
URBM: User-Rank-Based Management of Flows in

Data Center Networks through SDN

You-Chiun Wang

Department of Computer Science and Engineering

National Sun Yat-sen University

Kaohsiung, Taiwan

ycwang@cse.nsysu.edu.tw

Ting-Jui Hsiao

Department of Computer Science and Engineering

National Sun Yat-sen University

Kaohsiung, Taiwan

ss910034@gmail.com

Abstract—A data center network (DCN) is composed of many
servers and switches, and how to manage flows makes a great
impact on its performance. The paper applies the software-defined
networking technology to flow management in a fat-tree DCN
with hybrid switches, where electrical switches form the network
backbone, while optical switches provide fast links. Considering
that flows have different ranks, we propose a user-rank-based
management (URBM) scheme to improve DCN throughput and
offer differentiated QoS supports to flows based on their ranks.
Low-rank flows have limits on using fast links, and their users
should pay extra fees. If some links become busy, URBM finds
substitute paths to reroute their flows. Alternatively, it restricts
bandwidth usage of flows, where high-rank flows can use more
bandwidth to satisfy QoS demands. With the price elasticity of
demand model, we develop a pricing method to compute extra
fees for low-rank users to use fast links. Simulation results show
that URBM can improve flow throughput, provide better QoS
supports for high-rank users, and raise the operator’s revenue.

Keywords—data center network, flow management, OpenFlow,
pricing, software-defined networking.

I. INTRODUCTION

Data center networks (DCNs) have been widely deployed

to deliver various services such as cloud computing. A DCN

contains many servers interconnected by switches, usually in

a regular topology (e.g., fat tree and jellyfish) [1]. Since the

amount of traffic could be large, it plays a key role in DCN per-

formance to efficiently route flows between servers. Traditional

switches forward packets based on a given routing protocol

[2]. If congestion occurs, it usually relies on administrators to

reconfigure the involved switches to alter their packet routing,

which incurs a high cost [3].

To conquer this problem, the software-defined networking

(SDN) technique separates the control plane from each switch

and hands it over to a controller [4]. Thus, the controller can

query switches about their statuses and also issue commands

to them. In this way, it becomes easy to monitor network situ-

ation and change behavior of switches through the controller,

thereby facilitating network management.

To save the hardware cost, many operators adopt electrical

switches in their DCNs, which transmit data through Ethernet

cables (ECs). However, ECs are vulnerable to the attenuation

of electrical signals, which limits their transmission speeds.

Optical switches send light signals via optical fibers (OFs),

which overcomes this difficulty. They can also communicate

with electrical switches by transferring light signals to electri-

cal signals [5]. However, optical switches are more expensive

than electrical switches. An economical solution is to add a

few optical switches and make them cooperate with electrical

switches [6]. Our work takes the above hybrid-switch solution,

where electrical switches serve as the network backbone, while

optical switches provides fast links.

This paper aims to exploit SDN to manage flows in a DCN

with hybrid switches, whose topology is a common fat tree.

Besides, users can choose to pay different unit prices and have

different priorities and QoS supports accordingly. In particular,

we divide users into three ranks (i.e., RA, RB, RC ranks) [7],

and propose a user-rank-based management (URBM) scheme.

RA and RB flows can directly use fast links, but the latter

has a limited quota. With extra frees, RC flows are allowed to

use fast links to improve throughput. The controller monitors

network status and checks if some links are congested. If so,

it seeks for substitute links or limits bandwidth usage of flows

based on their ranks. As low-rank users need to pay extra fees

for using fast links, we propose a pricing method to calculate

reasonable fees, which considers the price elasticity of demand

(PED) model [8]. Through simulations, we verify that URBM

can improve flow throughput, offer different QoS supports to

users, and increase the operator’s revenue.

II. RELATED WORK

Some studies manage flows in non-SDN-based DCNs. The

study [9] first meets the demands of urgent flows by using the

minimum bandwidth, and schedules other flows to shorten the

competition time. In [10], each switch can differentiate flows

by using multiple queues to store their packets. The work [11]

lets switches record next-hop candidates for each destination

in their routing tables. Then, each switch finds routes for flows

to balance workloads of its ports. The study [12] assumes that

each top-of-rack switch can connect with other switches in the

DCN. If a top-of-rack switch is busy, it reroutes some flows to

other switches to mitigate congestion. Wang et al. [13] apply

machine learning to flow management in a multi-tenant DCN.

Various issues relevant to flow management in SDN-based

DCNs are discussed. The study [14] finds working and recov-

ery paths for flows. A low-rank flow will use the recovery path

only if its working path fails. A high-rank flow can use both

AGG

tier

Core

tier

Edge

tier

Pod

1

Pod

2

Pod

3

Pod

4

Electrical

switch

Optical

switch
EC OF

s1 s2 s3 s4

s5 s6
s7 s8

s9 s10
s11 s12

s13 s14 s15 s16 s17 s18 s19 s20

h16h15h14h13h12h11h10h9h8h7h6h5h4h3h2h1

Server

Fig. 1. Fat-tree DCN with electrical and optical switches, where m = 4.

TABLE I
SPECIFICATION OF FLOWS BASED ON USER RANKS.

Rank Price QoS support Using OF links

RA PA (QA)% bandwidth reserved No limit
RB PB (QB)% bandwidth reserved With quota ΛB

RC PC No bandwidth reserved Extra fees

paths to raise throughput. Pang et al. [15] combine multipath

TCP and segment routing to improve the DCN’s performance

while saving the deployment cost. The work [16] proposes a

detection mechanism to find elephant flows that carry volumes

of data. Zaher et al. [17] propose a flow scheduling method to

maintain throughput of elephant flows. Evidently, these studies

have different objectives with ours.

A number of flow management methods based on SDN are

developed for fat-tree DCNs. Long et al. [18] find alternative

paths for flows on busy links. If the network utilization exceeds

a threshold, the controller chooses the flow which spends the

maximum bandwidth from the busiest link, and reroutes it to a

lower-load path. The dynamic load-balanced path optimization

(DLPO) method [19] adopts the simple moving average of the

variance of link loads to check whether link congestion occurs.

