
ERA: Efficient Request Assignment for Servers in

Data Center Networks with SDN

You-Chiun Wang

Department of Computer Science and Engineering

National Sun Yat-sen University

Kaohsiung, Taiwan

ycwang@cse.nsysu.edu.tw

Jun-Fu Zhang

Department of Computer Science and Engineering

National Sun Yat-sen University

Kaohsiung, Taiwan

cgf970126@gmail.com

Abstract—Software-defined networking (SDN) can facilitate net-

work management by using a controller to monitor the network

and instruct switches. It receives attention to manage a data center
network (DCN) with multiple servers using SDN. In the paper, we

propose an efficient request assignment (ERA) scheme to allocate

requests sent from clients to the servers in an SDN-based DCN.

For each request, ERA first finds candidate servers with sufficient

resources and grades them. The calculation of grades considers

the load degree, processing delay, and resource utilization of each

server. Based on its grade, ERA picks a suitable server to handle

the request, which can achieve load balance among servers and

save time responding to requests. Through simulations, we show

that the ERA scheme can efficiently improve the connection rate,

response time, and resource utilization of servers.

Keywords—data center network, load balance, request assign-

ment, server, software-defined networking.

I. INTRODUCTION

To satisfy the rapid increase in the demand for computation,

there have been many data centers deployed to support data-

intensive services such as web applications, querying, and data

analysis. They can be viewed as warehouses that have multiple

servers for data processing [1]. A data center network (DCN)

is a network that connects these servers via switches to provide

high-speed communications among them [2].

Software-defined networking (SDN) offers a new paradigm

for network management by pulling the control plane away

from switches and putting it on a central entity known as the

controller [3]. In this way, the controller can easily monitor a

network and govern switches. OpenFlow is a common protocol

used to implement SDN, where switches maintain flow tables

to store the controller’s commands [4]. The controller builds

secure connections with switches and adds flow entries to their

flow tables. Each flow entry has match fields to help a switch

check if a packet meets specified conditions. If so, the switch

routes or drops the packet based on the entry’s instructions.

Employing SDN to efficiently manage DCNs has attracted

attention, and there are two issues widely discussed. One is

route management, which considers how to adjust the routes

of flows in a DCN to mitigate congestion. Many solutions [5]–

[7] let the controller monitor the bandwidth utilization of links

and then guide some flows on busy links to alternative paths to

share their loads. The other issue is request assignment. Given

the requests from clients, the issue asks how to allocate them

to servers to improve performance (e.g., reducing the response

time for requests). This usually involves how to balance loads

among servers (the details will be discussed later in Section II).

This paper targets the second issue and proposes an efficient

request assignment (ERA) scheme for an SDN-based DCN. In

ERA, whenever a request arrives, the controller finds candidate

servers that have enough CPU and memory resources to deal

with the request. Then, it computes a grade for every candi-

date server, which takes account of the relationship between

multiple factors (including the server’s processing delay, CPU

utilization, and memory utilization) and average response time.

When the load on a server is large, its grade is increased by a

value as a penalty. Hence, light-load servers are given priority

to handle requests, which helps achieve load balance among

servers. Simulation results reveal that our ERA scheme can

efficiently assign requests to servers and improve the DCN’s

performance in terms of connection rate, response time, and

resource utilization.

This paper is organized as follows: Section II surveys related

work, and Section III gives the system model. Then, we detail

the ERA scheme in Section IV and evaluate performance in

Section V. Finally, Section VI concludes this paper and gives

future work.

II. RELATED WORK

With load-balancing consideration, several studies [8]–[11]

carry out the round-robin strategy for request assignment in

SDN-based DCNs, where each server copes with a request in

turn. This strategy is easy to implement and can theoretically

balance loads of servers. However, when requests have diverse

demands on resources, some servers that are processing large-

demand requests still have their turn to handle other requests.

In this situation, their processing delays will worsen, thereby

prolonging the response time for requests.

Besides the round-robin strategy, the work [12] implements

the bandwidth-based approach, which assesses the bandwidth

of each server for a fixed time interval (e.g., 14 s) and assigns

the request to the server with the least bandwidth. Bhat et al.

