. The data rates

for uplink (i.e., car ⇒ BMP) and downlink (i.e., BMP ⇒ car)

are 180–270 Mbps and 300–380 Mbps. The data rate between

two BMPs is 30–160 Mbps. As for channel fading (e.g., path

loss, shadowing, and multipath fading), we follow the 3GPP

specification for 5G, which can refer to [26] for more details.

Each MEC server has 50 CPU and 100 MEM resources.

There are three kinds of tasks in terms of resource demands.

Small-demand tasks request for [1, 3] CPU and [1, 6] MEM

resources, medium-demand tasks require [4, 7] CPU and [7, 16]

MEM resources, and large-demand tasks need [8, 12] CPU and

[16, 19] MEM resources. The proportion of tasks of each kind

is equal (i.e., 1/3 of total tasks). Besides, there are three delay

budgets: 100 ms (low), 150 ms (medium), and 300 ms (high).

Let us consider three scenarios. In scenarios Q1, Q2, and Q3,

the ratios of tasks with low, medium, and high delay budgets

are set to 10:40:50, 15:35:50, and 20:30:50. Each car issues a

task every 200 s to 300 s. The simulation time is 4000 s. Thus,

there will be about 1800 tasks in total.

Two methods are for comparison. The RSRP-based method

[27] selects the MEC server whose partner BS has the maxi-

mum RSRP (reference signal received power) for task offload-

ing. The TOPSIS-based method [17] chooses MEC servers to

offload tasks by referring to their resources and bandwidth. For

our DTS scheme, we evaluate performance when using GIS and

vector calculation to predict cars’ target cells. Moreover, we set

τth = 150 ms, ω1 = 1, ω2 = 1, ω3 = 3, and ω4 = −3.

Fig. 3(a) gives the average service ratio. This ratio reduces

as the proportion of tasks with low delay budgets (i.e., 100 ms)

rises. That is why each method has the lowest service ratio in

scenario Q3. The RSRP-based method chooses BMPs whose

Fig. 2. Road map (Kaohsiung) and cell deployment in the simulation.

BSs have better signal quality to offload tasks, but the MEC

servers of some chosen BMPs may have insufficient resources.

This makes the service ratio in the RSRP-based method below

60%. By considering resources of MEC servers, the TOPSIS

method can increase the service ratio to 82%–85%. Our DTS

scheme adaptively transfers tasks with high delay budgets to

nearby MEC servers based on their resources, bandwidth, and

serving tasks. Hence, DTS significantly improves the service

ratio. More concretely, the service ratio in our DTS scheme

can be higher than 95% and 91% when using GIS and vector

calculation to predict handoff targets of cars, respectively.

Fig. 3(b) shows the changes of service ratio over time (in

scenario Q3). Initially, only a few cars enter area A, so BMPs

have enough resources to serve their tasks. As the number of

cars increases, some MEC servers become busy, so the service

ratio of each method decreases. This phenomenon is especially

obvious in the RSRP-based method. After 700 s, the number of

cars in A is stabilizing (and reaches the maximum value), so

the service ratio of each method becomes stable accordingly.

Fig. 3(c) gives the average response latency for non-failed

tasks. The RSRP-based method selects BMPs whose BSs have

large RSRP values for task offloading. In this case, there is a

good possibility that cars will move to these cells. Doing so

may reduce the time taken to the result passing step (i.e., t4).

That explains why the RSRP-based method has lower response

latency than the TOPSIS-based method. Our DTS scheme finds

BMPs to offload tasks by referring to cars’ moving directions.

Besides, DTS takes account of the number of tasks served by

MEC servers, which saves the time spent by the task handling

step (i.e., t3). Thus, our DTS scheme has the lowest response

latency among all methods.

Then, we measure the accuracy of predicting target cells for

cars in our DTS scheme. In particular, when using GIS and

vector calculation for prediction, the accuracy is 92.3% and

88.6%. As can be seen, the gap is not large (below 4%). This

can explain why the performance difference between the DTS

method using GIS and vector calculation is small in Fig. 3.

