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Abstract—Network function virtualization (NFV) is a technique
to facilitate service deployment by decoupling network functions
from dedicated hardware and moving them to software, namely
virtual network functions (VNFs). Network services are carried
out by service function chains (SFCs) comprising multiple VNFs.
Given SFCs and physical machines (PMs), the VNF deployment
problem asks how to assign each SFC’s VNFs to PMs, such that
the service ratio is maximized. Many methods use as few PMs as
possible for deploying VNFs, but they lead to imbalanced loads
of PMs in a cloud network. This paper proposes a load-balanced
VNF deployment (LBVD) scheme, which scores each PM based
on the expected ratios of residual resources of that PM and its
neighbors. Then, VNFs are deployed on PMs with high scores. If
a PM is busy, LBVD lets its VNF migrate to another PM for load
sharing. Through simulations, we show that LBVD can balance
the loads of PMs and save both deployment and migration costs.

Index Terms—deployment, load balance, migration, network
function virtualization (NFV), virtual network function (VNF).

I. INTRODUCTION

Traditionally, network functions like firewall and intrusion

detection execute on dedicated hardware called middle-boxes.

Deploying network services involves selecting middle-boxes

and steering data to pass them for processing in specific orders,

known as service function chains (SFCs). After deployment, it

incurs a high cost to adjust SFCs by changing middle-boxes.

Some middle-boxes may be even incompatible with each other.

This makes resource management inflexible.

The emerging network function virtualization (NFV) tech-

nique abstracts network functions and makes them be easily

installed and manipulated by software modules called virtual

network functions (VNFs). Unlike middle-boxes, VNFs can run

on general-purpose commodity machines and migrate between

machines [1]. Users can also flexibly expand or shrink SFCs by

adding or deleting VNFs. Thus, NFV provides high scalability,

facilitates resource management, and reduces hardware costs.

How to assign VNFs to physical machines (PMs), namely

the VNF deployment problem, makes a great impact on NFV’s

performance. It is modeled as an NP-hard optimization prob-

lem [2]. Many deployment methods consider using the fewest

PMs to maximize the service ratio, as defined by the ratio of

the number of VNFs successfully deployed to the number of

VNFs requested by SFCs. In this way, the resource utilization

of working PMs improves. However, these methods do not let

VNFs migrate from heavy-load PMs to light-load PMs. Hence,

some PMs are busy and their performance degrades, whereas

other PMs stay idle. Actually, load balance is critical in cloud

networks, which contain many PMs for load sharing [3].

Thus, this paper proposes a load-balanced VNF deployment

(LBVD) scheme to maximize the service ratio and balance the

loads of PMs. According to the expected ratios of residual re-

sources of a PM and its neighbors, LBVD scores each PM and

chooses the PM with the highest score to deploy each VNF.

Once a PM is overloaded, LBVD transfers its VNF to another

PM for load sharing (i.e., VNF migration). Simulation results

show that the LBVD scheme greatly raises the Jain’s fairness

index (JFI) as compared with other deployment methods in

different topologies of PMs, which means that it can efficiently

achieve load balance in cloud networks. Moreover, LBVD can

reduce the deployment and migration costs for VNFs.

II. RELATED WORK

Some studies aim at path selection for SFCs, which decides

routes of PMs to run their VNFs. In [4], the selection problem

is converted to a problem in the gray system theory and solved

by gray relation analysis. Qu et al. [5] develop a hybrid routing

method to provide reliability to SFCs, which combines single-

path and multi-path routing. Yang et al. [6] propose a path-

based integer linear programming (ILP) model to save energy

of PMs. With the shortest path algorithm, the study [7] assigns

VNFs to PMs to reduce their hop counts. Apparently, these

studies have different objectives with our work.

How to deploy VNFs to improve PMs’ utilization is widely

discussed. The work [8] solves the deployment problem by

ILP, and limits candidate PMs to deploy VNFs to reduce ILP’s

complexity. Given the flow demands of SFCs, an optimization

problem is formulated in [9] to minimize the usage of network

resources. The study [10] first picks the PMs already assigned

with VNFs to deploy the VNFs of new SFC requests. In [11],

the deep reinforcement learning is applied to VNF deployment,

which reduces the number of working PMs. Nevertheless, the

above methods make the loads of PMs become imbalanced.