If so, DLPO selects top 10% of the busiest links and reroutes

their flows to other links with smaller utilization. The study

[20] finds the shortest paths from each server to others and

computes every link’s cost. When congestion occurs in a path,

it replaces this path with a substitute path whose link cost is

the minimum. The low-cost, load-balanced route management

(L2RM) method [21] checks if some links are busy by a load-

deviation factor. Then, L2RM uses a group table to split flows

by sending their packets along multiple paths, so as to mitigate

congestion. As can be seen, none of these methods addresses

user differentiation. This motivates us to propose the URBM

scheme that can flexibly adjust routing paths and bandwidth

usage of flows according to their ranks and demands, so as to

provide different QoS supports to users.

III. SYSTEM MODEL

We consider an SDN-based DCN, as shown in Fig. 1. The

topology is an m-ary fat tree, where each switch has m ports.

It arranges switches into three tiers: edge, aggregation (AGG),

and core. Edge and AGG switches are divided into m groups

(known as pods). Each pod has 1

2
m edge switches and 1

2
m

AGG switches, so every edge switch can connect with 1

2
m

TABLE II
SUMMARY OF NOTATIONS.

Notation Definition

RA, RB, RC User ranks (priority: RA > RB > RC)
PA, PB, PC Unit prices for RA, RB, and RC users
QA, QB QoS supports for RA and RB users

ΛB Quota for RB flows to use OF links
ΓP, ΓR, ΓD Port, route, and delay tables
bmax

k
, buse

k
Maximum and consumed bandwidth of the k-th port

L̂top
EC , L̂top

OF Sets of EC and OF links in the top layer

L̂pod
n Set of links in the n-th pod

δlow, δhigh Thresholds used in the congestion eliminating module

AGG switches and 1

2
m servers. Furthermore, each core switch

connects with an AGG switch in every pod. There are at most
1

4
m2 core switches. In theory, the fat tree can employ 5

4
m2

switches to interconnect 1

4
m3 servers. This topology has two

benefits [1]. First, it becomes easy to add switches and broaden

the DCN’s scale. Second, we can find multiple shortest paths

between any two servers in the DCN.

The DCN comprises hybrid switches. There is one optical

AGG switch using OFs to connect with every edge switch in

each pod. Besides, there is also an optical switch in the core

tier used to connect with these optical switches in the AGG

tier via OFs. All other switches are electrical, which connect

with neighbors via ECs. The transmission speed of an OF is

dozens or even hundreds of times of that of an EC, so optical

switches can support high-speed communications in the DCN.

Let Rx be the rank of a user. Without loss of generality, we

consider three ranks of users (i.e., x ∈ {A,B,C}). RA, RB,

and RC users are charged with unit prices PA, PB, and PC

for bandwidth usage, where PA > PB > PC, and have high,

medium, and low priorities, respectively. The priority decides

not only the degree of QoS support, but also the restriction on

using OF links, as shown in Table I. For QoS support, if a link

is busy, at least QA and QB percents of the link’s bandwidth

should be reserved for RA and RB flows, respectively, where

QA > QB (e.g., QA = 80 and QB = 60). When both RA and

RB flows are sent via a busy link, the QA requirement should

be satisfied first (as RA flows have a higher priority than RB

flows). For RC flows, we adopt the best-effort policy, which

means that no bandwidth is reserved for them. Moreover, RA

users can use OF links at the basic fee. Each RB flow is given

with a quota ΛB on using OF links. Once the flow uses up

the quota, its user has to pay extra fees. RC flows are only

allowed to use OF links with extra fees. RB and RC users can

choose not to pay extra fees. In this case, their flows may not

use OF links (the detail will be discussed in Section IV-B).

Our objective is to manage flows based on their ranks and

demands, so as to mitigate congestion and improve throughput

in the DCN. Moreover, we also develop a pricing method by

considering the PED model to compute reasonable user fees.

Table II summarizes the notations.

IV. THE URBM SCHEME

The URBM scheme has five modules. The table maintaining

module helps the controller keep abreast of the network state.

TABLE III
EXAMPLES OF STATUS TABLES.

(a) Port table ΓP:

Switch Maximum and consumed bandwidth of each port

s1 (1, 104, 3430), (2, 104, 7217), (3, 104, 2105), (4, 104, 4323)

s6 (1, 104, 5811), (2, 106, 281327), (3, 106, 93873), (4, -1, -1)

(b) Route table ΓR:

Server pair Edge switches AGG and core switches

h1 ⇔ h2 {s13}
h1 ⇔ h4 {s13, s14} {s5}, {s∗

6
}

h1 ⇔ h6 {s13, s15} {s5, [s1, s2], s7}, {s∗
6

, [s3, s∗
4

], s∗
8
}

(c) Delay table ΓD:

Edge switch AGG switch Packet delay

s13 s5 15.34

s14 s6 3.96

The route building module finds routing paths for new flows.

The two-layer checking module judges whether some links are

busy, and then the congestion eliminating module adjusts flows

sent by busy links based on their ranks and demands. Finally,

the price evaluating module calculates user fees.

A. Table Maintaining Module

The controller regularly queries each switch about its status

and takes down the collected information in three status tables.

In this way, it can check if congestion occurs, and then adjust

routes or bandwidth usage of flows by consulting these tables.

First, the port table ΓP records the bandwidth consumption

of switches. The format of each entry is “switch, (1, bmax
1 ,

buse1), · · · , (m, bmax
m , busem)”. Here, bmax

k and busek indicate the

maximum bandwidth and the consumed bandwidth of the k-

th port in the switch, respectively (k = 1..m), where the unit

is kbps. To do so, the controller queries a switch about the

number ϕTx
k of bits sent and the number ϕRx

k of bits received

by its k-th port in the last period. Then, busei is calculated by

busek =
ϕTx
k + ϕRx

k

1000×∆t

, (1)

where ∆t is the period length (in seconds). Table III(a) gives

an example, where the capacity of ECs and OFs is 10Mbps and

1Gbps, respectively. Note that if a port is unused or broken,

both bmax
k and busek are set to −1 (e.g., s6’s 4th port). Then,

Theorem 1 analyzes the size of table ΓP.

