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Abstract—In a data center network (DCN), there are numerous
hosts connected by well-organized switches, usually involving
a large amount of data transmission to offer cloud services.
How to manage flows in a DCN by deciding packet routes
is critical. This paper applies the software-defined networking
(SDN) technique to flow management in fat-tree DCNs. Unlike
previous studies, we consider that flows have different values
and associate flows with profits to reflect their values. The
practical profit acquired from each flow will depend on the
proportion of successfully sent packets. The paper proposes a
profit-oriented flow management (POFM) scheme to maximize
the profit obtained while reducing packet loss in flows. In
POFM, once a link becomes congested, some flows on that link
may be rerouted to other paths. When no alternative path can
be found, POFM adjusts the data rates of flows on the congested
link based on multiple factors, including their demanded rates,
profits, and transmission durations. With simulations, we show
that POFM can effectively raise the overall profit and decrease
the packet loss rate in the DCN.

Keywords—congestion, data center network (DCN), fat tree,
flow management, software-defined networking (SDN).

I. INTRODUCTION

To deliver services in cloud computing and big data, data
center networks (DCNs) are deployed at large. In one DCN,
many hosts are connected via switches in a well-structured
topology like a fat tree to offer scalability [1]. As the amount
of traffic is huge, how to route flows between hosts (referred
to as flow management) is important. However, conventional
switches relay packets using a given routing protocol. In cases
of congestion, network managers often have to modify packet
routing by manually configuring some switches, which incurs
a high cost and degrades performance.

Software-defined networking (SDN) is a technique of net-
work management, placing control over switches via a con-
troller. The controller builds secure connections with switches
and communicates with them using the OpenFlow protocol
[2]. On one hand, the controller obtains the network status
by inquiring about the number and types of packets handled
by switches. On the other hand, it can issue commands to
switches to manipulate transmissions of packets. This allows
users to direct switches by installing their programs on the
controller, which facilitates network management.

Applying SDN to flow management in DCNs has gained
attention. Many methods guide flows on congested links to
others for load balance. They consider that flows possess the
same value and attempt to reduce packet loss. In effect, flows
have different values. For example, firm real-time flows (e.g.,
video conferences) and important backup flows (e.g., virtual
machine snapshots) should have high values. On the contrary,
flows of web connections or video streaming whose quality is

reducible can be given low values. Note that value is different
from priority. Low-priority flows may be preempted by high-
priority flows when they vie for the bandwidth of a congested
link. In contrast, low-value and high-value flows are capable
of sharing link bandwidth to avoid starving low-value flows.

Consequently, we introduce the concept of profit. Every
flow is associated with a profit based on its value. The actual
profit that we get from a flow depends on the proportion of
successfully sent packets. Then, this paper proposes a profit-
oriented flow management (POFM) scheme whose objectives
are to maximize the obtained profit while reducing packet loss
in flows. When a link becomes congested, POFM searches for
alternative paths (APs) to reroute some flows on that link. If
there is no available AP, POFM adjusts the data rate of each
flow on the congested link based on its demanded rate, profit,
and transmission duration (TD). Simulation results reveal that
the POFM scheme can efficiently increase the overall profit
gained and decrease the packet loss rate (PLR) of flows.

The residual of this paper is outlined as follows: Section II
discusses related work, and Section III describes the system
model. The POFM scheme is detailed in Section IV, followed
by its performance evaluation in Section V. Then, Section VI
contains concluding remarks.

II. RELATED WORK

Various issues for DCN management using SDN are dis-
cussed. The study [3] proposes a resource allocation method
for the DCN’s physical layer. Liu et al. [4] deploy multiple
controllers to provide a distributed control structure for DCN
congestion monitoring. The work [5] assigns clients’ requests
to servers in a DCN to balance their loads and save response
time for requests. Both [6] and [7] identify flows carrying
large quantities of data. Qin et al. [8] differentiate between
long and short flows on the host side. The above studies have
different objectives than ours.