The VNF migration issue also attracts attention. The work

[12] deploys VNFs in a content delivery network, where some

VNFs can be reused or migrate to other PMs. In [13], VNFs

migrate to ensure high availability against PM failures. Zhang

et al. [14] address both VNF deployment and migration for 5G

network slice, where VNFs migrate to satisfy service-specific

demands. In [15], when a PM is overloaded, some of its VNFs

will migrate to other PMs. As can be seen, the load-balancing



issue in VNF deployment is not extensively discussed. This

motivates us to propose the LBVD scheme to raise the service

ratio while keeping PMs’ loads as balanced as possible.

III. SYSTEM MODEL

Suppose that a cloud network has a set P̂ of PMs. For each

PM pi ∈ P̂ , ΦT

i is the capacity of its type-T resource, where

ΦT

i ∈ Z
+. Without loss of generality, we consider CPU and

memory resources, so T ∈ {CPU,MEM}. Besides, H(pi, pj) is

the minimum hop count between two PMs pi and pj . There

is a set Ŝ of SFCs to be served. Each SFC sk ∈ Ŝ comprises

a sequence of VNFs V̂k = {vk,1, vk,2, · · · , vk,m}, where φTk,j
is the amount of type-T resource required by a VNF vk,j .

The JFI is used to evaluate the degree of load balance among

all PMs in P̂ , which is defined as follows [16]:

J(P̂) =
(

∑

pi∈P̂
ζi

)2

/
(

|P̂|
∑

pi∈P̂
ζ2i

)

. (1)

Here, ζi is the load of a PM pi and ζi = (CCPU

i + CMEM

i )/2,

where CCPU

i and CMEM

i signify the amount of CPU and memory

resources consumed in pi, respectively. By Eq. (1), we have

1/|P̂| ≤ J(P̂) ≤ 1. A larger J(P̂) value implies that the loads

of PMs are more balanced.

Let us use an indicator zik,j ∈ {0, 1} to reveal whether VNF

vk,j is deployed on PM pi, where zik,j = 1 if so or zik,j = 0
otherwise. The VNF deployment problem can be expressed by

maxmize

∑

pi∈P̂

∑

sk∈Ŝ

∑

vk,j∈V̂k
zik,j

∑

sk∈Ŝ |V̂k|
, (2)

maxmize J(P̂), (3)

subject to

φTk,j ≤ minpi∈P̂{Φ
T

i } ∀vk,j ∈ V̂k, ∀sk ∈ Ŝ, (4)
∑

pi∈P̂
zik,j ≤ 1 ∀vk,j ∈ V̂k, ∀sk ∈ Ŝ, (5)

∑

sk∈Ŝ

∑

vk,j∈V̂k

zik,jφ
T

k,j ≤ ΦT

i ∀pi ∈ P̂. (6)

The objectives in Eqs. (2) and (3) are to maximize the service

ratio and JFI. For constraints, Eq. (4) means that the amount of

resources (for CPU and memory) requested by a VNF cannot

exceed the capacity of any PM. In Eq. (5), each VNF can be

deployed on at most one PM. Since a PM may serve multiple

VNFs, Eq. (6) indicates that the overall amount of resources

requested by these VNFs cannot overtake the PM’s capacity.

Moreover, we define the deployment cost for an SFC sk ∈ Ŝ
as the number of hops between PMs that need to be spanned to

complete sk, that is,
∑m−1

j=1
H(fP (vk,j), fP (vk,j+1)), where

fP (vk,j) is the PM that serves vk,j . When all VNFs of sk are

deployed on the same PM, its deployment cost is zero. On the

other hand, if a PM pi ∈ P̂ becomes busy, some of its VNFs

may migrate to other PMs. Then, the migration cost for pi is

defined by the total hop counts that its VNFs migrate. Table I

summarizes the notations used in the LBVD scheme.