Theorem 1. The port table ΓP contains 5

4
m2(3m+ 1) items

for an m-ary fat-tree DCN in the worst case.

Proof. An m-ary fat tree contains at most 5

4
m2 switches. In

ΓP, we record the identification of every switch and also three

items for each of its m ports (i.e., port #, bmax
i , busei). So, ΓP

has 5

4
m2(3m+ 1) items in the worst case.

Second, the route table ΓR records the shortest routing paths

between any two servers. As mentioned in Section III, servers

connect to edge switches, while AGG and core switches offer

multiple choices of routes. Based on this structure, we propose

an efficient storage method for ΓR, as referred to Fig. 1 and

Table III(b). Let hx and hy be the source and the destination,

respectively. The storage method has the following three rules:

Controller (Edge) si (AGG) sj
LLDP request

LLDP reply

Forward

LLDP request

Forward
LLDP reply

LLDP request

LLDP reply

LLDP request

LLDP reply

t1

t2

t3

t4

R
o

u
n

d
-t

ri
p

 t
im

e

Fig. 2. Four-step method to estimate delay τi,j of a link (si, sj) by LLDP.

1-1. Both hx and hy connect with an edge switch si. In this

case, we can record just si in ΓR. For example, the path from

h1 to h2 includes only s13.

1-2. hx and hy are in the same pod, but they are not linked

by the same edge switch. The shortest path will start from the

edge switch linking to hx and end at the edge switch linking

to hy . Moreover, there are 1

2
m choices of AGG switches. Take

h1 and h4 as an example. There are two paths: 〈s13, s5, s14〉
and 〈s13, s6, s14〉 (we omit h1 and h4). The notation ‘∗’ means

that a switch is optical (i.e., the path has OF links).

1-3. hx and hy are in different pods. Thus, there may exist

m paths, each including a core switch. We use square brackets

(i.e., ‘[]’) to indicate alternative switches in the core tier. Take

h1 and h6 as an example. There are four paths from h1 to h6:

〈s13, s5, s1, s7, s15〉, 〈s13, s5, s2, s7, s15〉, 〈s13, s6, s3, s8, s15〉,
and 〈s13, s6, s4, s8, s15〉.

As the fat tree has a symmetrical structure, the shortest paths

from hy to hx must be identical to those from hx to hy (in a

reverse sequence). Thus, we need not store the shortest paths

from hy to hx in ΓR. Theorem 2 analyzes the size of ΓR.

Theorem 2. Given an m-ary fat tree, there are at most 1

8
(m3−

m4 − 1

4
m5 + 1

8
m6 + 1

2
m7) switches recorded in table ΓR by

using our storage method.

Proof. In rule 1-1, each edge switch can connect with at most
1

2
m servers, so there are 1

4
m possible combinations of server

pairs. Since there are 1

2
m2 edge switches in the fat tree, we

record no more than 1

4
m× 1

2
m2 switches by rule 1-1.

In rule 1-2, we have 1

2
m× 1

4
m2(1

4
m2− 1

2
m) combinations.

From Table III(b), each path for a server pair includes 2 edge

switches and 1

2
m AGG switches. Therefore, we record at most

1

2
m× 1

4
m2(1

4
m2 − 1

2
m)× (2 + 1

2
m) switches by rule 1-2.

In rule 1-3, there exist 1

8
m3(1

4
m3 − 1

4
m2) combinations.

Similarly, each path for a server pair contains 2 edge switches,

m AGG switches, and m core switches, so we record at most
1

8
m3(1

4
m3 − 1

4
m2)× (2 + 2m) switches by rule 1-3.

By summing the maximum number of switches recorded in

each rule, we can thus verify this theorem.

Third, the delay table ΓD records the average packet delay

of each link in pods. The format of each entry is “si, sj , τi,j”,

where si and sj are the edge and AGG switches that connect

with each other, and τi,j gives the packet delay of link (si, sj)

(measured in ms). An example is presented in Table III(c). To

estimate τi,j , we propose a four-step method by using the link

layer discovery protocol (LLDP), as shown in Fig. 2. In step 1,

the controller sends si an LLDP request that queries sj . In this

case, si forwards the request to sj , and sj sends an LLDP reply

to the controller. In step 2, the controller sends sj an LLDP

request that queries si. In step 3, the controller sends si one

LLDP request which queries si. In step 4, the controller sends

sj an LLDP request that queries sj . Let tx be the round-trip

time in step x (x = 1, 2, 3, 4). Then, the average packet delay

of link (si, sj) can be calculated by τi,j =
1

2
(t1+t2−t3−t4).

In Theorem 3, we analyze the size of table ΓD and also the

message cost to update it.

Theorem 3. Given an m-ary fat tree, table ΓD has no more

than 1

4
m3 entries. To update ΓD, the controller needs to send

at most m3 LLDP requests to edge and AGG switches.

Proof. The number of ΓD’s entries will be equal to the number

of links between edge and AGG switches. From Fig. 1, each

edge switch connects with all AGG switches in a pod. Since

the fat tree has m pods, where each pod has 1

2
m edge switches

and 1

2
m AGG switches, there are no more than (m× 1

2
m× 1

2
m)

links between edge and AGG switches. In other words, ΓD has
1

4
m3 entries in the worst case. Because it requires four LLDP

requests to estimate τi,j for every link, the message cost (in

terms of LLDP requests) to update ΓD is 1

4
m3×4 = m3.

B. Route Building Module

Whenever a flow is generated, the controller determines its

routing path based on the route table ΓR. If there are multiple

choices (i.e., rules 1-2 and 1-3), we select the path such that

the average load of its links is the minimum. Specifically, the

load of a link li is calculated by busei /bmax
i , where busei and

bmax
i are the consumed and maximum bandwidths of li (these

two parameters can be found in the port table ΓP).