Many flow management approaches are designed for SDN-
based DCNs. Kumar et al. [9] balance link loads using round-
robin and Dijkstra-based strategies. The work [10] determines
if some links are congested depending on the load variance
and redirects traffic to light-load links. In [11], once a path
experiences congestion, it is replaced by another path whose
total link cost is the smallest. The study [12] splits flows by
forwarding packets via different paths to alleviate congestion.
Fan et al. [13] employ a roulette wheel to select new paths
for flows according to the local load. The study [14] finds
paths for flows using depth-first search, where the weight of
each link is computed by its available bandwidth. The work
[15] modifies the equal-cost multi-path (ECMP) protocol by
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Fig. 1. 4-ary fat-tree DCN.

TABLE I
SUMMARY OF ACRONYMS AND NOTATIONS.

(a) acronyms
acronym full name

AL/CL/EL aggregation/core/edge layer
AP alternative path

BML bandwidth-based multipath load-balancing
DCN data center network

ECMP equal-cost multi-path (P-ECMP: predictive ECMP)
PLR packet loss rate

POFM profit-oriented flow management
SDN software-defined networking
TD transmission duration

(b) notations
notation definition
F̂ , F̂k sets of flows in the DCN and on link lk (F̂k ⊆ F̂ )

Γ̂i set of shortest paths for flow fi
NG

i , NL
i numbers of flow fi’s generating and lost packets

bi, ζi, τi flow fi’s bandwidth requirement, profit, and TD
λDi , λRi demanded and deducted rates of flow fi
ck , uk capacity and bandwidth usage of link lk

making forwarding decisions based on predicted congestion
outlooks. In [16], flows are divided into three ranks and have
different priorities for choosing links to send packets.

Compared to the prior work, our work considers that flows
have different values and thus proposes the POFM scheme to
efficiently increase the profit obtained and reduce packet loss
in flows. This distinguishes our work from the prior work.

III. SYSTEM MODEL

We are given one DCN whose topology is a K-ary fat tree.
Each switch has at most K ports. All switches are organized
into a three-layer architecture: core layer (CL), aggregation
layer (AL), and edge layer (EL). Fig. 1 illustrates an example
by setting K = 4. EL and AL switches are grouped into K
pods, where each pod consists of K/2 EL switches and K/2
AL switches. Hence, each EL switch can link with K/2 AL
switches and K/2 hosts. Moreover, every CL switch connects
with an AL switch in each pod. There will be no more than
K2/4 CL switches. A fat tree is capable of interconnecting
K3/4 hosts using 5K2/4 switches. This topology possesses
two advantages [17]: 1) adding switches and hosts becomes
easy, and 2) there can be multiple shortest paths between any
two hosts in the DCN.

To utilize SDN for the DCN’s management, one controller
coordinates it. Switches can support OpenFlow and maintain
flow tables to store flow entries issued by the controller [18].
Then, whenever a packet arrives, the switch checks if it
fulfills the conditions specified in the match-fields of a flow
entry. If so, the switch processes the packet following that
entry’s instruction. In this way, the controller can dynamically
change packet routing based on the network status. Moreover,
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Fig. 2. Flowchart of the POFM scheme.

each switch has a meter table used to determine the data rates
of flows. The controller installs meter entries in this table to
set the traffic limit of a flow passing that switch.

Let F̂ be the set of flows in the DCN. Each flow fi ∈ F̂
generates NG

i packets, and NL
i packets are lost (e.g., dropped

by a switch because of link congestion). Moreover, fi is given
a profit ζi to reflect its value, which can be set according to
application needs. Then, our problem is expressed as follows:

maximize
∑

fi∈F̂
ζi ×

(
1−NL

i /N
G
i

)
, (1)

minimize
∑

fi∈F̂
NL
i

/∑
fi∈F̂

NG
i , (2)

subject to

0 ≤ NL
i ≤ NG

i ∀fi ∈ F̂ , (3)

ζmin ≤ ζi ≤ ζmax ∀fi ∈ F̂ . (4)

The objective function in Eq. (1) is to maximize the overall
profit, where the actual profit that we get from fi is pro-
portional to the proportion of its successfully sent packets.
The objective function in Eq. (2) is to minimize the PLR.
Note that Eq. (2) is also used to avoid a greedy solution
where high-profit flows are always served first, making low-
profit flows starve. Regarding constraints, Eq. (3) indicates
that the lost packets in each flow shall be no more than the
total packets that it produces. Eq. (4) gives upper and lower
bounds on a flow’s profit. Table I lists acronyms and notations
adopted in this paper.