TABLE I
SUMMARY OF NOTATIONS.

notation definition

P̂ , Ŝ sets of PMs and SFCs

V̂k sequence of VNFs in SFC sk
ΦT

i capacity of type-T resource of PM pi, T ∈ {CPU,MEM}
RT

i residual type-T resource of pi
φT
k,j

amount of type-T resource requested by VNF vk,j
fP (vk,j) PM that serves vk,j
H(pi, pj) hop count between two PMs pi and pj
G(pi, vk,j) pi’s score in terms of vk,j
E(pi, vk,j) pi’s ratio of residual resources after serving vk,j
B(pi, vk,j) function to check if vk,j makes pi overloaded

IV. THE PROPOSED LBVD SCHEME

The LBVD scheme has two modules: placement and migra-

tion. For every SFC sk ∈ Ŝ , we use the placement module to

sequentially assign each of its VNFs in V̂k to a PM. However,

when a VNF vk,j ∈ V̂k cannot be assigned, which implies that

none of PMs has enough resources to meet vk,j’s requirement,

vk,j is removed from V̂k. Moreover, if the chosen PM will be

overloaded after serving vk,j , we use the migration module to

transfer the PM’s VNF to another PM for load balance.

When a PM consumes too many resources, the PM becomes

overloaded and its performance may significantly degrade [15].

Specifically, a PM pi ∈ P̂ is overloaded if CCPU

i > δCPUΦ
CPU

i

or CMEM

i > δMEMΦ
MEM

i , where 0 < δCPU, δMEM < 1 are two given

thresholds. To avoid overloading a PM, the placement module

decides whether to assign a VNF to the PM based on its score.

Next, we explain the scoring mechanism, detail both placement

and migration modules, and discuss our LBVD scheme.

A. Scoring Mechanism

The score of a PM pi in P̂ depends on the VNF vk,j to be

deployed. Let N̂i ⊂ P̂ denote the set of pi’s 1-hop neighbors

and vk,j+1 be the next VNF to be deployed, where vk,j and

vk,j+1 belong to the same SFC. Then, pi’s score is defined by

G(pi, vk,j) = E(pi, vk,j) +
∑

pa∈N̂i

E(pa, vk,j+1), (7)

where E(pi, vk,j) is pi’s expected ratio of residual resources

after serving vk,j , which is estimated by

E(pi, vk,j) =
1

2
×

(

RCPU

i − φCPUk,j

ΦCPU

i

+
RMEM

i − φMEMk,j

ΦMEM

i

)

, (8)

where RCPU

i and RMEM

i denote the amount of residual CPU and

memory resources of pi, respectively (i.e., RCPU

i = ΦCPU

i −
CCPU

i and RMEM

i = ΦMEM

i − CMEM

i ).

There are three considerations in Eq. (7). First, we deploy

VNFs vk,j and vk,j+1 on different (and adjacent) PMs, instead

of the same PM (i.e. pi). In this way, we may avoid imposing

a heavy load on pi. Second, if the current load of pi is smaller,

it has a higher score (as RCPU

i and RMEM

i are larger in Eq. (8)).

Third, when pi has more 1-hop neighbors (i.e., N̂i), there are

more candidate PMs for deploying the next VNF (i.e., vk,j+1).

In this case, pi could be a good PM for deploying VNF vk,j
and has a high score. Notice that if vk,j is the last VNF in V̂k
(i.e., there is no vk,j+1), the right term in Eq. (7) is omitted.



Algorithm 1: Placement of the first VNF vk,1

1 P̂α ← ∅, P̂β ← ∅;

2 foreach pi ∈ P̂ do

3 if RCPU

i = ΦCPU

i and RMEM

i = ΦMEM

i then

4 P̂α ← P̂α ∪ {pi};
5 else if RCPU

i ≥ φCPUk,1 and RMEM

i ≥ φMEMk,1 then

6 P̂β ← P̂β ∪ {pi};

7 if P̂α ∪ P̂β = ∅ then

8 remove vk,1 and set px to null;

9 else if P̂α 6= ∅ then

10 randomly select a PM px from P̂α;

11 else

12 px ← argmaxpi∈P̂β
G(pi, vk,1);

13 return px;

B. Placement Module

The VNFs of an SFC sk (i.e., V̂k) are sequentially deployed,

so the placement of every VNF vk,j depends on its previous

VNF vk,j−1 in V̂k, except the first VNF vk,1. Moreover, vk,1’s

location may also decide whether other VNFs of V̂k can be

successfully deployed. Hence, we cope with the first VNF and

other VNFs in different ways.