[13] choose the server with the fewest connections and build

the shortest path between the client and the selected server via

Dijkstra’s algorithm. In [14], fuzzy logic is applied to select

a server with the minimum load (based on its CPU, memory,

TABLE I
SUMMARY OF NOTATIONS.

notations definitions

Ŝ set of all servers in the DCN

ŜC set of candidate servers to handle a request

εCPU
i

, εMEMi CPU and memory resource capacities of a server si
uCPU
i

, uMEMi CPU and memory resources used in si
zCPU
i

, zMEMi si’s z-scores on CPU and memory utilization

rCPU
j

, rMEMj CPU and memory resources asked by a request λj

gi grade of si
D̃i normalized processing delay of si
P̃i CPU utilization of si (P̃i = uCPU

i
/εCPU

i
)

M̃i memory utilization of si (M̃i = uMEMi /εMEMi)

T̃i normalized response time of si
µ, σ average and standard deviation

and bandwidth utilization), and the request is then delivered to

that server. The work [15] combines the least-connection and

weighted round-robin methods to select a server to handle each

arriving request. In [16], a dynamic feedback load balancing

method is proposed, which considers server load, service time,

and line delays when assigning requests to servers. For each

server, the study [17] computes a ratio of response time and

weight (decided by server specifications). Afterward, requests

are forwarded to the server whose ratio is the lowest.

Compared to existing solutions, our work contemplates not

only the load degree but also the relationship between multiple

factors (e.g., processing delay and resource utilization) and the

response time of each server. So, we can balance the load on

servers and also save their response time.

III. SYSTEM MODEL

We consider an SDN-based DCN composed of a controller,

switches, and a set Ŝ of servers. The controller takes charge of

both network coordination and request assignment. Switches

support OpenFlow and forward requests (sent from clients) to

servers based on the controller’s instructions. Servers process

requests and then send responses to clients. All servers share a

public IP address, so clients are not allowed to specify which

servers handle their requests. Hence, the controller can assign

requests to servers according to their conditions (e.g., loads).

Let εCPUi and εMEMi be the capacities of the CPU and memory

resources of every server si ∈ Ŝ, where εCPUi and εMEMi ∈ Z
+

[18]. Besides, we denote by uCPUi and uMEMi the number of CPU

and memory resources used in si, where 0 ≤ uCPUi ≤ εCPUi

and 0 ≤ uMEMi ≤ εMEMi . When a client wants to issue a request

λj = (rCPUj , rMEMj), where rCPUj and rMEMj indicate the number of

CPU and memory resources required, it sends λj to the public

IP address. In this case, the controller selects a server, say, si,
from Ŝ such that εCPUi − uCPUi ≥ rCPUj and εMEMi − uMEMi ≥ rMEMj

(that is, si has enough resources to handle λj). Then, si makes

a connection with the client (via TCP three-way handshaking)

and handles λj . After processing λj , si sends a response to the

client (using the public IP address) and breaks the connection.

Given requests from clients, our problem is how to assign

them to servers in Ŝ to improve the DCN’s performance. Three

performance metrics, including the connection rate, response

Algorithm 1: The ERA Scheme

Input: request λj = (rCPUj , rMEMj)
Output: server si to handle λj

1 ŜC ← Ŝ;

2 foreach si ∈ ŜC do

3 if εCPUi − uCPUi < rCPUj or εMEMi − uMEMi < rMEMj then

4 ŜC ← ŜC \ {si};

5 if ŜC = ∅ then

6 return null;

7 foreach si ∈ ŜC do

8 Compute si’s z-scores zCPUi and zMEMi ;

9 if max{zCPUi , zMEMi } > δ then

10 mark si as an HL server;

11 foreach si ∈ ŜC do

12 Compute si’s grade gi;
13 if si is an HL server then

14 gi ← gi + ξ;

15 return argminsi∈ŜC
gi;

time, and resource utilization, are used. The connection rate is

defined by the number of connections established per second.

The response time of a server si for a request λj is defined by

the amount of time from when si receives λj to when si sends

the response to the requesting client (including the amount of

time used to build and terminate the connection). Then, the

resource utilization for CPU and memory of si is measured

by uCPUi /εCPUi and uMEMi /εMEMi , respectively. Table I summarizes

the notations used in this paper.