As mentioned in Section III, RA users need not pay extra

fees for using OF links. On the other hand, RB and RC users

can indicate their volition on whether to pay extra fees in the

contracts. If a user prefers not to pay extra fees, the controller

puts a constraint on the route selection for the user’s flows.

More concretely, for RB users, their flows can be sent via OF

links up to a limit. Once an RB flow uses up quota ΛB, the

controller replaces its path by another path without OF links.

For RC users, the controller avoids selecting paths that include

OF links to send their flows. This can be done by removing

the AGG and core switches with the ‘*’ mark from the choices

of routes, as shown in Table III(b).

C. Two-Layer Checking Module

This module checks whether some links are busy. Let us

observe the topology in Fig. 1, all links between switches can

be divided into two layers. The top layer includes the links

between core and AGG switches, and the pod layer contains

the links between AGG and edge switches. These two layers

of links have different traffic patterns, so we propose different

checking methods for them.

�-4� �-3� �-2� �-� �+� �+2� �+3� �+4�

Z-score-4 -3 -2 -1 +1 +2 +3 +4

Top 16%

�

34.1

%

34.1

%

13.6

%

13.6

%

2.1%2.1%
0.1% 0.1%

Fig. 3. Normal distribution and z-scores.

1) Top-Layer Checking Method: Top-layer links are used to

route cross-pod packets, so their traffic may be more diverse.

To find busy links, we adopt the z-score solution. As OFs can

carry far more traffic than ECs, they are handled separately.

Let L̂top
EC denote the set of EC links in the top layer. Then, the

z-score of each EC link li ∈ L̂top
EC is estimated by

zi = (busei /bmax
i − µtopEC)/σtopEC , if σtopEC 6= 0, (2)

where µtopEC is the average load of EC links in L̂top
EC :

µtopEC = (
∑

∀lj∈L̂
top

EC

busej /bmax
j)/|L̂top

EC |, (3)

and σtopEC is the standard deviation of EC-link loads in L̂top
EC :

σtopEC =

√

(
∑

∀lj∈L̂
top

EC

(busej /bmax
j − µtopEC)2)/|L̂top

EC |. (4)

Suppose that the loads of EC links in L̂top
EC follow a normal

distribution, as shown in Fig. 3. When zi > 1, it means that

li’s load exceeds (µtopEC +σtopEC), and li belongs to the top 16%

of the busiest links in L̂top
EC . In view of this, we treat li as a

busy EC link if its z-score is larger than one.

Similarly, let L̂top
OF be the set of OF links in the top layer.

we can find the average µtopOF and the standard deviation σtopOF

of OF-link loads in L̂top
OF by Eqs. (3) and (4), respectively,

where L̂top
EC is replaced by L̂top

OF . After that, we can calculate

the z-score of each OF link in L̂top
OF by Eq. (2) with parameters

µtopOF and σtopOF , and then judge whether that link is busy.

2) Pod-Layer Checking Method: As their names suggest,

pod-layer links are used for intra-pod communications. In a

fat tree, every pod has a similar structure, as shown in Fig. 1.

Thus, we can measure the average load of links in each pod,

and check if congestion occurs in some pods. Let L̂pod
n be the

set of links in the n-th pod. Since L̂pod
n has ECs and OFs, we

find the weighted arithmetic average of all links in L̂pod
n :

µpodn =

∑

∀lj∈L̂
pod
n

wj × (busej /bmax
j)

∑

∀lj∈L̂
pod
n

wj

, (5)

where wj is the weight of a link lj , which is set as follows:

wj =

{

bmax

EC

bmax

EC +bmax

OF

if lj is an EC
bmax

OF

bmax

EC +bmax

OF

if lj is an OF,
(6)

where bmax
EC and bmax

OF denote the maximum bandwidth of ECs

and OFs, respectively. Evidently, OF links have larger weights

than EC links due to bmax
OF > bmax

EC .

Let Ψ be the set of all links in the pod layer. Then, L̂pod
n ’s

z-score is estimated as follows:

zpodn = (µpodn − µΨ)/σΨ, if σΨ 6= 0 (7)

where

µΨ =
∑

∀L̂
pod
x ⊂Ψ

µpodx /|Ψ|. (8)

σΨ =

√

∑

∀L̂
pod
x ⊂Ψ

(µpodx − µ
Ψ
)2/|Ψ|. (9)

If zpodn > 1, then congestion occurs in the n-th pod.

D. Congestion Eliminating Module

This module mitigates congestion of a busy link according

to its layer and type, which considers three cases below.

1) Top-Layer EC Links: Let li be a busy EC link in L̂top
EC

and bresi be li’s residual bandwidth (i.e., bresi = bmax
i − busei).

As each AGG switch connects with 1

2
m core switches, there

will exist other paths to help route li’s packets in the top layer.

Fig. 1 presents an example, where link (s5, s1) is busy, and

link (s5, s2) has more residual bandwidth than link (s5, s1).
For path 〈s5, s1, s7〉 which contains the busy link, there is an

alternative path 〈s5, s2, s7〉 to share its load. Here, we call link

(s5, s2) a helper for busy link (s5, s1).
Suppose that link lh is the helper for li (i.e., bresh > bresi).

When there are multiple helpers, we choose the one with the

largest bresh value. However, if no helper is found, we employ

the method in Section IV-D2 to limit bandwidth usage of flows

sent via li. Otherwise, we ask lh to share li’s load by rerouting

some of its packets via lh, which can be performed through the

group table. To do so, we use two thresholds δlow and δhigh
to adjust bucket weights in the group table, which decide the

ratio of packets sent via li and lh, where 0 < δlow ≤ 0.25 and

0.75 ≤ δhigh < 1. There are three rules to set bucket weights:

2-1. δlow ≤ bresi /bresh ≤ δhigh. To ensure that the amount

of data sent through li and lh is proportional to their residual

bandwidth, we set budget weights of li and lh to
100×bresi

bres
i

+bres
h

and

(100−
100×bresi

bres
i

+bres
h

), respectively. For instance, if bresi = 3500 kbps

and bresh = 5000 kbps, li’s budget weight is 100×3500

3500+5000
≈ 41

and lh’s budget weight is 59.

