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Abstract—To fulfil the rapid growth of traffic demands and
diverse network applications, 5G base stations (called gNBs) are
being widely deployed. Due to some activities like sport events,
the service area would be crowded with many user equipments
(UEs). Thus, gNBs may not have enough spectrum resources to
serve UEs, leading to low throughput and high packet loss. This
paper uses a few mobile cell sites (MCSs) to solve the problem,
which are gNBs equipped on vehicles and can flexibly move to
serve UEs. We propose an efficient resource scheduling and MCS
dispatch (ESMD) scheme, which helps each gNB allot resources
to UEs to raise throughput. Then, we pick candidate locations for
MCSs to move to help share loads of busy gNBs. Specifically, we
adopt the Pareto-optimal concept to find one-to-one assignments
between MCSs and these locations. Through simulations, we show
that the ESMD scheme efficiently improves network performance
in terms of throughput, packet loss, and the outage ratio.

Keywords—5G, dispatch, mobile cell site, Pareto optimality,
resource scheduling.

I. INTRODUCTION

Many people nowadays rely on mobile networks for com-

munications and Internet access. They usually use network ap-

plications that are bandwidth-consuming and delay-sensitive,

like video streaming and on-line meeting. Thus, 3GPP defines

the global specifications for the fifth generation (5G) mobile

networks. 5G features include massive network capacity, high

transmission speeds, very low latency, better user experience,

more reliability, and increased availability [1]. By 2023, there

will be 13.1 billion user equipments (UEs) in the global, and

1.4 billion of these UEs will be 5G capable [2].

3GPP defines two deployment modes for 5G networks: non-

standalone (NSA) and standalone (SA). The NSA mode allows

5G base stations (called gNBs) to remain reliant on the 4G core

network for management and signaling, and 4G base stations

continue to operate. This mode provides a transitional platform

for operators and users alike. On the other hand, the SA mode

pairs gNBs with a cloud-native 5G core network, so it enables

all features of 5G. In this paper, we consider the SA mode.

In a service area, the density and traffic demands of UEs

may not necessarily be stable [3]. For example, there are many

UEs in office areas or campuses in workdays, but they become

almost empty in holidays. Besides, there will be an influx of

UEs to some hotspot regions due to special activities such as

singing concerts and sports events. In this case, the gNBs may

not have enough spectrum resources to serve all UEs, thereby

lowering their throughput and increasing the outage ratio.

One promising solution is to use mobile cell sites (MCSs),

which are gNBs equipped on vehicles (e.g., trucks or UAVs).

They can flexibly move to serve UEs, thereby sharing work-

loads of busy gNBs. This paper proposes an efficient resource

scheduling and MCS dispatch (ESMD) scheme to improve the

performance of a 5G network by using MCSs. Each gNB allo-

cates resources to UEs with the aim of maximizing throughput.

Then, we check if some UEs do not get enough resources to

satisify their demands, and dispatch MCSs to serve them. To

do so, we find candidate locations for MCSs, and calculate a

maximum matching between MCSs and these locations such

that the matching is Pareto-optimal. Simulation results show

that ESMD can substantially raise network throughput, reduce

packet loss, and lower the outage ratio.

II. RELATED WORK

In the literature, there are different MCS issues discussed.

The work [4] maximizes the service time of each MCS by re-

ducing its traveling distance. Becvar et al. [5] show that using

MCSs can be an efficient substitute to ultra-dense small cell

deployment, especially when users move in crowds. Shinbo et

al. [6] employ MCSs for temporary mobile communications in

a disaster area. Given a set of ground terminals, the study [7]

uses the minimum MCSs to cover them, where each terminal

is within the communication range of at least one MCS. The

work [8] finds the optimal moving direction for each MCS to

achieve the highest spectral efficiency. Huang et al. [9] model

the MCS placement problem as a sparse optimization problem,

which is solved by the reweighted l1-norm algorithm. Ree et

al. [10] propose a decentralized key management scheme to

provide security in a mobile network with MCSs. As can be

seen, the above studies have different objectives with ours.