IV. THE PROPOSED ERA SCHEME

Algorithm 1 shows the pseudocode of ERA, which helps the

controller pick a suitable server to handle each arriving request

λj . In line 1, ŜC is the set of candidate servers. Initially, ŜC

is set to Ŝ (i.e., all servers in the DCN). Then, the for-loop in

lines 2–4 removes the servers in ŜC without enough CPU or

memory resources to process λj . In the case that no servers

can handle λj because of insufficient resources (i.e., ŜC = ∅),
ERA returns a null value, as shown in lines 5 and 6.

Then, the code in lines 7–10 checks whether some servers in

the candidate set ŜC are high-load (HL) servers. Though these

servers have enough resources to deal with λj , we should avoid

using them due to load-balancing considerations. In particular,

we compute the z-scores zCPUi and zMEMi of each server si ∈ ŜC

in terms of its CPU and memory utilization. Once zCPUi or

zMEMi exceed a threshold δ (i.e., max{zCPUi , zMEMi } > δ), si is

treated as an HL server. How to compute z-scores and decide

threshold δ will be discussed in Section IV-A.

The code in lines 11–14 calculates a grade gi for each server

si in ŜC. These grades are used to select a server to handle λj .

As mentioned earlier, we should avoid selecting HL servers.

Thus, the grade of each HL server will be increased by a value

μ-4σ μ-3σ μ-2σ μ-σ μ+σ μ+2σ μ+3σ μ+4σ

Z-scores -4 -3 -2 -1 +1 +2 +3 +4

μ

0

Percentiles 0.1% 2.3% 15.9% 50% 84.1% 97.7% 99.9%

Percentile: 80%

Z-score: 0.842

Fig. 1. The relationship between a normal distribution and z-scores.

ξ as a penalty, as indicated in lines 13 and 14. How to decide

the grades of servers will be detailed in Section IV-B.

Among all candidate servers in ŜC, we select the one with

the smallest grade to handle λj , as line 15 shows. Section IV-C

discusses the rationale of our ERA scheme.

A. Judgment of HL Servers Using Z-Scores

The controller uses a server condition table to store infor-

mation about servers. For each server si in the DCN, there is a

record (si, di, u
CPU

i /εCPUi , uMEMi /εMEMi , ti) in the table, where di
is si’s average processing delay for requests and ti denotes the

average response time of si. Here, whenever a client builds a

connection with si, we can measure the amount of time taken

by si to handle the request and update di and ti accordingly.

With this table, we compute the average CPU and memory

utilization of servers, as denoted by µCPU and µMEM:

µCPU =
1

|ŜC|

∑

∀si∈ŜC

uCPUi

εCPUi

, µMEM =
1

|ŜC|

∑

∀si∈ŜC

uMEMi

εMEMi

. (1)

Besides, we calculate the standard deviation of their CPU and

memory utilization (denoted by σCPU and σMEM):

σCPU =

√

(

∑

∀si∈ŜC

(uCPUi /εCPUi − µCPU)
2
)

/|ŜC|,

σMEM =

√

(

∑

∀si∈ŜC

(uMEMi /εMEMi − µMEM)
2
)

/|ŜC| (2)

Then, z-scores zCPUi and zMEMi of CPU and memory utilization

on a server si ∈ ŜC are defined by

zCPUi =
uCPUi /εCPUi − µCPU

σCPU
, zMEMi =

uMEMi /εMEMi − µMEM
σMEM

. (3)

To decide threshold δ, we refer to the Pareto principle (also

called the 80/20 rule), where for many outcomes, about 80%

of the consequences come from 20% of the causes [19]. If the

resource utilization (i.e., uCPUi /εCPUi or uMEMi /εMEMi) of a server

si is greater than that of 80% of the servers in ŜC, si is an

HL server. Fig. 1 illustrates the relationship between a normal

distribution and z-scores. Here, the z-score is 0.842 for the 80

percentiles in the distribution, so we suggest setting δ = 0.842.

B. Calculation of Grades for Servers

To select a suitable server to process each arriving request,

we take account of not only the resource utilization of servers

but also their processing delays. Here, the controller calculates

grades for servers using TOPSIS (standing for the technique

for order preference by similarity to an ideal solution), which

is a multi-factor decision analysis approach [20]. Specifically,

TOPSIS compares a set of alternatives, normalizes grades for

factors, and calculates the geometric distance between each

alternative and the ideal one (i.e., with the best grade in every

factor). It then chooses an alternative that can allow tradeoffs

between different factors, where the bad result in one factor

may be neutralized by the good result in another factor.