2-2. bresi /bresh < δlow. In this case, li is seriously congested.

If we apply rule 2-1, lh may be flooded with li’s packets and

become busy. Even worse, budget weights of li and lh will be

frequently exchanged, causing a ping-pong effect. Thus, we

set budget weights of li and lh to (100 × δlow) and 100(1 −
δlow), respectively. For example, suppose that bresi = 850 kbps,

bresh = 9950 kbps, and δlow = 0.2. If rule 2-1 is applied, budget

weights of li and lh are 100×850

850+9950
≈ 8 and 92, respectively,

which have extreme values. Instead, we set budget weights of

li and lh to 20 and 80, respectively, so as to solve the problem.

2-3. bresi /bresh > δhigh. The loads of li and lh are similar.

If lh has enough bandwidth (e.g., bresh /bmax
h ≥ 0.2), we set

budget weights by rule 2-1. Otherwise, both li and lh are busy,

so we adopt the method in Section IV-D2 to limit bandwidth

usage of flows sent by these links.

TABLE IV
EXAMPLES OF MITIGATING CONGESTION IN TOP-LAYER OF LINKS.

(a) All flows in F̂i are homogeneous:

Flow Size Queue Max-rate Allocation

f1 900 Mbps Queue 0 600 Mbps 600 Mbps
f2 600 Mbps Queue 1 400 Mbps 400 Mbps

(b) Flows in F̂i are heterogeneous:

Flow Size Meter-rate Queue Max-rate Allocation

f1 900 Mbps 800 Mbps Queue 0 480 Mbps 480 Mbps
f2 600 Mbps 800 Mbps Queue 1 320 Mbps 320 Mbps
f3 500 Mbps 200 Mbps - - 200 Mbps

2) Top-Layer OF Links: Since the capacity of an OF link

is much larger than that of an EC link, it is not a good idea to

ask EC links to share the loads of OF links (as these EC links

would be seriously congested). In view of this, we restrict the

amount of bandwidth used by each flow on busy OF links.

Let li be a busy OF link in L̂top
OF and F̂i be the set of flows

sent via li. When all flows in F̂i are homogeneous (i.e., they

have the same rank), we use the Set Queue operation to allot

bandwidth to them. More concretely, each port of the switch

is associated with eight queues in OpenFlow. We assign each

flow fj ∈ F̂i to one queue, and find its max-rate (which gives

the upper bound on bandwidth usage for the flow) as follows:

S̃(fj)× bmax
i

∑

∀fx∈F̂i
S̃(fx)

, (10)

where S̃(fj) denotes fj’s size (i.e., traffic amount). Thus, li’s
bandwidth is allocated to flows in proportion to their sizes.

Table IV(a) gives an example, where two RA flows f1 and

f2 are sent via the same OF link whose capacity is 1 Gbps.

Then, the amount of bandwidth allocated to f1 and f2 will be
900

900+600
× 1Gbps = 600Mbps and 400Mbps, respectively.

When F̂i contains heterogeneous flows, we provide different

QoS supports based on their ranks. Recall that QA and QB

percents of li’s bandwidth are reserved for RA and RB flows,

respectively. Thus, we divide F̂i into three subsets F̂A
i , F̂B

i ,

and F̂C
i that include all RA, RB, and RC flows, respectively.

Then, we use a meter table to adjust bandwidth usage of flows

[22]. For F̂A
i , the meter-rate is set to

βA = min

{

∑

∀fj∈F̂A

i

S̃(fj), b
max
i ×QA%

}

. (11)

Here, once the total size of RA flows in F̂A
i is above the QA

quota, we give them (bmax
i × QA%) bandwidth. For F̂B

i the

meter-rate is set to

βB = min

{

∑

∀fj∈F̂B

i

S̃(fj), b
max
i ×QB%, bmax

i − βA

}

.

(12)

If RA and RB flows coexist, the QA demand should be met

first. That is why we include the term (bmax
i −βA) in Eq. (12).

Then, RC flows can use only the residual bandwidth (as the

best-effort policy is taken), so the meter-rate for F̂C
i is set to

βC = bmax
i − βA − βB. (13)

Afterward, the Set Queue operation is used to allot bandwidth

to each flow in a subset. Take an example in Table IV(b),

where F̂A
i = {f1, f2}, F̂B

i = {f3}, bmax
i = 1Gbps, QA =

80, and QB = 60. The meter-rate for F̂A
i is min{900Mbps+

600Mbps, 1Gbps × 80%} = 800Mbps. By Eq. (10), f1 and

f2 can obtain bandwidth of 900

900+600
× 800Mbps = 480Mbps

and 600

900+600
× 800Mbps = 320Mbps, respectively. Then, the

meter-rate for F̂B
i is min{500Mbps, 1Gbps× 60%, 1Gbps−

800Mbps} = 200Mbps. As F̂B
i contains only f3, it can get

200Mbps bandwidth.

3) Pod-Layer Links: When a pod is congested, we select

the busiest link li in the pod and adjust its flows. If the link

carries only intra-pod flows (i.e., rule 1-2), we employ the

methods in Sections IV-D1 and IV-D2 to eliminate congestion.

However, if there exist inter-pod flows (i.e., rule 1-3), changing

the subpath in the pod may also alter the subpath in the top

layer. Fig. 1 shows as an example, where servers h1 and h9

are the source and destination, respectively. Suppose that the

initial path is 〈s13, s5, s1, s9, s17〉, and link (s13, s5) is busy.

If we replace link (s13, s5) by link (s13, s6), the new path will

be 〈s13, s6, s3 (or s4), s10, s17〉. Apparently, the change in the

path is drastic, and some links may be burdened with heavy

loads. In this case, we may have to also mitigate congestion

in these links, which increases the controller’s workload.