VI. CONCLUSION

This paper proposes the DTS scheme to schedule tasks for

MEC servers in an IoV environment. When a car moves into

0

20

40

60

80

100

RSRP TOPSIS DTS (GIS) DTS (vector)

S
e

rv
ic

e
 r

a
ti
o

 (
%

)

Q1 Q2 Q3

(a) average service ratio

0

20

40

60

80

100

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

3
8

0
0

4
0

0
0

S
e

rv
ic

e
 r

a
ti
o

 (
%

)

Time (second)

RSRP TOPSIS DTS (GIS) DTS (vector)

(b) service ratio over time (Q3 scenario)

0

20

40

60

80

100

120

RSRP TOPSIS DTS (GIS) DTS (vector)

R
�
�
�
�
�
�
�
��
��
�
�
	

�
�
�

Q
 Q� Q�

(c) response latency

Fig. 3. Performance comparison of different methods.

a cell, its MEC server may not possess enough resources to

process the car’s task. Therefore, DTS refers to cars’ locations

and tasks’ delay budgets to offload parts of tasks of the MEC

server. If a car is about to move to another cell, the car’s task is

offloaded to the MEC server of the target cell. Otherwise, DTS

chooses nearby MEC servers for offloading based on residual

resources, bandwidth, and the number of serving tasks. If GIS

is not available, we predict target cells for cars through vector

calculation. Through simulations using SUMO, we show that

our DTS scheme can efficiently improve the service ratio while

reducing the response latency compared with RSRP-based and

TOPSIS-based methods.

ACKNOWLEDGMENT

This work was supported by National Science and Technol-

ogy Council, Taiwan under Grant 111-2221-E-110-023-MY2.

REFERENCES

[1] W. Zhuang, Q. Ye, F. Lyu, N. Cheng, and J. Ren, “SDN/NFV-empowered
future IoV with enhanced communication, computing, and caching,”
Proceedings of the IEEE, vol. 108, no. 2, pp. 274–291, 2020.

[2] Y. C. Wang and C. E. Ho, “Speed-aware flow management with packet
classification to mitigate congestion in VANETs,” in IEEE VTS Asia

Pacific Wireless Communications Symposium, 2023, pp. 1–5.

[3] G. Yan, K. Liu, C. Liu, and J. Zhang, “Edge intelligence for Internet
of vehicles: A survey,” IEEE Trans. Consumer Electronics, early access,
Mar. 2024, doi: 10.1109/TCE.2024.3378509.

[4] P. Ranaweera, A. D. Jurcut, and M. Liyanage, “Survey on multi-access
edge computing security and privacy,” IEEE Communications Surveys &

Tutorials, vol. 23, no. 2, pp. 1078–1124, 2021.

[5] C. Campolo, A. Iera, A. Molinaro, and G. Ruggeri, “MEC support
for 5G-V2X use cases through Docker containers,” in IEEE Wireless

Communications and Networking Conference, 2019, pp. 1–6.

[6] S. D. A. Shah, M. A. Gregory, S. Li, and R. D. R. Fontes, “SDN
enhanced multi-access edge computing (MEC) for E2E mobility and QoS
management,” IEEE Access, vol. 8, pp. 77 459–77 469, 2020.

[7] N. Monir et al., “Seamless handover scheme for MEC/SDN-based
vehicular networks,” Journal of Sensor and Actuator Networks, vol. 11,
no. 1, pp. 1–16, 2022.

[8] P. A. Frangoudis and A. Ksentini, “Service migration versus service
replication in multi-access edge computing,” in International Wireless

Communications & Mobile Computing Conference, 2018, pp. 124–129.

[9] K. S. Hsu, W. C. Chang, W. H. Huang, and P. C. Wang, “Adaptive
replication for real-time applications based on mobile edge computing,”
in IEEE International Conference on Communication, Networks and

Satellite, 2021, pp. 88–94.

[10] S. A. Mohamed, S. Sorour, and H. S. Hassanein, “Group delay-aware
scalable mobile edge computing using service replication,” IEEE Trans.