Algo. 1 shows the pseudocode for the placement of the first

VNF vk,1. Let P̂α be the set of idle PMs. In particular, if the

residual resources of a PM (i.e., RCPU

i and RMEM

i ) are equal to

its capacity (i.e., ΦCPU

i and ΦMEM

i ), the PM is idle. Besides, P̂β

denotes the set of PMs that have enough residual resources to

meet the requirement of vk,1 (i.e., φCPUk,1 and φMEMk,1 ). Lines 1–6

present the code of finding both P̂α and P̂β .

Then, we consider three cases. First, P̂α and P̂β are empty

(i.e., line 7). In this case, no PM can serve vk,1, so we remove

vk,1 from V̂k and return a null value. Notice that the next VNF

in V̂k will become the (new) first VNF. Second, if P̂α is non-

empty (i.e., line 9), we choose one idle PM from P̂α to serve

vk,1. Third, there is no idle PM (i.e., line 11). Hence, we pick

a PM from P̂β with the highest score to serve vk,1, as shown

in line 12. Theorem 1 analyzes the time complexity of Algo. 1.

Theorem 1: Let ξP be the number of PMs in P̂ . The time

complexity of Algo. 1 is O(ξP ξN ), where ξN is the maximum

number of 1-hop neighbors of each PM in P̂ .

Proof: The for-loop in lines 2–6 takes O(ξP ) time. Lines

8 and 10 spend O(1) time. In line 12, it takes O(ξN+1) time to

find G(pi, vk,1) for each PM in P̂β by Eq. (7). Thus, the time

complexity is O(ξP ) + max{O(1), O(1), |P̂β |O(ξN + 1)} =
O(ξP + |P̂β |ξN ). The worst case occurs when P̂β = P̂ , so

the complexity can be simplified to O(ξP ξN ).
Algo. 2 gives the pseudocode to place a non-first VNF vk,j ,

where j > 1. To reduce the deployment cost while balancing

the loads of PMs, we place vk,j on a 1-hop neighbor of the

PM that serves the previous VNF vk,j−1. The code in lines

1–4 finds the candidate PMs for vk,j , whose set is denoted by

Algorithm 2: Placement of a non-first VNF vk,j

1 P̂γ ← ∅;

2 foreach pi ∈ P̂ do

3 if H(pi, fP (vk,j−1)) = 1 then

4 P̂γ ← P̂γ ∪ {pi};

5 px ← argmaxpi∈P̂γ
G(pi, vk,j);

6 if B(px, vk,j) = true then

7 py ← Algo. 3 (px, vk,j);

8 if py 6= null then

9 return py;

10 else

11 if RCPU

x < φCPUk,j or RMEM

x < φMEMk,j then

12 remove vk,j and return null;

13 return px;

P̂γ . Let fP (vk,j−1) be the PM where vk,j−1 is deployed. If

the hop count between a PM pi and fP (vk,j−1) is equal to 1,

pi is added to P̂γ . Among all candidates, we pick the PM px
with the highest score, as shown in line 5.

Line 6 checks if px will be overloaded after serving vk,j .

Specifically, function B(px, vk,j) returns true if CCPU

x +φCPUk,j >
δCPUΦ

CPU

x or CMEM

x + φMEMk,j > δMEMΦ
MEM

x ; otherwise, it returns

false. If so, we transfer a VNF in px (possibly vk,j) to another

PM through the migration module in Algo. 3, which returns

the new PM py that will serve vk,j . The code is given in lines

7–9. However, if py is null, which means that VNF migration

cannot be carried out, we then check if px (i.e., the PM found

by line 5) has enough residual resources to serve vk,j . If not,

vk,j should be removed, since no PM can serve it. Theorem 2

analyzes the time complexity of Algo. 2.