IV. THE PROPOSED POFM SCHEME

Fig. 2 gives POFM’s flowchart. The controller collects link
states from switches through the DCN initialization module.
Then, when a new flow arrives, the route assignment module
is invoked to find a suitable route for the flow. If some
links become congested, we search for APs to reroute some
flows on congested links. This is done using the AP finding
module. However, if no AP can be found, the rate adjustment
module is adopted to decide the data rate for each flow on a
congested link. Below, we detail each module and then have
a discussion on the POFM scheme.



A. DCN Initialization Module

The controller can discover links in the DCN using the link
layer discovery protocol (LLDP) [19]. Specifically, it employs
a Packet Out message to transmit an LLDP request to each
switch. Then, the switch places the LLDP reply (containing
link information) in a Packet In message and sends it back to
the controller. This way, the controller can know the existence
of each link and thus grasp the DCN’s topology.

The controller maintains a link state table to keep track of
the status of each link. For a link lk = [si, sj ] between two
switches si and sj , there is an entry 〈[si, sj ], (px, py), ck, uk〉
in the link state table, where si uses its port px to connect
with sj’s port py . Moreover, ck is the capacity (i.e., the max-
imum bandwidth) of lk, and uk is the amount of bandwidth
usage. Both ck and uk are measured in Mbps. When lk is
the link between a switch si and a host hj , the format of its
entry is 〈[si, hj ], (px,NIL), ck, uk〉, where NIL denotes null.

To calculate uk, the controller can send a PortStatsRequest
message to si to query the number of data bytes transmitted
and received through its port px. Afterward, si replies with
a PortDescStatsReply message that includes the answer. Let
BTX

now and BTX
pre be the numbers of data bytes sent mentioned in

the current answer and the answer in the last querying period,
respectively. Moreover, let BRX

now and BRX
pre denote the numbers

of data bytes received indicated in the current answer and the
answer in the last querying period, respectively. Then, uk can
be derived as follows:

uk =
(BTX

now −BTX
pre +BRX

now −BRX
pre)× 8

∆Q × 106
, (5)

where ∆Q is the length of a querying period (in seconds).

B. Route Assignment Module

Using the depth-first search algorithm, the controller finds
all the shortest paths between any two hosts in the DCN and
stores these paths in a candidate path table. Let Γ̂i be the
set of all shortest paths for a flow fi ∈ F̂ . Let us take Fig. 1
as an example, where fi is sent from host h1 to host h8.
Then, we have Γ̂i = {h1 ⇒ s13 ⇒ s5 ⇒ s1 ⇒ s7 ⇒ s16 ⇒
h8, h1 ⇒ s13 ⇒ s5 ⇒ s2 ⇒ s7 ⇒ s16 ⇒ h8, h1 ⇒ s13 ⇒
s6 ⇒ s3 ⇒ s8 ⇒ s16 ⇒ h8, h1 ⇒ s13 ⇒ s6 ⇒ s4 ⇒ s8 ⇒
s16 ⇒ h8}.

Let bi denote the amount of bandwidth required by flow fi.
Algorithm 1 presents the pseudocode of the route assignment
module. We adopt a set Γ̂′

i to store each path γj in Γ̂i such
that every link lk in γj can satisfy two conditions: 1) lk has
enough residual bandwidth to serve fi (i.e., ck − uk ≥ bi)
and 2) lk’s bandwidth consumption ratio is below a threshold
δ (i.e., uk/ck ≤ δ), where 0 < δ < 1. Here, condition 2 is to
reduce the chance of congestion occurring. The code is given
in lines 1–6. Then, if Γ̂′

i is not empty, we adopt the best-fit
strategy by choosing the path whose busiest link (i.e., with
the minimum value of ck − uk) possesses the least residual
bandwidth, as shown in line 8.