For each server si ∈ ŜC, its grade gi is computed as follows:

gi = w1 × D̃i + w2 × P̃i + w3 × M̃i, (4)

where D̃i is si’s normalized processing delay, P̃i = uCPUi /εCPUi

(i.e., CPU utilization), and M̃i = uMEMi /εMEMi (i.e., memory uti-

lization). For normalization, we set D̃i = di/max
∀sj∈ŜC

dj .

To decide the weight wk (k = 1, 2, or 3) in Eq. (4), we adopt

the Pearson correlation coefficient (PCC), as denoted by rx,y ,

which is used to assess the strength of the relationship between

two variables x and y [21]. More concretely, we set

wk =
|rx,y|

max{1− |rx,y|, ϕ}
, k = 1, 2, 3, (5)

where x is the processing delay (i.e., D̃i), CPU utilization (i.e.,

P̃i), and memory utilization (i.e., M̃i) when k is 1, 2, and 3,

respectively. Moreover, y is the response time. In other words,

we contemplate the relationship between each factor in Eq. (4)

and the response time. In Eq. (5), ϕ is a small positive value

(e.g., ϕ = 0.1). Then, PCC is calculated by

rx,y =

∑
∀si∈ŜC

(D̃i−µDLY)(T̃i−µRES)

σDLY×σRES

k = 1
∑

∀si∈ŜC
(P̃i−µCPU)(T̃i−µRES)

σCPU×σRES

k = 2
∑

∀si∈ŜC
(M̃i−µMEM)(T̃i−µRES)

σMEM×σRES

k = 3,

(6)

where Ti is the normalized response time of a server si (Ti =
ti/max

∀sj∈ŜC
tj), µRES is the average (normalized) response

time of servers in ŜC, and σRES is the standard deviation of the

normalized response time of servers in ŜC. In addition, µDLY
and σDLY represent the average and standard deviation of the

normalized processing delays of all servers in ŜC, respectively.

The value of PCC (i.e., rx,y) in Eq. (6) is within [−1, 1].
When rx,y is closer to 1 or −1, there will be a stronger positive

or negative linear correlation between x and y. In this situation,

the corresponding factor (i.e., D̃i, P̃i, or M̃i) is given a larger

weight wk by Eq. (5). As 1−|rx,y| may be equal to zero (when

rx,y = ±1), we add a positive constant ϕ to the denominator

to ensure the correctness of Eq. (5).

C. Discussion on Rationale

In ERA, when a request λj arrives, a candidate set ŜC is

first built by removing those servers from Ŝ whose resources

cannot meet λj’s demand (rCPUj , rMEMj). Based on z-scores on

CPU and memory utilization, we partition the servers in ŜC

into two groups: HL and non-HL servers. Then, we calculate a

grade for each server in ŜC using TOPSIS. Through PCC, we

measure how each factor (including the processing delay, CPU

0

1

2

3

4

5

6

3000 6000 9000

C
o
n
n
e
c
ti
o
n
 r

a
te

 (
c
o
n
n
/s

)

Number of requests

WRT RR ERA

(a) connection rate

0

100

200

300

400

500

3000 6000 9000

R
�
�
�
�
�
�
�
��
�
�

(m
s
)

Number of requests

WRT RR ERA

(b) response time

0

5

10

15

20

25

30

35

3000 6000 9000

P
ro

c
e

s
s
in

g
 d

e
la

y
(m

s
)

Number of requests

WRT

RR

ERA

(c) processing delay

0

10

20

30

40

50

60

70

WRT RR ERA

C
�
	

��
�
�
�
��
�
�
(�
�

S����� �� S����� �� S����� ��

(d) CPU utilization

0

10

20

30

40

50

60

70

WRT RR ERA

M
�
�
�
��

!"
#"
$
%
!"
�
&
')
*

+,-.,- /0 +,-.,- /1 +,-.,- /2

(e) memory utilization

Fig. 2. Performance comparison of different methods.

utilization, and memory utilization) affects the result (i.e., the

response time) and assign an appropriate weight to reflect its

effect using Eq. (5). Since these factors have a negative impact

on the result, ERA chooses the server with the minimum grade

(referring to Eq. (4) and line 15 in Algorithm 1) to handle λj

to reduce the response time.