Theorem 2: Suppose that Algo. 3 takes t3 time. The time

complexity of Algo. 2 is O(ξP + ξ2N ) + t3.

Proof: In Algo. 2, the for-loop in lines 2–4 takes O(ξP )
time. As only the 1-hop neighbors of fP (vk,j−1) are included

in P̂γ , we have |P̂γ | ≤ ξN . Thus, line 5 spends at most time of

ξNO(ξN +1) = O(ξ2N ). Except line 7 (which requires time of

t3), all other statements take O(1) time. To sum up, the time

complexity is O(ξP + ξ2N ) + t3.

C. Migration Module

This module is performed when a VNF vk,j makes the PM

px found by line 5 in Algo. 2 overloaded, whose pseudocode is

given in Algo. 3. Let Âx be the set of VNFs already assigned

to px. Line 1 finds the VNF from Âx ∪ {vk,j} that consumes

the most resources of px, which is calculated by

U(px, vm,n) =
1

2
×

(

φCPUm,n

ΦCPU

x

+
φMEMm,n

ΦMEM

x

)

. (9)

Here, U(px, vm,n) is the average ratio of px’s resources con-

sumed by a VNF vm,n. Then, we include all L-hop neighbors

of px in a set P̂ε, where L ≥ 1, as shown in lines 2–5.



Algorithm 3: VNF migration

1 va,b ← argmaxvm,n∈Âx∪{vk,j}
U(px, vm,n);

2 P̂ε ← ∅;

3 foreach pi ∈ P̂ do

4 if H(pi, px) ≤ L then

5 P̂ε ← P̂ε ∪ {pi};

6 py ← argmaxpi∈P̂ε
E(pi, va,b);

7 if B(py, va,b) = true then

8 return null;

9 else

10 if va,b = vk,j then

11 return py;

12 else

13 transfer va,b to py and return px;

In line 6, we choose a PM py from P̂ε whose E(py, va,b)
value is the maximum. According to Eq. (8), py will be the PM

that has the most residual resources (to serve va,b). However, if

B(py, va,b) is true (i.e, va,b makes py overloaded), va,b cannot

migrate to any PM in P̂ε (since other PMs in P̂ε must be also

overloaded after serving va,b). Therefore, Algo. 3 returns a null

value. On the other hand, there are two cases to be discussed

when B(py, va,b) is false. If vk,j is the VNF that consumes

the most resources, we transfer vk,j to py , as shown in lines

10–11. Otherwise, we transfer va,b to py and let vk,j stay in

px, as indicated in lines 12–13. Theorem 3 analyzes the time

complexity of Algo. 3.

Theorem 3: The time complexity of Algo. 3 is O(ξA+ ξP ),
where ξA is the maximum number of VNFs served by a PM.

Proof: Line 1 requires O(|Âx|+1) time. The for-loop in

lines 3–5 spends O(ξP ) time. Line 6 takes O(|P̂ε|) time. Other

statements take O(1) time. Since |Âx| ≤ ξA and |P̂ε| ≤ ξP ,

the time complexity is O(ξA) + 2O(ξP ) = O(ξA + ξP ).

D. Discussion

We then discuss the rationale of the LBVD scheme. Unlike

the existing solutions that use the fewest PMs to deploy VNFs,

LBVD deploys VNFs with the aim of balancing PMs’ loads.

To do so, it scores each PM pi ∈ P̂ based on the VNF vk,j to

be deployed. The scoring function in Eq. (7) considers not only

pi’s capability to serve vk,j (in terms of its residual resources)

but also the capabilities of pi’s 1-hop neighbors to serve the

next VNF vk,j+1 of the same SFC. In this way, high-score PMs

will be good candidates to deploy VNFs for load balance.

Moreover, the placement module differentiates between the

first VNF and other VNFs in each SFC. Specifically, the first

VNF is deployed on an idle PM. Doing so has two advantages.