Vehicular Technology, vol. 71, no. 11, pp. 11 911–11 920, 2022.

[11] P. Dai et al., “Distributed convex relaxation for heterogeneous task
replication in mobile edge computing,” IEEE Trans. Mobile Computing,
vol. 23, no. 2, pp. 1230–1245, 2024.

[12] I. Labriji et al., “Mobility aware and dynamic migration of MEC
services for the Internet of vehicles,” IEEE Trans. Network and Service

Management, vol. 18, no. 1, pp. 570–584, 2021.
[13] W. Chen et al., “MSM: Mobility-aware service migration for seamless

provision: A data-driven approach,” IEEE Internet of Things Journal,
vol. 10, no. 17, pp. 15 690–15 704, 2023.

[14] F. Li, Y. Lin, N. Peng, and Y. Zhang, “Deep reinforcement learning
based computing offloading for MEC-assisted heterogeneous vehicular
networks,” in IEEE International Conference on Communication Tech-

nology, 2020, pp. 927–932.
[15] X. Liu, C. Zhang, and S. He, “Adaptive task offloading for mobile aware

applications based on deep reinforcement learning,” in IEEE International

Conference on Mobile Ad Hoc and Smart Systems, 2022, pp. 33–39.
[16] T. D. T. Nguyen et al., “Modeling data redundancy and cost-aware

task allocation in MEC-enabled Internet-of-vehicles applications,” IEEE

Internet of Things Journal, vol. 8, no. 3, pp. 1687–1701, 2021.
[17] D. Patil and E. Al-Masri, “Seamless service migration across multi-access

edge computing (MEC) environments,” in IEEE Eurasia Conference on

IoT, Communication and Engineering, 2021, pp. 369–375.
[18] Y. C. Wang and J. F. Zhang, “ERA: Efficient request assignment for

servers in data center networks with SDN,” in IEEE International

Conference on Smart Communities: Improving Quality of Life Using AI,

Robotics and IoT, 2023, pp. 24–29.
[19] Y. Li, C. Yang, M. Deng, X. Tang, and W. Li, “A dynamic resource

optimization scheme for MEC task offloading based on policy gradient,”
in IEEE Information Technology and Mechatronics Engineering Confer-

ence, 2022, pp. 342–345.
[20] W. K. Lai, Y. C. Wang, and S. C. Wei, “Delay-aware container scheduling

in Kubernetes,” IEEE Internet of Things Journal, vol. 10, no. 13, pp.
11 813–11 824, 2023.

[21] Y. C. Wang and K. C. Chien, “EPS: Energy-efficient pricing and resource
scheduling in LTE-A heterogeneous networks,” IEEE Trans. Vehicular

Technology, vol. 67, no. 9, pp. 8832–8845, 2018.
[22] Y. C. Wang and D. R. Jhong, “Efficient allocation of LTE downlink

spectral resource to improve fairness and throughput,” International

Journal of Communication Systems, vol. 30, no. 14, pp. 1–13, 2017.
[23] SUMO, https://www.eclipse.org/sumo/.
[24] Y. C. Wang and G. W. Chen, “Efficient data gathering and estimation for

metropolitan air quality monitoring by using vehicular sensor networks,”
IEEE Trans. Vehicular Technology, vol. 66, no. 8, pp. 7234–7248, 2017.

[25] W. H. Yang, Y. C. Wang, Y. C. Tseng, and B. S. P. Lin, “Energy-efficient
network selection with mobility pattern awareness in an integrated
WiMAX and WiFi network,” International Journal on Communication

Systems, vol. 23, no. 2, pp. 213–230, 2010.
[26] Y. C. Wang and C. W. Chou, “Efficient coordination of radio frames

to mitigate cross-link interference in 5G D-TDD systems,” Computer

Networks, vol. 232, pp. 1–13, 2023.
[27] S. Wu, J. Ren, T. Zhao, and Y. Wang, “Machine learning based signal

strength and uncertainty prediction for MEC mobility management,” in
IEEE Vehicular Technology Conference, 2021, pp. 1–5.