However, if no path in Γ̂i meets the above two conditions,
line 9 picks a path whose busiest link has the most residual
bandwidth. Note that the path γj selected by line 9 may not
have enough bandwidth to serve fi, causing congestion. In
this case, we can use the AP finding module in Section IV-C
to change the routes of some flows on γj’s congested links.

Algorithm 1: Route Assignment Module

1 Γ̂′
i ← Γ̂i;

2 foreach γj ∈ Γ̂′
i do

3 foreach lk ∈ γj do
4 if ck − uk < bi or uk/ck > δ then
5 Γ̂′

i ← Γ̂′
i \ {γj};

6 break;

7 if Γ̂′
i 6= ∅ then

8 return arg minγj∈Γ̂′
i
min∀lk∈γj ck − uk;

9 return arg maxγj∈Γ̂i
min∀lk∈γj ck − uk;

Algorithm 2: AP Finding Module

1 pick a flow fi ∈ F̂k with the maximum demand bi;
2 Γ̂′

i ← Γ̂i \ Γ̂i,k;
3 foreach γj ∈ Γ̂′

i do
4 foreach lx ∈ γj do
5 if cx − ux < bi then
6 Γ̂′

i ← Γ̂′
i \ {γj};

7 break;

8 if Γ̂′
i 6= ∅ then

9 γj ← arg minγj∈Γ̂′
i
min∀lx∈γj cx − ux;

10 return fi and γj ;

11 return null;

C. AP Finding Module

Let F̂k be the set of flows on a link lk. If the sum demand
for bandwidth of all flows in F̂k exceeds lk’s capacity (i.e.,∑
fi∈F̂k

bi > ck), lk is congested. In this case, the controller
finds APs to reroute some flows in F̂k to mitigate congestion.

Algorithm 2 displays the pseudocode for the AP finding
module. Specifically, line 1 picks the flow fi (on link lk) with
the maximum demand bi to handle, as it is the main cause of
link congestion. Given set Γ̂i of all shortest paths for fi, we
exclude those paths from Γ̂i that contain the congested link
lk (as denoted by Γ̂i,k, which can be found in the candidate
path table). Then, the remaining paths are stored in a set Γ̂′

i,
as shown in line 2. The code in lines 3–7 removes the paths
from Γ̂′

i without enough residual bandwidth to serve fi (since
they will be inevitably congested after accommodating fi).

The remaining paths in Γ̂′
i will be candidate APs. Among

them, we select an AP based on the best-fit strategy (i.e., its
busiest link has the least residual bandwidth), as shown in line
9. Then, line 10 returns both fi and γj . Hence, the controller
can move flow fi to AP γj for mitigating congestion on link
lk. If Γ̂′

i = ∅, it implies that there is no AP, so this module
returns null in line 11. As referring to the flowchart in Fig. 2,
the rate adjustment module in Section IV-D will then be used
to alleviate congestion.

D. Rate Adjustment Module

This module adjusts the data rates of flows on a congested
link lk if no APs can be used to reroute these flows. Given a



TABLE II
EXAMPLE OF FINDING DEDUCTED RATES.

flow demanded rate profit current TD
f1 λD1 = 10 Mbps ζ1 = 70 τ1 = 12 s
f2 λD2 = 40 Mbps ζ2 = 20 τ2 = 6 s
f3 λD3 = 80 Mbps ζ3 = 30 τ3 = 1 s

set F̂k of flows on lk, a naive solution is to favor high-profit
flows by keeping their data rates and reducing the data rates
of low-profit flows. Nevertheless, this solution may lead to a
high PLR. In fact, it may not maximize the profit obtained.
Let us consider an example, where F̂k contains two flows f1

and f2 whose demanded rates are 80 Mbps and 40 Mbps and
profits are 12 and 8, respectively. Suppose that lk’s capacity
is 100 Mbps. The naive solution deducts all the extra 20 Mbps
from f2. In other words, the data rates of f1 and f2 become
80 Mbps and 20 Mbps, respectively. In this case, f2’s PLR is
20/40 = 50%. Besides, the profit gained will be 12 × (1 −
0) + 8× (1− 0.5) = 16. On the other hand, if we deduct the
extra 20 Mbps from f1, its PLR is 20/80 = 25%. The profit
gained is 12 × (1 − 0.25) + 8 × (1 − 0) = 17. As can be
seen, the PLR in the naive solution is higher, but the profit
gained is not the maximum. Hence, we need to design a more
delicate method to determine the data rate of each flow.