Instead, we choose one substitute subpath Υi in the pod (to

replace li) without changing the residual subpath. For example,

the substitute subpath for link (s13, s5) is 〈s13, s6, s14, s5〉. If

Eq. (14) holds, we reroute li’s packets via subpath Υi:
∑

∀lj∈Υi

τj ≤ ατi, (14)

where τj is the average packet delay of link lj (referring to the

delay table ΓD) and α ∈ (0, 1] is a coefficient. From Eq. (14),

even if the substitute subpath is longer, we can still reduce the

average packet delay of flows, as li’s packets can be sent by

links of Υi in a shorter time due to their smaller loads.

E. Price Evaluating Module

Each switch counts the amount of bandwidth usage of flows

via its ports. Then, the controller periodically gathers statistics

from switches and calculates user fees by using this module,

which takes account of both basic fees and extra fees.

For basic fees, we adopt the pay-as-you-go (PAYG) method

[23]. Specifically, the basic fee of a flow fj is estimated by

εBFj = Pj × ζj , (15)

where Pj is the unit price, which is set to PA, PB, and PC if

fj’s rank is RA, RB, and RC, respectively. Besides, ζj is the

amount of fj’s bandwidth usage that the basic fee can cover,

which depends on its rank. For the case of RA (i.e., fj is a

RA flow), ζj is the total bandwidth spent by fj . For the case

of RB, each RB flow is given a quota ΛB on using OF links

at the basic fee. Let ζECj and ζOFj be the amount of bandwidth

that fj uses on EC and OF links, respectively. Then, we set

ζj to ζECj + ζOFj if ζOFj < ΛB and ζECj +ΛB otherwise. For the

case of RC, the basic fee covers merely the bandwidth usage

on EC links, so we have ζj = ζECj .

If RB and RC users want to use OF links, they may have to

pay extra fees. To avoid overcharging them, we take the PED

model. Specifically, the relationship between user demand d̃i
and price p̃i is expressed by d̃i = λp̃−ν

i , where λ is a scaling

factor and ν is the price elasticity. Here, we derive that

d̃2/d̃1 = (p̃1/p̃2)
ν

⇒ ν =
ln(d̃2/d̃1)

ln(p̃1/p̃2)
. (16)

From Eq. (16), a larger ν value implies that lowering price can

raise user demand, so the service is more elastic. Afterward,

we modify the pricing equations in [24], which takes the PED

model into account, to calculate the extra fee:

RB: εEFj = (PA + νB)× (ẽ− ẽ−1)× (ζOFj − ΛB), (17)

RC: εEFj = (PA + νC)× (ẽ− ẽ−2)× ζOFj , (18)

where νB and νC denote the price elasticity of RB and RC

users, respectively, and ẽ is the Euler’s number. Note that the

condition ζOFj > ΛB holds in Eq. (17), or fj’s user need not

pay the extra fee. Specifically, we take the unit price of RA

flows (i.e., PA) as the basis, and add additional prices νB and

νC for RB and RC flows in Eqs. (17) and (18), respectively.

Because νB < νC and ẽ−1 > ẽ−2, RB users can pay less

money than RC users for using OF links to route their flows.

V. PERFORMANCE EVALUATION

We adopt the Mininet simulator [25] to evaluate the system

performance, where the controller and all switches are imple-

mented by the Ryu framework [26] and Open vSwitch module

[27], respectively. Fig. 1 gives the network topology, where the

capacity of EC and OF links is set to 10 Mbps and 1 Gbps,

respectively. We use the iPerf tool [28] to simulate the gener-

ation of flows. Each flow is a TCP connection that produces

packets in a three-stage manner: (1) keep transmitting packets,

(2) send packets every 10 seconds, and (3) send packets per 50

seconds. Flows may have different starting stages. Moreover,

two scenarios are considered. In scenario I, we randomly pick

12 servers as sources. They will send packets to 4 servers in

the same pod. Scenario I is used to make congestion in a pod.

In scenario II, 2 servers are selected as sources, which send

packets to all other servers. In this case, congestion will occur

at the edge switch that connects with a source.

We compare URBM with two SDN-based methods men-

tioned in Section II. DLPO [19] transfers some flows of the top

10% busiest links to other links. L2RM [21] sends the packets

of a flow via multiple paths by using the group table. Since

DLPO and L2RM do not consider user ranks, we also propose

a bandwidth-limiting flow management (BLFM) method for

comparison. BLFM is similar to URBM. However, when links

are busy, BLFM only limits bandwidth usage of flows (through

the meter table and Set Queue operation), without rerouting

their packets to other paths. By comparing BLFM, we can

evaluate the performance of changing routes in our URBM

scheme. Each experiment is repeated 10 rounds, and we take

their average. The simulation time is 1000 seconds.

0

300

600

900

1200

1500

1800

DLPO L2RM BLFM URBM

T
h
ro

u
g
h
p
u
t
p
e
r

fl
o
w

 (
k
b
p
s
)

RA flows RB flows

RC flows Average

(a) Flow throughput

0

200

400

600

800

1���

1���

1 2 3 4 5 6 7 8 9 1�
Round

A
v
e

ra
g

e
 t

h
ro

u
g

h
p

u
t

(k
b

p
s
)

DLPO L2RM

BLFM URBM

(b) Stability

Fig. 4. Comparison on throughput in scenario I.

0

300

600

���

����

����

����

DLPO L2RM BLFM URBM

T
h
ro

u
g
h
p
u
t
p
e
r

fl
o
w

 (
k
b
p
s
) RA flows RB flows

RC flows Average

(a) Flow throughput

0

200

400

600

800

�			

�
		

� 2 3 4 5 6 � 8 � �	
Round

A
v
e

ra
g

e
 t

h
ro

u
g

h
p

u
t

(k
b

p
s
)

DLPO L2RM

BLFM URBM

(b) Stability

Fig. 5. Comparison on throughput in scenario II.