The purpose of dividing ŜC is for load-balancing consider-

ation. To avoid allocating many requests to a few servers, non-

HL servers (with relatively low CPU and memory utilization)

are given precedence over HL ones to handle requests. Instead

of simply excluding HL servers from ŜC, we add a value ξ
to the grade of each HL server (i.e., line 14 in Algorithm 1).

Doing so allows HL servers with good conditions to partake in

request assignment. The resource utilization of these servers

may be slightly higher than others, making them HL servers

(due to high z-scores). However, they have shorter processing

delays, which results in lower TOPSIS grades. In this case, we

can ask them to help handle requests to improve performance.

V. PERFORMANCE EVALUATION

To evaluate system performance, we simulate an SDN-based

DCN by using Mininet [22]. The controller and switches are

implemented by Ryu [23] and Open vSwitch [24], respectively.

The DCN contains three servers, s1, s2, and s3, whose CPU

and memory capacities are set by (εCPU1 , εMEM1) = (900, 600),
(εCPU2 , εMEM2) = (700, 700), and (εCPU3 , εMEM3) = (600, 900). The

above configuration allows us to imitate a general scenario in

which servers possess diverse resource capacities. All servers

share a public IP address 10.0.0.100. Moreover, there are five

clients to generate requests, which is done through the httperf

tool [25]. As mentioned in Section III, clients send requests to

the public IP address, and the controller assigns these requests

to servers. When assigning a client’s request to a server, the

server makes a connection with the client, handles the request,

sends a response to the client, and terminates the connection.

On getting a response, each client issues the next request right

away. In this way, we can stress-test each method.

We consider two types of resource demands. A large de-

mand (LD) requires 280–320 units of resources, while a small

demand (SD) needs 140–160 units of resources. Then, there

are four combinations of requests: LD CPU with LD memory,

LD CPU with SD memory, SD CPU with LD memory, and SD

CPU with SD memory. Each combination of requests accounts

for 25% of the overall requests. There will be 3000, 6000, and

9000 requests generated by clients in total.

We compare our ERA scheme with two methods discussed

in Section II: weighted response time (WRT) [17] and round-

robin (RR) [11]. In the WRT method, requests are forwarded

to the server with the lowest ratio of response time and weight.

The RR method asks servers to handle requests in turn. Each

experiment is repeated 100 times, and we take their average

and also the 95% confidence interval.

Fig. 2(a) compares the connection rates of different meth-

ods. A higher connection rate means that more requests can be

handled per second. This rate slightly decreases as the number

of requests grows. WRT updates the response time of a server

only when a connection is built. Once the response time of a

server in a connection is too long, it may reduce the probability

of selecting that server. Eventually, WRT will assign requests

to merely a few servers. That is why WRT’s connection rate is

much lower than other methods. By using Algorithm 1 to pick

TABLE II
JAIN’S FAIRNESS INDEX OF RESOURCE UTILIZATION ON SERVERS.

resource WRT RR ERA

CPU 0.338 0.972 0.983
memory 0.337 0.971 0.984

servers to deal with requests, ERA can increase the connection

rate. As compared to WRT and RR, our ERA scheme improves

111.72% and 2.60% of the connection rate, respectively.

Fig. 2(b) shows the average response time of servers using

each method. In particular, the response time increases when

there are more requests. Since WRT concentrates most request

processing on a few servers (the evidence will be given later),

these servers become busy, thereby raising their response time.

By assigning requests to servers in a round-robin way, loads

are distributed over servers. Thus, RR’s response time can be

greatly reduced. ERA uses z-scores to distinguish HL servers

from others and gives precedence to non-HL servers to handle

requests. Hence, ERA can further decrease the response time.

Compared with WRT and RR, the ERA scheme saves 53.81%

and 12.10% of the response time, respectively.

Fig. 2(c) presents the average processing delay for requests.

For a server, the response time is the sum of the time to build a

connection with a client, the processing delay, the time to send

a response to the client, and the time to cut off the connection.