Let λDi and λRi denote the data rates required by and to be
reduced from a flow fi ∈ F̂k, referred to as the demanded
rate and deducted rate, respectively. The modified data rate
of fi is λDi − λRi . Moreover, τi is the current TD of fi (i.e.,
the amount of time that fi’s packets have been sent before
congestion). Suppose that link lk will be congested for an
amount ∆C of time. Then, fi’s average PLR can be estimated
as follows:

ϑi =
∆C × λRi /λDi
τi + ∆C

. (6)

According to Eq. (1), our objective is to maximize the profit
gained from flows in F̂k, that is,

maximize
∑

fi∈F̂k

ζi × (1− ϑi), (7)

subject to

0 ≤ λRi ≤ λDi ∀fi ∈ F̂k, (8)∑
fi∈F̂k

λRi =
∑

fi∈F̂k

λDi − ck. (9)

Here, Eq. (8) means that the deducted rate cannot exceed the
demanded rate of each flow. Eq. (9) points out that the total
deducted rate of flows in F̂k is equal to the overall demanded
rate of these flows minus link capacity (i.e., ck). To compute
λRi for each flow fi ∈ F̂k, we can use the sequential least
squares programming [20].

Table II gives an example, where ck = 100 Mbps. Suppose
that link lk will be congested for 1 s (i.e., ∆C = 1 s). Then,
the objective is

maximize 70×

(
1−

1× λR
1

10

12 + 1

)
+ 20×

(
1−

1× λR
2

40

6 + 1

)
+

30×

(
1−

1× λR
3

80

1 + 1

)
,

TABLE III
TOOLS USED TO CONSTRUCT THE SIMULATION.

item tool version
operating system Ubuntu 16.04
network simulator Mininet 2.3.1b4

controller Ryu 3.27
switch Open vSwitch 3.1.2

southbound protocol OpenFlow 1.6
flow generation iPerf 2.1.9

subject to

0 ≤ λR1 ≤ 10, 0 ≤ λR2 ≤ 40, 0 ≤ λR3 ≤ 80,

λR1 + λR2 + λR3 = 10 + 40 + 80− 100 = 30.

The answer will be λR1 = 0 Mbps, λR2 = 30 Mbps, and λR3 =
0 Mbps. Hence, the data rates of f1, f2, and f3 are adjusted
to 10 Mbps, 40− 30 = 10 Mbps, and 80 Mbps, respectively.
The profit gained from these three flows is 117.85.

In practice, we cannot know the correct value of ∆C (i.e.,
link lk’s actual congestion time) as flows have different (and
unknown) termination times. For implementation, we can set
∆C to one constant, small value (e.g., ∆C = 1 s). After ∆C

amount of time, if lk is still congested, we can recalculate
the deducted rates for flows in F̂k.

E. Discussion

We discuss the rationale of our POFM scheme. In addition
to the DCN initialization module (used to gain link states),
POFM has three modules to manage flows. Specifically, the
route assignment module picks an adequate (shortest) path for
each new flow. If the selected path contains busy links, the
AP finding module chooses APs with enough bandwidth to
share some flows on congested links. Both modules adopt the
best-fit strategy to let some links reserve as much bandwidth
as possible. Doing so can help increase the chance of finding
suitable paths for large-sized flows (e.g., elephant flows [21])
and reduce their packet drop accordingly.

When no AP can be found, it means that each shortest path
for a flow has some congested links. To mitigate congestion,
the most feasible solution is to limit the data rates of flows
on a congested link. Instead of prioritizing high-profit flows,
the rate adjustment module takes account of the demanded
rate, profit, and TD of each flow. This way, POEM will not
only avoid starving low-profit flows, but also achieve the
objectives in Eqs. (1) and (2) as much as possible.