Several studies also dispatch MCSs to serve UEs. Without

a signal-strength radio map, the work [11] finds the MCS’s

target location based on fine-grained line-of-sight information

to raise throughput. Alzenad et al. [12] select visiting locations

for an MCS, such that it can use the minimum power to serve

the maximum UEs. The study [13] takes account of the power,

bandwidth, and position of an MCS to maximize throughput.

However, these studies aim at a single MCS. The work [14]



dispatches multiple MCSs to share the loads of gNBs based on

a genetic algorithm (GA). As discussed later in Section V, our

ESMD scheme outperforms the GA-based method in terms of

throughput, packet loss, and the outage ratio.

III. SYSTEM MODEL

We consider a service area seamlessly covered by 5G cells

in the SA mode. Let B̂ be the set of their gNBs. In each cell, a

gNB takes charge of allocating the spectrum resource to UEs,

whose smallest unit is one resource block (RB). Depending on

the channel bandwidth, the gNB provides a different number

of RBs in one transmission time interval (TTI). Every RB can

be allotted to only one UE, and its capacity is decided by the

UE’s channel quality [15].

UEs are randomly distributed in the service area, but parts of

them may congregate in some small regions, namely hotspots.

A set M̂ of MCSs will move in the area and offer extra RBs to

UEs, where |M̂| ≪ |B̂|. Given the position and traffic demand

of each UE, our objective is to help each gNB in B̂ efficiently

allot RBs to its UEs (i.e., resource scheduling) and adaptively

move MCSs in M̂ to share loads of gNBs (i.e., MCS dispatch),

such that the network performance is maximized. Specifically,

we adopt throughput, packet loss, and the outage ratio of UEs

as the metrics for performance evaluation.

IV. THE PROPOSED ESMD SCHEME

Our ESMD scheme consists of two modules. In the schedul-

ing module, each gNB in B̂ first allots RBs to UEs in its cell.

If a UE cannot get enough RBs to fulfill its demand, we call

it a non-satisfied-yet (NSY) UE. Based on the distribution of

NSY UEs, we find a set L̂ of candidate locations in the service

area. Afterward, the dispatching module constructs a bipartite

graph to reveal the relationship between the MCSs in M̂ and

the locations in L̂. Then, a maximum Pareto-optimal matching

is found in the bipartite graph for assigning MCSs to move to

the selected locations, so as to serve NSY UEs and share the

loads of gNBs. Below, we detail each module.

A. The Scheduling Module

Each UE ui estimates the signal-to-interference-plus-noise-

ratio (SINR) from each gNB bj ∈ B̂i as follows [16]:

SINR(ui, bj) =
P̃j,i

σ +
∑

bk∈B̂i,bk 6=bj
P̃k,i

, (1)

where B̂i is the subset of gNBs in B̂ whose signals are captured

by ui, P̃j,i is the amount of bj’s power received by ui, and σ is

the environmental noise. The SINR is converted to a channel

quality indicator (CQI) [17]. Then, ui sorts each gNB in B̂i

based on the CQI decreasingly, and selects the first gNB, say,

bj to ask for service. If bj has no RBs, it is removed from B̂i,

and then ui selects the next gNB. Otherwise, bj will accept

ui’s request. The above procedure is repeated until either ui

finds a gNB for service or B̂i becomes empty. In the latter

case, ui is marked as one NSY UE.

When a gNB bj accepts ui’s request, bj chooses a modula-

tion and coding (M&C) scheme to send ui’s data according to
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Fig. 1. Example of grouping NSY UEs and finding candidate locations.

its CQI. Let di be ui’s traffic demand (in bits/s) and ζi be the

maximum number of data bits carried by one RB (depending

on ui’s associated M&C scheme). Then, the number of RBs

that bj should allocate to ui to fulfill its demand is [18]:

rmin
i = argminri{ζiri ≥ dit/1000}, (2)

where t is the length of a TTI (measured in ms). However, if

bj has fewer than rmin
i available RBs, bj allocates the residual

RBs to ui. In this case, ui is also treated as an NSY UE.