Thus, the processing delays in Fig. 2(c) are much lower than

the response time in Fig. 2(b). From Fig. 2(c), we observe that

the processing delay of RR significantly rises as the number of

requests grows. That is because RR lets servers handle requests

in turn without considering the amount of time consumed by a

server to deal with each request. By contrast, our ERA scheme

computes a grade for each server using both TOPSIS and PCC,

which takes account of the resource utilization and processing

delays of servers. In this way, ERA maintains a low processing

delay for requests. More concretely, the ERA scheme reduces

42.25% and 59.22% of the processing delay as compared with

the WRT and RR methods, respectively.

In Fig. 2(d) and (e), we give the average CPU and memory

utilization of each server, where the number of total requests is

9000. Since εCPU1 > εCPU2 > εCPU3 , the order of servers in terms

of CPU utilization is s1 < s2 < s3. Because εMEM1 < εMEM2 <
εMEM3 , the order of servers for memory utilization is s1 > s2 >
s3. Evidently, WRT makes s1 handle most requests, as s1 has

a shorter response time due to the largest CPU capacity. This

results in imbalanced loads on servers with diverse resource

capacities and hurts performance. Table II lists Jain’s fairness

index of CPU and memory utilization in each method. Let ui

be the resource utilization of a server si. Given n servers, this

index is calculated as follows [26]:

J =
(
∑n

i=1 ui)
2

n
∑n

i=1 u
2
i

, (7)

where 1
n
≤ J ≤ 1. The load on servers will be more balanced

when J is larger. As can be seen, both RR and ERA can assign

requests to servers more fairly to achieve load balance.

VI. CONCLUSION AND FUTURE WORK

This paper proposes the ERA scheme to assign requests to

servers in an SDN-based DCN. For each request, the controller

finds a candidate set of servers with enough resources to satisfy

the request’s demand. Then, it distinguishes HL servers using

z-scores and calculates a grade for every server via TOPSIS

and PCC. When calculating grades, we consider not only HL

servers but also the relationship between processing delays,

resource utilization, and response times of servers. Therefore,

ERA can pick a suitable server to deal with the request. Using

Mininet to simulate a DCN that contains servers with diverse

resource capacities, we demonstrate that our ERA scheme can

efficiently improve the connection rate, decrease the response

time, and balance resource utilization on servers as compared

with both WRT and RR methods.

In this work, we exploit the controller to efficiently assign

requests to servers. Recently, the technique of P4, which stands

for programming protocol-independent packet processors, has

been proposed. Specifically, P4 is a domain-specific language

developed for network devices such as switches that allows

users to specify how these devices process each packet [27].

Regarding future work, we will consider using P4 switches to

carry out request assignments. Since servers may connect with

different switches, this issue is more challenging as requests

may be assigned to servers in a distributed manner.

ACKNOWLEDGMENT

This work was supported by National Science and Technol-

ogy Council, Taiwan under Grant 111-2221-E-110-023-MY2.

REFERENCES

[1] K. Wang, Q. Zhou, S. Guo, and J. Luo, “Cluster frameworks for efficient
scheduling and resource allocation in data center networks: A survey,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3560–
3580, 2018.

[2] Y. C. Wang and T. J. Hsiao, “URBM: User-rank-based management
of flows in data center networks through SDN,” in IEEE International
Conference on Computer Communication and the Internet, 2022, pp.
142–149.

[3] H. Farhady, H. Y. Lee, and A. Nakao, “Software-defined networking: A
survey,” Computer Networks, vol. 81, pp. 79–95, 2015.

[4] Y. C. Wang and H. Hu, “An adaptive broadcast and multicast traffic
cutting framework to improve Ethernet efficiency by SDN,” Journal of
Information Science and Engineering, vol. 35, no. 2, pp. 375–392, 2019.

[5] Y. L. Lan, K. Wang, and Y. H. Hsu, “Dynamic load-balanced path
optimization in SDN-based data center networks,” in International
Symposium on Communication Systems, Networks and Digital Signal
Processing, 2016, pp. 1–6.

[6] Y. C. Wang and S. Y. You, “An efficient route management framework
for load balance and overhead reduction in SDN-based data center
networks,” IEEE Transactions on Network and Service Management,
vol. 15, no. 4, pp. 1422–1434, 2018.