A. Throughput in Scenario I

Fig. 4(a) gives flow throughput in scenario I, where flows

will converge on the pod to which destinations belong (below,

we call it the dest-pod). In this case, most links in the dest-pod

are congested. DLPO and L2RM find substitute paths in the

dest-pod to share the loads of congested links. However, since

the substitute paths may be also busy, they cannot effectively

help share loads. Thus, DLPO and L2RM have lower average

throughput. BLFM uses the meter table and Set Queue op-

eration to restrict bandwidth usage of flows on the congested

links, so it has higher average throughput than both DLPO and

L2RM. Our URBM scheme not only finds substitute paths but

also limits bandwidth usage of flows. Moreover, URBM adopts

the method discussed in Section IV-D3 to deal with the case

of a congested pod. In this way, URBM can have the highest

average throughput among all methods. In particular, URBM

improves 81.7%, 74.6%, and 21.2% of average throughput, as

compared with DLPO, L2RM, and BLFM, respectively.

Let us observe the throughput of different ranks of flows in

Fig. 4(a). DLPO and L2RM do not differentiate between high-

rank flows and low-rank flows. Thus, RC flows could consume

more bandwidth when they choose to keep sending packets at

the beginning. This leads to a strange problem, where low-rank

users pay less but get more services. Specifically, RC flows’

throughput occupies 60.6% and 43.1% of total throughput in

DLPO and L2RM, respectively. Both BLFM and URBM can

conquer this problem by reserving QA and QB percents of

link bandwidth for RA and RB flows, which provide better

QoS supports for high-rank users. As compared with BLFM,

URBM can further improve throughput for each rank of flows.

We evaluate the stability of each method. Fig. 4(b) compares

the average throughput of different methods in each round. In

BLFM, the same rank of flows may be transmitted via the same

0

500

���

���

2000

2500

3000

�� 200 300 400 500 600 ��� 800 ��� ���

To��� o����� ��������� �����

R
!
"
!
#
$
!
%&
$
'

PAY(

P)*+*,- ./0234 *, 568:

Fig. 6. Comparison on the operator’s revenue.

busy links, but their packets cannot be rerouted to other paths.

Thus, BLFM’s throughput is more choppy than others. DLPO

and L2RM find substitute links in the dest-pod. Since these

substitute links could be also busy, their average throughput

will fluctuate. Thanks to the congestion eliminating module in

Section IV-D, the average throughput in URBM can almost

keep constant. In particular, the standard deviation of average

throughput (measured in these 10 rounds) is 55.8, 73.1, 172.4,

and 4.4 in DLPO, L2RM, BLFM, and URBM, respectively.

This result verifies that our URBM scheme can stably improve

flow throughput, as compared with others.

B. Throughput in Scenario II

Fig. 5(a) shows flow throughput in scenario II, where two

servers take charge of flow generation. Thus, congestion oc-

curs at each edge switch attached by a source, and it is difficult

to find substitute paths to replace congested links of the switch.

Even worse, each congested link carries many flows, as each

source selects all other servers to be its destinations. Thus, the

effect of limiting bandwidth usage of flows by the meter table

and Set Queue operation may reduce. That explains why the

throughput of each method reduces as compared with the result

in Fig. 4(a). As compared with DLPO, L2RM, and URBM,

our URBM scheme can improve 26.4%, 21.9%, and 13.6%

of average throughput, respectively. Moreover, RA flows have

the highest throughput, followed by RB and RC flows, which

shows that URBM can provide different QoS supports to users

based on their ranks.

Fig. 5(b) then compares the average throughput of different

methods in each round. As most flows concentrate in an edge

switch that links to each source, the magnitude of fluctuation

in average throughput of DLPO, L2RM, and BLFM will be

smaller than that in Fig. 4(b). URBM’s average throughput

measured in 10 rounds is similar, which means that it can

stably improve throughput. In particular, the standard deviation

of average throughput in scenario II is 51.6, 67.5, 92.1, and

2.9 by DLPO, L2RM, BLFM, and URBM, respectively.

C. Revenue

Fig. 6 shows the operator’s revenue in relation to the total

output bandwidth, where the price unit per Gbps is denoted

by the monetary unit (mu). According to [23] and [24], we set

PA = 2.56mu, PB = 2.29mu, PC = 1.80mu, νB = 0.4mu,

and νC = 0.8mu. In the PAYG method, the revenue is almost

proportional to the output bandwidth (i.e., linear growth). Our

pricing method in Section IV-E calculates extra fees for low-

rank users to employ OF links by Eqs. (17) and (18), thereby

raising the revenue. Specifically, it can improve 9.43% of the

revenue on average, as compared with PAYG.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose the URBM scheme by using SDN

to efficiently manage flows in a fat-tree DCN containing hybrid

switches, where electrical switches form the network backbone

and optical switches provide high-speed links. URBM divides

users into three ranks and offers them different QoS supports.

A portion of link bandwidth (i.e., QA and QB) is reserved

for RA and RB flows, and they can employ OF links to

improve throughput. For RC flows, we take the best-effort

policy. Besides, their users have to pay extra fees for using

OF links. To mitigate congestion, URBM reroutes packets to

different paths or limits bandwidth usage of flows by adopting

the tools in OpenFlow, including the group table, meter table,

and Set Queue operation. Based on user ranks and bandwidth

consumption, our pricing method takes the PAYG method and

the PED model to assess both basic and extra fees for users,

respectively. Simulation results show that URBM can stably

improve flow throughput, provide better QoS supports to high-

rank flows, and increase the operator’s revenue.

For future work, we will consider how to deal with impulse

and DDoS flows, which generate many packets but last for a

short while [29]. How to fast mitigate congestion caused by

such transient flows is a challenge. Besides, it merits further

investigation into flow management in a DCN with distributed

SDN control [30]. In this case, multiple controllers divide the

management work and how to balance their loads is critical.

ACKNOWLEDGMENT

This work was supported by the Ministry of Science and

Technology, Taiwan under Grant 108-2221-E-110-016-MY3.