After allocating RBs, we find a set L̂ of candidate locations

for MCSs to move to serve NSY UEs. Let Û be the set of all

NSY UEs. We adopt the enhanced agglomerative hierarchical

clustering (eAHC) strategy in [19] to divide Û into groups, so

that each group of NSY UEs can be covered by one MCS. In

particular, each UE in Û is initially added to a different group.

Afterward, we iteratively merge two groups Ĝα and Ĝβ such

that they have the shortest inter-group distance (IGD), which

is the distance between the two farthest UEs ui ∈ Ĝα and uj ∈
Ĝβ . The iteration is repeated until the shortest IGD overtakes

2Rmcs, where Rmcs is the radius of an MCS’s communication

range. Fig. 1 presents an example, where Rmcs = 3. Fig. 1(a)

gives the distribution of NSY UEs in Û . Then, Fig. 1(b) shows

that eAHC divides Û into three groups: Ĝ1 = {u1, u2, u3},

Ĝ2 = {u4, u5}, and Ĝ3 = {u6}.

In each group Ĝk, the best location to place an MCS is the

geometric center (GC) of all NSY UEs. More concretely, let

(xi, yi) be the coordinate of an NSY UE ui. Then, the GC’s

coordinate can be calculated as follows:

(xgc

i , ygci ) =

(

1

|Ĝk|
∑

ui∈Ĝk

xi,
1

|Ĝk|
∑

ui∈Ĝk

yi

)

. (3)



Then, we can add (xgc

i , ygci ) to L̂. Fig. 1(c) shows an example,

where l1, l2, and l3 are the GCs of Ĝ1, Ĝ2, and Ĝ3, respectively.

B. The Dispatching Module

Given both M̂ and L̂, we build a bipartite graph (V̂ , Ê) =
(M̂∪L̂,M̂×L̂), where all MCSs in M̂ and all locations in L̂
are converted into vertices in V̂ . Edges in Ê connect vertices

between M̂ and L̂. Then, the MCS dispatching problem can be

translated into the problem of finding a matching H such that

(1) H contains the maximum pairs of MCSs and locations and

(2) H is Pareto-optimal. Here, objective (1) is to fully utilize

MCSs to serve UEs and objective (2) indicates that one cannot

find another matching whose result is better than that of H.

For objective (1), we use the Hopcroft-Karp algorithm [20]

to find a maximum matching from the graph. More concretely,

a vertex vi ∈ V̂ is free if (vi, vj) /∈ H for every (vi, vj) ∈
Ê . Besides, a path P = {(v1, v2), (v2, v3), · · · , (vi−1, vi)} is

called an augmenting path if both v1 and vi are free, and P’s

edges alternatively appear in Ê −H and H. Then, a maximum

matching H can be found by the following steps:

1. At the beginning, H contains an (arbitrary) edge in Ê .

2. Find augmenting path P for H. We generate a matching

H′ = H ⊕ P , which contains the symmetric difference

of H’s edges and P’s edges. Then, we replace H by H′.

3. Repeat step 2 until no augmenting path can be found.

Theorem 1. Let |M̂| = ξM and |L̂| = ξL. Finding a maximum

matching H takes O(ξM × ξL(
√
ξM + ξL)) time.

Proof: The Hopcroft-Karp algorithm spends O(|Ê | · |V̂| 12 )
time. Since the bipartite graph is complete, we can derive that

|Ê | = |M̂×L̂| = |M̂|× |L̂| = ξM × ξL and |V̂| = |M̂∪ L̂| =
|M̂|+ |L̂| = ξM + ξL. Thus, the theorem is verified.

For objective (2), we change some pairs in H to make it

Pareto-optimal. Let Ñ(mi, lj) be the number of NSY UEs that

an MCS mi ∈ M̂ can serve when it moves to a location lj ∈
L̂. Then, we can define the preference of mi on matchings. In

particular, Let mi be paired with locations lj1 and lj2 in two

matchings H1 and H2, respectively, where lj1 , lj2 ∈ L̂. Then,

mi prefers H1 to H2 if either condition is met:

• Ñ(mi, lj1) > Ñ(mi, lj2), which means that mi can serve

more NSY UEs at location lj1 .