First, the VNFs of different SFCs could be distributed over

the PMs in a cloud network, which helps spread the workload

evenly. Second, the probability of successfully deploying other

VNFs of the SFC can increase. If there is no idle PM, the first

VNF will be deployed on the PM with the highest score.

(a) 4-ary fat tree (b) 4-ary jellyfish

Fig. 1. Network topologies considered in the simulation.

For each VNF vk,j in the rest of the SFC, it is deployed

on a neighbor px of the PM assigned with the previous VNF

vk,j−1, whose score is the highest. However, if vk,j makes px
overloaded, the migration module is performed to transfer one

of px’s VNFs (including vk,j) to another PM that has sufficient

resources. To reduce both deployment and migration costs, the

VNF can migrate no more than L hops. The above designs

distinguish our LBVD scheme with the existing solutions and

help balance the loads of PMs in a cloud network. Theorem 4

shows the time complexity of our LBVD scheme.

Theorem 4: Suppose that ξP > ξ2N . Given ξS SFCs contain-

ing ξV VNFs, the time complexity of LBVD is O(ξSξP ξN +
(ξV − ξS)(ξA + ξP )).

Proof: According to Theorems 1, 2, and 3, the time com-

plexity is ξSO(ξP ξN )+(ξV −ξS)[O(ξP +ξ2N )+O(ξA+ξP )].
Since ξP > ξ2N , the complexity is simplified to O(ξSξP ξN +
(ξV − ξS)(ξA + ξP )).

V. PERFORMANCE EVALUATION

In the simulation, we consider a cloud network containing

36 PMs, which are organized into two topologies, namely fat

tree [17] and jellyfish [18], as shown in Fig. 1. Each PM has

32 units of CPU resources and 64 units of memory resources

(i.e., ΦCPU

i = 32 and ΦMEM

i = 64). Besides, there are 25 SFCs,

where each SFC has 3 to 5 VNFs. The number of total VNFs

is 100. Each VNF requires [5, 12] units of CPU resources and

[10, 15] units of memory resources (i.e., 5 ≤ φCPUk,j ≤ 12 and

10 ≤ φMEMk,j ≤ 15).

As many methods aim to deploy VNFs on the fewest PMs

to raise their utilization, we take the best-fit (BF) method for

comparison. BF allocates the smallest free partition that meets

the demand of a requesting process, which is widely used to

improve hardware utilization [19]. Two variations of BF are

proposed. The BF-VNF method finds a PM for each VNF such

that the PM can fulfil the VNF’s demand and has the minimum

residual resources. For each SFC, the BF-SFC method picks

a PM with the least residual resources which can allocate the

maximum number of its VNFs. This operation is repeated until

all VNFs of the SFC have been deployed or no PMs can be

found to serve its VNFs.

Except BF-VNF and BF-SFC, we also compare our LBVD

scheme with the efficient VNF deployment (EVD) method [15].
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Fig. 2. Comparison on the JFI.

Similarly, EVD uses two thresholds δCPU and δMEM to check if a

PM becomes overloaded. If so, a VNF of the PM will migrate

to another PM. We set both thresholds to 0.85 and 0.95. In

the LBVD scheme, we set L = 3.

Since the number of resources requested by VNFs is smaller

than the number of resources possessed by PMs, the service

ratio of every method is 100%, which means that all methods

can successfully deploy the total VNFs. Thus, our discussion

aim at both fairness (i.e., JFI) and cost (including the deploy-

ment and migration costs).

A. Comparison on Fairness

In this experiment, we add SFCs to the cloud network one

by one and then evaluate the JFI of each method, whose result

is given in Fig. 2. As can be seen, the JFI increases when more

SFCs are added, because more PMs are assigned with VNFs

and their loads become more “balanced”. On the other hand,

the performance of each method (in terms of the JFI) is similar

on different network topologies. This means that changing the

topology has insignificant impact on the fairness of PMs.

As BF’s policy is to find a PM with the minimum (enough)

resources to serve each VNF (or SFC), some PMs will have

heavy loads while other PMs are almost idle. Thus, BF results

in the lowest JFI. BF-SFC finds a PM to serve the maximum

number of VNFs in one SFC, so it would incline to deploy

VNFs on those PMs with more resources, as compared with
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BF-VNF. That is why BF-SFC has a higher JFI than BF-VNF.