V. PERFORMANCE EVALUATION

With Mininet [22], we build a 4-ary fat-tree DCN for per-
formance evaluation, whose topology is shown in Fig. 1. To
apply SDN to the simulated DCN, the controller and switches
are implemented by adopting the Ryu SDN framework [23]
and the Linux Open vSwitch module [24]. Moreover, Open-
Flow is the southbound protocol for the controller to interact
with switches. We also employ the iPerf tool [25] to produce
UDP (user datagram protocol) flows. The simulation is built
on an Ubuntu operating system. Table III lists the simulation
tools and their versions.

Seven flows are generated in the simulation. In particular,
we have F̂ = {f1 : (h1, h5), f2 : (h3, h7), f3 : (h10, h6), f4 :
(h4, h8), f5 : (h12, h8), f6 : (h16, h8), f7 : (h13, h8)}. Here,
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Fig. 3. Flow generation in the simulation.

the two hosts in each pair of parentheses represent the source
and destination of a flow. Fig. 3 shows the overall TD of each
flow, including its start time and end time. The controller does
not know this information in advance. In the DCN, each link
has a capacity of 100 Mbps.

Let us consider six scenarios, where flows possess different
demanded rates (i.e., λDi ) and profits (i.e., ζi), as follows:

A. (λD1 , ζ1) = (100 Mbps, 10), (λD2 , ζ2) = (100 Mbps, 10),
(λD3 , ζ3) = (100 Mbps, 10), (λD4 , ζ4) = (10 Mbps, 20),
(λD5 , ζ5) = (20 Mbps, 10), (λD6 , ζ6) = (40 Mbps, 40),
(λD7 , ζ7) = (60 Mbps, 80).

B. (λD1 , ζ1) = (100 Mbps, 10), (λD2 , ζ2) = (100 Mbps, 10),
(λD3 , ζ3) = (100 Mbps, 10), (λD4 , ζ4) = (10 Mbps, 80),
(λD5 , ζ5) = (20 Mbps, 40), (λD6 , ζ6) = (40 Mbps, 20),
(λD7 , ζ7) = (60 Mbps, 10).

C. (λD1 , ζ1) = (100 Mbps, 10), (λD2 , ζ2) = (100 Mbps, 10),
(λD3 , ζ3) = (100 Mbps, 10), (λD4 , ζ4) = (10 Mbps, 10),
(λD5 , ζ5) = (20 Mbps, 10), (λD6 , ζ6) = (40 Mbps, 10),
(λD7 , ζ7) = (60 Mbps, 10).

D. (λD1 , ζ1) = (100 Mbps, 10), (λD2 , ζ2) = (100 Mbps, 10),
(λD3 , ζ3) = (100 Mbps, 10), (λD4 , ζ4) = (60 Mbps, 20),
(λD5 , ζ5) = (40 Mbps, 10), (λD6 , ζ6) = (20 Mbps, 40),
(λD7 , ζ7) = (10 Mbps, 80).

E. (λD1 , ζ1) = (100 Mbps, 10), (λD2 , ζ2) = (100 Mbps, 10),
(λD3 , ζ3) = (100 Mbps, 10), (λD4 , ζ4) = (60 Mbps, 80),
(λD5 , ζ5) = (40 Mbps, 40), (λD6 , ζ6) = (20 Mbps, 20),
(λD7 , ζ7) = (10 Mbps, 10).

F. (λD1 , ζ1) = (100 Mbps, 10), (λD2 , ζ2) = (100 Mbps, 10),
(λD3 , ζ3) = (100 Mbps, 10), (λD4 , ζ4) = (60 Mbps, 10),
(λD5 , ζ5) = (40 Mbps, 10), (λD6 , ζ6) = (20 Mbps, 10),
(λD7 , ζ7) = (10 Mbps, 10).