• Ñ(mi, lj1) is equal to Ñ(mi, lj2). Besides, if mi moves

to location lj1 , the CQI of no UE degrades, and the CQI

of at least one UE can rise. In other words, the channel

quality of some UEs will improve. However, this situation

does not happen when mi moves to location lj2 .

For convenience, we denote by “f(mi, lj1) > f(mi, lj2)” if

any of the two conditions holds.

Definition 1. Let us denote by “H1 >p H2” if no MCS prefers

H2 to H1, and some MCSs prefer H1 to H2. Then, a matching

H is said to be Pareto-optimal if and only if we cannot find

another matching, say, H′ such that H′ >p H.

Then, we perform two operations to change some pairs in

H to make it become Pareto-optimal.

TABLE I
PARAMETERS OF GNBS AND MCSS.

parameter gNB MCS

number 100 3, 5, 7
cell range 400 m 200 m
transmitted power 46 dBm 30 dBm
channel bandwidth 100 MHz 80 MHz
RBs offered per TTI 273 217

Trade-in-free checking operation: Suppose that an MCS mi

is paired with a location lj in H. If there exists an unpaired

location lk such that f(mi, lk) > f(mi, lj), we replace pair

(mi, lj) with pair (mi, lk) in H. This operation is repeated

until no such replacement can be performed.

Coalition-free checking operation: Suppose that H contains

a sequence of pairs (mi1 , lj1), (mi2 , lj2), · · · , (mik , ljk) such

that f(mi1 , lj2) > f(mi1 , lj1), f(mi2 , lj3) > f(mi2 , lj2),
· · · , f(mik−1

, ljk) > f(mik−1
, ljk−1

), and f(mik , lj1) >
f(mik , ljk). Then, we remove pairs (mi1 , lj1), (mi2 , lj2), · · · ,

(mik , lik) from H and add pairs (mi1 , lj2), (mi2 , lj3), · · · ,

(mik−1
, ljk), and (mik , lj1) to H. This operation is repeated

until no such sequence can be found.

The study [21] proves that by performing trade-in-free and

coalition-free checking operations on a matching H, H must

be Pareto-optimal. Then, for each pair (mi, lj) in H, we can

dispatch MCS mi to move to location lj for serving NSY UEs.

Theorem 2. It requires O(ξM (ξL log2 ξL)) time to run trade-

in-free and coalition-free checking operations on matching H.

Proof: Each MCS uses a preference list to rank locations

in L̂, which requires O(ξL log2 ξL) time to do sorting. As there

are ξM MCSs in M̂, it takes O(ξM × (ξL log2 ξL)) time to

build all preference lists. Based on the implementation in [22],

repeated trade-in-free and coalition-free checks can be done by

searching all preference lists twice, which spends 2O(ξM×ξL)
time. Thus, the time complexity is O(ξM × (ξL log2 ξL)) +
2O(ξM × ξL) = O(ξM × (ξL log2 ξL)).

V. PERFORMANCE EVALUATION

We develop a simulator in MATLAB to evaluate the system

performance. The service area is a 5 km × 5 km square, inside

which 5G gNBs are deployed. A few MCSs move in the area

to provide services. Table I gives the parameters of gNBs and

MCSs. Moreover, we adopt the log-distance model to measure

the amount of signal’s attenuation caused by path loss [23]:

gNB: 28 + 22 log10(d[m]) + 20 log10(fc[GHz]), (4)

MCS: 32.4 + 21 log10(d[m]) + 20 log10(fc[GHz]), (5)

where d[m] is the distance from a gNB or MCS to a UE, which

is measured in meters, and fc[GHz] is the operating frequency

band. Both gNBs and MCSs operate in the 28 GHz band. A

zero-mean log-normal distribution is used to estimate the effect

of shadowing fading. Its standard deviation is set to 10 dB and

6 dB for gNBs and MCSs, respectively. For the environmental

noise, its power spectral density is -174 dBm/Hz [24].
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Fig. 2. Experimental results.

There are 1000, 1100, 1200, 1300, and 1400 UEs, where a

half of them are randomly distributed over the service area. To

simulate the crowded situation, we arbitrarily select five 1 km

× 1 km regions to be hotspots. Around 10% of UEs congregate

in each hotspot. The traffic demand of each UE is 5 Mbps.