REFERENCES

[1] W. Xia, P. Zhao, Y. Wen, and H. Xie, “A survey on data center net-
working (DCN): Infrastructure and operations,” IEEE Communications

Surveys & Tutorials, vol. 19, no. 1, pp. 640–656, 2017.

[2] J. Zhang, F. R. Yu, S. Wang, T. Huang, Z. Liu, and Y. Liu, “Load
balancing in data center networks: A survey,” IEEE Communications

Surveys & Tutorials, vol. 20, no. 3, pp. 2324–2352, 2018.

[3] Y. C. Wang and H. Hu, “A Low-cost, high-efficiency SDN framework
to diminish redundant ARP and IGMP traffics in large-scale LANs,” in
IEEE Computer Software and Applications Conference, 2018, pp. 894–
903.

[4] Y. C. Wang and H. Hu, “An adaptive broadcast and multicast traffic
cutting framework to improve Ethernet efficiency by SDN,” Journal of

Information Science and Engineering, vol. 35, no. 2, pp. 375–392, 2019.

[5] A. Minakhmetov, C. Ware, and L. Iannone, “TCP congestion control
in datacenter optical packet networks on hybrid switches,” Journal of

Optical Communications and Networking, vol. 10, no. 7, pp. 71–81,
2018.

[6] F. Yan, X. Xue, and N. Calabretta, “HiFOST: A scalable and low-latency
hybrid data center network architecture based on flow-controlled fast
optical switches,” IEEE/OSA Journal of Optical Communications and

Networking, vol. 10, no. 7, pp. 1–14, 2018.

[7] Y. C. Wang and K. C. Chien, “EPS: Energy-efficient pricing and resource
scheduling in LTE-A heterogeneous networks,” IEEE Transactions on

Vehicular Technology, vol. 67, no. 9, pp. 8832–8845, 2018.
[8] N. G. Mankiw, Principles of Economics. Cengage Learning, Inc., 2021.
[9] L. Chen, K. Chen, W. Bai, and M. Alizadeh, “Scheduling mix-flows in

commodity datacenters with Karuna,” in ACM SIGCOMM Conference,
2016, pp. 174–187.

[10] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ECN in multi-service
multi-queue data centers,” in USENIX Symposium on Networked Systems

Design and Implementation, 2016, pp. 537–550.
[11] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,

“DRILL: Micro load balancing for low-latency data center networks,”
in ACM SIGCOMM Conference, 2017, pp. 225–238.

[12] A. Chatzieleftheriou, S. Legtchenko, H. Williams, and A. Rowstron,
“Larry: Practical network reconfigurability in the data center,” in
USENIX Symposium on Networked Systems Design and Implementation,
2018, pp. 141–156.

[13] S. Wang, J. Zhang, T. Huang, T. Pan, J. Liu, and Y. Liu, “Improving
flow scheduling scheme with mix-traffic in multi-tenant data centers,”
IEEE Access, vol. 8, pp. 64 666–64 677, 2020.

[14] D. Adami, S. Giordano, M. Pagano, and G. Portaluri, “A novel SDN
controller for traffic recovery and load balancing in data centers,” in
IEEE International Workshop on Computer Aided Modelling and Design

of Communication Links and Networks, 2016, pp. 77–82.
[15] J. Pang, G. Xu, and X. Fu, “SDN-based data center networking with

collaboration of multipath TCP and segment routing,” IEEE Access,
vol. 5, pp. 9764–9773, 2017.

[16] Q. Tang, H. Zhang, J. Dong, and L. Zhang, “Elephant flow detection
mechanism in SDN-based data center networks,” Scientific Program-

ming, vol. 2020, pp. 1–8, 2020.
[17] M. Zaher, A. H. Alawadi, and S. Molnar, “Sieve: A flow scheduling

framework in SDN based data center networks,” Computer Communi-

cations, vol. 171, pp. 99–111, 2021.
[18] H. Long, Y. Shen, M. Guo, and F. Tang, “LABERIO: Dynamic load-

balanced routing in OpenFlow-enabled networks,” in IEEE International

Conference on Advanced Information Networking and Applications,
2013, pp. 290–297.

[19] Y. L. Lan, K. Wang, and Y. H. Hsu, “Dynamic load-balanced path
optimization in SDN-based data center networks,” in International

Symposium on Communication Systems, Networks and Digital Signal

Processing, 2016, pp. 1–6.
[20] U. Zakia and H. B. Yedder, “Dynamic load balancing in SDN-based data

center networks,” in IEEE Annual Information Technology, Electronics

and Mobile Communication Conference, 2017, pp. 242–247.
[21] Y. C. Wang and S. Y. You, “An efficient route management framework

for load balance and overhead reduction in SDN-based data center
networks,” IEEE Transactions on Network and Service Management,
vol. 15, no. 4, pp. 1422–1434, 2018.

[22] Y. C. Wang and L. C. Yen, “Collaborative route management to mitigate
congestion in multi-domain networks using SDN,” in IEEE Annual

Computing and Communication Workshop and Conference, 2022, pp.
988–994.

[23] Azure. [Online]. Available: https://azure.microsoft.com/en-us/pricing/
[24] Y. C. Wang and T. Y. Tsai, “A pricing-aware resource scheduling

framework for LTE networks,” IEEE/ACM Transactions on Networking,
vol. 25, no. 3, pp. 1445–1458, 2017.

[25] Mininet. [Online]. Available: http://mininet.org
[26] Ryu. [Online]. Available: https://ryu-sdn.org
[27] Open vSwitch. [Online]. Available: https://www.openvswitch.org
[28] iPerf. [Online]. Available: https://iperf.fr
[29] Y. C. Wang and Y. C. Wang, “Efficient and low-cost defense against

distributed denial-of-service attacks in SDN-based networks,” Interna-

tional Journal of Communication Systems, vol. 33, no. 14, pp. 1–24,
2020.

[30] W. K. Lai, Y. C. Wang, Y. C. Chen, and Z. T. Tsai, “TSSM: Time-sharing
switch migration to balance loads of distributed SDN controllers,” IEEE

Transactions on Network and Service Management, pp. 1–13, 2022.