In all scenarios, the demand rates of flows f1, f2, and f3 are
set to the capacity of a link (i.e., 100 Mbps). The purpose
of these three flows is to exhaust the bandwidth of three CL
switches, s1, s2, and s3. Doing so makes other flows vie for
the bandwidth of CL switch s4. In this way, we can observe
how different methods cope with link congestion. Flows f1,
f2, and f3 can be viewed as background flows, so their profits
are all set to 10 (i.e., the minimum profit in the simulation)
to reduce their effect on the profit gained. Except for f1, f2,
and f3, each flow has different combinations of demanded
rate and profit in every scenario.

According to the flow generation in Fig. 3, the total TDs
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Fig. 4. Comparison of total profit gained and PLR for each method.

of flows f1, f2, f3, f4, f5, f6, and f7 are 55 s, 50 s, 45 s, 40 s,
30 s, 22 s, and 20 s, respectively. The amount of congestion
time for each flow is 20 s (in particular, from the 40th second
to the 60th second).

We compare our proposed POFM scheme with two meth-
ods selected in Section II. Specifically, the bandwidth-based
multipath load-balancing (BML) method [14] employs depth-
first search to find a path for each flow. With the ECMP proto-
col, the predictive ECMP (P-ECMP) method [15] makes for-
warding choices based on anticipated congestion. In POFM,
we set δ to 0.5 (i.e., the threshold on bandwidth consumption
ratio in Algorithm 1).

Fig. 4(a) presents the total profits obtained in different sce-
narios when using the BML, P-ECMP, and POFM methods.
For scenarios C and F, since the profit of each flow is set to
the minimum profit (i.e., 10), all methods have significantly
lower profits obtained compared to other scenarios. P-ECMP
generally outperforms BML in most scenarios. Scenario B is
the only exception. The reason is that P-ECMP can decrease
the PLRs of most flows compared to BML (the evidence
will be presented later). However, P-ECMP makes high-profit
flow f4 drop more packets than BML does in scenario B. That
is why P-ECMP has a lower profit than BML in that scenario.
On the other hand, by taking account of the objective function
in Eq. (1), POEM always has the highest profit acquired in
every scenario. On average, our POEM scheme can improve
12.81% and 11.86% of profit obtained as compared with the



BML and P-ECMP methods, respectively.
Fig. 4(b) displays the total PLR of flows in each scenario.

As mentioned earlier, three background flows, f1, f2, and
f3, occupy the bandwidth of three CL switches, s1, s2, and
s3, respectively. Other flows inevitably have to compete for
the bandwidth of CL switch s4. Hence, it is difficult to find
APs to reroute flows on congested links. This makes BML
have the highest PLR. Then, P-ECMP conducts forwarding
decisions based on predicted congestion outlooks, so it can
reduce the total PLR compared to BML. Thanks to the rate
adjustment module in Section IV-D, POEM will adaptively
adjust the data rate of each flow on a congested link. Thus,
POEM performs similarly to P-ECMP. Our POEM scheme
reduces 27.31% and 0.77% of total PLR as compared to the
BML and P-ECMP methods, respectively.

According to the experimental results in Fig. 4, we verify
that our proposed POEM scheme can efficiently increase the
overall profit while reducing PLRs of flows in a fat-tree DCN,
as compared with BML and P-ECMP.

VI. CONCLUSION

This paper proposes the POFM scheme to manage flows in
an SDN-based, fat-tree DCN. For every flow, POFM finds a
suitable path and avoids overloading links. If a link becomes
congested, some of its flows would be rerouted to other APs
by using the best-fit strategy to mitigate congestion. When no
APs can be found, POFM dynamically adjusts the data rates
of flows on the congested link according to their demanded
rates, profits, and TDs. Using Mininet simulations, we show
that the POFM scheme not only improves the profit obtained,
but also reduces the total PLR, compared with both BML and
P-ECMP methods.

Regarding future work, we will take account of transmis-
sion fairness among flows, for example, achieving the Pareto
optimality [26]. Furthermore, it deserves further investigation
on flow management in a multi-domain SDN-based network,
where each domain (or subnetwork) is directed by a controller
and there are links between domains [27]. This requires the
collaboration between controllers to mitigate congestion and
improve throughput.
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