By transferring some VNFs of overloaded PMs to light-load

PMs, EVD can increase the JFI. On the other hand, our LBVD

scheme not only exploits VNF migration for load sharing, but

also deploys VNF on high-score PMs for load balance. Thus,

LBVD can substantially increase the JFI, which shows that it

can efficiently improve the fairness of PMs in a cloud network.

Notice that when thresholds (i.e., δCPU and δMEM) are set to 0.85,

it is easier to trigger VNF migration in both EVD and LBVD.

That is why they have better performance when thresholds are

set to 0.85 (as compared with the case of 0.95).

B. Comparison on Costs

Fig. 3 shows the total deployment cost of all SFCs. When

an SFC has a higher deployment cost, it requires more hops

between PMs to be spanned to carry out the SFC’s VNFs.

Since the mean path length can reduce in the jellyfish topology

than in the fat-tree topology [20], each PM would have more

choices of neighbors for VNF deployment or migration in the

jellyfish topology. Thus, all methods have lower deployment

costs in the jellyfish topology.

Since BF will use as few PMs as possible to deploy VNFs,

the deployment cost will be predictably low. Specifically, BF-

SFC prefers deploying the VNFs of an SFC on the same PM,

so it has the lowest deployment cost. On the other hand, EVD

divides PMs into groups for VNF deployment, but it does not

consider the locations of PMs in each group. Some VNFs of

the same SFC may be deployed on PMs far away from each

other. Thus, EVD results in the highest deployment cost. In our

LBVD scheme, the placement module seeks to deploy a VNF

vk,j on a 1-hop neighbor of the PM that serves the previous

VNF vk,j−1. In this way, LBVD can reduce the deployment

cost. As compared with the EVD method, our LBVD scheme

can save 46.4% and 44.6% of the deployment cost in the fat-

tree and jellyfish topologies, respectively.

Fig. 4 compares the migration cost, which is defined as the

total number of hop counts that VNFs migrate. Since BF-VNF

and BF-SFC do not allow VNFs to migrate, their results are

not presented in Fig. 4. As mentioned earlier, when thresholds

δCPU and δMEM are set to 0.85, it becomes easier to trigger VNF

migration in EVD and LBVD. Thus, the migration cost will

increase accordingly. In the EVD method, the migration of
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VNFs does not consider the locations of PMs. On the contrary,

our LBVD scheme restricts a VNF to migrate at most L hops.

Thus, LBVD has a much lower migration cost than EVD. In

particular, LBVD can save 71.6% and 71.5% of the migration

cost in the fat-tree and jellyfish topologies, respectively, as

compared with EVD.

VI. CONCLUSION AND FUTURE WORK

NFV abstracts network functions as VNFs, which facilities

service deployment and resource management. How to assign

the VNFs of each SFC to PMs, namely the VNF deployment

problem, makes a great impact on NFV’s performance. Many

methods deploy VNFs on the fewest PMs, which would cause

unbalanced loads of PMs. This paper thus proposes the LBVD

scheme, which comprises two modules. The placement module

differentiates between the first VNF and other VNFs of each

SFC and deploys them on high-score PMs. If a PM becomes

overloaded, the migration module transfers its VNF to another

PM for load balance. Simulation results show that the LBVD

scheme has much higher JFIs than the BF-VNF, BF-SFC, and

EVD methods in the fat-tree and jellyfish topologies of PMs.

Moreover, LBVD can efficiently reduce both deployment and

migration costs, as compared with EVD.

In this paper, we consider CPU and memory as the resources

when scheduling VNFs. For future work, we will take account

of more types of resources such as GPU (graphics processing

unit), network, and FPGA (field programmable gate array). On

the other hand, it is interesting to apply the LBVD scheme

to other topologies of PMs (e.g., leaf-spine [21]) and evaluate

the effect caused by the different topologies. Moreover, how to

deploy VNFs in a cloud network to achieve Pareto optimality

[22] deserves further investigation.
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