We compare our ESMD scheme with three methods. First,

the baseline method uses only gNBs to serve UEs, which helps

assess the effect of using MCSs on performance. Second, the

maximizing service (MAE) method chooses a location for each

MCS such that it can cover the maximum UEs. Besides, the

distance between two neighboring MCSs is more than 100 m to

prevent them from interfering with each other. Third, the GA-

based method [14] dispatches MCSs by a genetic algorithm,

as mentioned earlier in Section II. For every experiment, we

repeat simulations 100 times and take their average.

Fig. 2(a)–(c) give the average throughput of UEs by using

3, 5, and 7 MCSs. As UEs vie for the fixed resources, more

UEs lead to lower throughput. Since the baseline method uses

only gNBs to serve UEs, changing the number of MCSs will

not affect its performance. On the other hand, the throughput

in other three methods can rise by adding more MCSs. This

result shows the benefit of using MCSs. Moreover, the MAE

method asks each MCS to cover the maximum number of UEs,

so it has higher throughput than the GA-based method. Our

ESMD scheme can efficiently dispatch MCSs to serve UEs,

so it always keeps the highest throughput.

Fig. 2(d)–(f) present the packet loss rates (PLRs) of UEs

with different numbers of MCSs. Evidently, the PLR increases

when there are more UEs. Besides, the PLR in each method

(except the baseline method) can reduce by using more MCSs.

Interestingly, the GA-based method has smaller PLRs than

the MAE method (despite its throughput is lower than MAE).

It means that the GA-based method considers packet latency

when dispatching MCSs. By assigning MCSs to move to the

selected locations based on a Pareto-optimal matching, ESMD

can greatly reduce the PLR, as compared with other methods.

By changing the number of MCSs, Fig. 2(g)–(i) show the

outage ratio, which is defined by the percentage of UEs that are

not given RBs. Without the MCS’s help, the baseline method

has the largest outage ratio. Since MAE dispatches MCSs to



TABLE II
IMPROVEMENT RATIOS BY OUR ESMD SCHEME AS COMPARED WITH OTHER METHODS.

average throughput PLR outage ratio

method 3 MCSs 5 MCSs 7 MCSs 3 MCSs 5 MCSs 7 MCSs 3 MCSs 5 MCSs 7 MCSs

baseline 6.0% 8.7% 10.0% 15.4% 22.8% 30.4% 33.9% 48.7% 57.5%
MAE 3.8% 5.2% 5.6% 14.1% 21.0% 27.7% 23.3% 35.3% 41.8%
GA-based 4.0% 6.2% 7.3% 9.3% 15.8% 22.0% 24.7% 40.3% 49.7%

cover the most UEs, it can lower the outage ratio, as compared

with the GA-based method. Thanks to the eAHC strategy used

in the scheduling module, our ESMD scheme can efficiently

find out candidate locations to place MCSs to serve NSY UEs,

thereby substantially decreasing the outage ratio.

Table II lists the improvement ratios by the ESMD scheme,

as compared with the baseline, MAE, and GA-based methods.

As can be seen, our proposed ESMD scheme outperforms all

other methods, especially in the outage ratio. Moreover, ESMD

can improve the system performance more efficiently as there

are more MCSs in the service area.

VI. CONCLUSION

When many UEs assemble in a hotspot region, the gNBs

in the region may not have enough RBs to serve them, which

degrades performance. The problem can be solved by adopting

MCSs to flexibly move to provide services to these UEs. In this

paper, we propose the ESMD scheme to help gNBs allot RBs

to UEs and find candidate locations to place MCSs through the

eAHC strategy. By finding a Pareto-optimal matching, ESMD

well dispatches MCSs to move to serve NSY UEs. Simulation

results show that ESMD can efficiently increase throughput,

decrease the PLR, and reduce the outage ratio, as compared

with the baseline, MAE, and GA-based methods. For future

work, we will consider that flows have different priorities [25].

In this case, it is important to schedule resources and dispatch

MCSs to satisfy the QoS demands of high-priority flows while

preventing low-priority flows from starvation.
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