[7] Y. Liu, H. Gu, Z. Zhou, and N. Wang, “RSLB: Robust and scalable load
balancing in software-defined data center networks,” IEEE Transactions
on Network and Service Management, vol. 19, no. 4, pp. 4706–4720,
2022.

[8] K. A. Jadhav, M. M. Mulla, and D. G. Narayan, “An efficient load
balancing mechanism in software defined networks,” in International
Conference on Computational Intelligence and Communication Net-
works, 2020, pp. 116–122.

[9] Y. A. H. Omer, M. A. Mohammedel-Amin, and A. B. A. Mustafa,
“Load balance in cloud computing using software defined networking,”
in International Conference on Computer, Control, Electrical, and
Electronics Engineering, 2021, pp. 1–6.

[10] V. Kumar, S. Jangir, and D. G. Patanvariya, “Traffic load balancing in
SDN using round-robin and Dijkstra based methodology,” in Interna-
tional Conference for Advancement in Technology, 2022, pp. 1–4.

[11] I. T. Singh, T. R. Singh, and T. Sinam, “Server load balancing with round
robin technique in SDN,” in International Conference on Decision Aid
Sciences and Applications, 2022, pp. 503–505.

[12] A. K. Arahunashi, G. G. Vaidya, S. Neethu, and K. V. Reddy, “Imple-
mentation of server load balancing techniques using software-defined
networking,” in International Conference on Computational Systems and
Information Technology for Sustainable Solutions, 2018, pp. 87–90.

[13] B. R. Bhat, N. S. Sneha, K. Bhat, C. C. Kamath, and C. Naik, “Improv-
ing the efficiency of software defined network through load balancing
algorithms,” in International Conference on Intelligent Communication
Technologies and Virtual Mobile Networks, 2021, pp. 124–131.

[14] I. A. Prakoso, S. N. Hertiana, and F. Dewanta, “Analysis of fuzzy logic
algorithm for load balancing in SDN,” in International Seminar on
Research of Information Technology and Intelligent Systems, 2021, pp.
401–406.

[15] T. G. Thajeel and A. Abdulhassan, “A hybrid load balancing scheme for
software defined networking,” in Information Technology To Enhance e-
learning and Other Application, 2021, pp. 106–112.

[16] N. S. Prodanov, K. S. Nikolova, and D. K. Atamian, “Load balancing
implementation in software defined networks,” in International Scientific
Conference on Information, Communication and Energy Systems and
Technologies, 2022, pp. 1–4.

[17] H. Nurwasito and R. Rahmawati, “Weighted response time algorithm for
web server load balancing in software defined network,” in International
Conference on Electronics Representation and Algorithm, 2021, pp.
143–148.

[18] Y. C. Wang and S. H. Wu, “Efficient deployment of virtual network
functions to achieve load balance in cloud networks,” in Asia-Pacific
Network Operations and Management Symposium, 2022, pp. 1–6.

[19] H. Zhu, “Social development paradox: An E-CARGO perspective on
the formation of the Pareto 80/20 distribution,” IEEE Transactions on
Computational Social Systems, vol. 9, no. 5, pp. 1297–1306, 2022.

[20] H. Yin, X. R. Li, and Y. Gao, “Relative Euclidean distance with
application to TOPSIS and estimation performance ranking,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 2,
pp. 1052–1064, 2022.

[21] G. Li, A. Zhang, Q. Zhang, D. Wu, and C. Zhan, “Pearson correlation
coefficient-based performance enhancement of broad learning system for
stock price prediction,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 69, no. 5, pp. 2413–2417, 2022.

[22] Mininet. [Online]. Available: http://mininet.org
[23] Ryu. [Online]. Available: https://ryu-sdn.org
[24] Open vSwitch (OVS). [Online]. Available: https://www.openvswitch.org
[25] httperf. [Online]. Available: https://github.com/httperf/httperf
[26] Y. C. Wang and D. R. Jhong, “Efficient allocation of LTE downlink

spectral resource to improve fairness and throughput,” International
Journal of Communication Systems, vol. 30, no. 14, pp. 1–13, 2017.

[27] Y. C. Wang and P. Y. Su, “Collaborative defense against hybrid net-
work attacks by SDN controllers and P4 switches,” IEEE Transactions
on Network Science and Engineering, early access, Oct. 2023, doi:
10.1109/TNSE.2023.3324329.

