
Credibility-Based Countermeasure Against

Slow HTTP DoS Attacks by Using SDN

You-Chiun Wang

Department of Computer Science and Engineering

National Sun Yat-sen University

Kaohsiung, Taiwan

ycwang@cse.nsysu.edu.tw

Ren-Xuan Ye

Department of Computer Science and Engineering

National Sun Yat-sen University

Kaohsiung, Taiwan

m073040025@student.nsysu.edu.tw

Abstract—In slow HTTP DoS (SHD) attacks, the attacker sends
HTTP requests in pieces slowly, one at a time to a web server to
exhaust its resource and achieve denial of service. Such attacks
are easy to launch but hard to defend by conventional solutions
like firewall. By exploiting the software-defined networking (SDN)
technique, the paper proposes a credibility-based countermeasure
against SHD attacks (CCSA), which appraises each client by its
connections and the frequency that it sends fragmented requests.
The connections of low-credibility clients will be blocked to avoid
them depleting resource. When the server is short of resource,
suspicious connections are then suspended to ensure the server’s
availability. Simulation results verify that CCSA can efficiently
stop SHD attacks and keep low memory usage for the controller.

Keywords—credibility, denial of service, slow HTTP DoS at-
tack, software-defined networking (SDN), web service.

I. INTRODUCTION

HTTP (hypertext transfer protocol) is widely used to support

the web service, which is basically a request-response protocol

suitable for the client-server model. Specifically, a client (e.g.,

computer) sends an HTTP request to the web server. Then, the

server returns an HTTP response to the client, which includes

the status code about the request (e.g., 200 OK) and possibly

the content requested by the client in the payload.

In HTTP, a request can be fragmented and sent at different

times to react to network congestion [1]. An attacker can split

HTTP requests into pieces and send them as slow as possible

(before timeout). In this way, the HTTP connection built by

the attacker can hold for a very long time, without triggering

the firewall. Even worse, the default timeout of Apache-based

HTTP servers is also long (i.e., 300 seconds [2]). The attacker

can exhaust the server’s resource and cause denial of service

(DoS) by opening just a number of long sessions. Such attacks

are known as slow HTTP DoS (SHD) attacks [3].

Software-defined networking (SDN) is a mature technology

for network management. It logically partitions a network into

control and data planes [4]. The control plane is presided over

by the controller, while the data plane is located in switches.

With this architecture, the controller can query switches about

their statuses and give instructions by installing flow rules in

their memory. Thus, it becomes easy to monitor and configure

a network. Recently, SDN has been applied to various fields,

such as recognizing rogue Wi-Fi APs [5], doing authentication

for cyber-physical systems [6], and managing data centers [7].

With the help of SDN technology, we propose a credibility-

based countermeasure against SHD attacks (CCSA). Specifi-

cally, the controller evaluates the clients that have connections

with the web server. When a client builds many connections

or submits a lot of fragmented HTTP requests, it will have low

credibility. In this case, the client is likely to produce an attack,

and its connections are blocked to defend the server. Once the

server is facing resource shortage, the controller then refers to

the trust counter associated to each client and the credibility of

its subnet to search for suspicious connections to be blocked.

The design of CCSA is lightweight to help the controller find

out attacks with a low cost. Through simulations, we show that

CCSA can quickly block SHD connections, efficiently reduce

false alarms, and also stably keep low memory usage for the

controller, as compared with other SDN-based methods.

II. RELATED WORK

Many studies apply SDN to find out distributed DoS (DDoS)

attacks, which are usually carried out by ordering a botnet to

send numerous packets (possibly with fake IP addresses) to a

victim server. In [8], switches keep monitoring UDP packets

handled by their ports. Once a port has much more incoming

packets than outgoing ones, the destinations of certain packets

may not exist (so they will be dropped). Some studies [9], [10]

ask the controller to check the signature of each packet (e.g.,

TCP flags) to recognize attacks, which could increase its load.

Both [11] and [12] judge whether packets are generated by an

attack by evaluating their entropy. Based on [13], the work

[14] proposes a nested reverse-exponential storage scheme to

help the controller efficiently record packet information. Then,

it checks whether a flow is an attack according to the flow size,

IP variability, and also duration.

The above approaches are all based on the observation that

the DDoS attack produces many packets to paralyze a server.

However, in SHD attacks, an attacker gradually depletes the

server’s resource by sending fragmented requests slowly. Since

there are just few packets sent by the attacker, these schemes

cannot be applied to withstand SHD attacks.

Several studies resist SHD attacks by SDN. Park et al. [15]

adjust the timeout of a web server to block those connections

web

server

legitimate clients

SDN

switch

hacker

zombie
controller

attack

order

Fig. 1. Using SDN to detect SHD attacks and block their connections.

that send many fragmented requests. However, some legitimate

clients that encounter network congestion will be also banned,

which causes false alarms. Thus, Hirakawa et al. [16] consider

not only shortening timeout but also limiting requests of each

client. However, one can launch SHD attacks through a botnet,

where each zombie builds just a few connections. In [17], the

controller keeps each fragmented request in its buffer. When

the rest of a request is received, it then forwards the complete

request to the web server. Nevertheless, the controller will be

busy processing requests. In view of this, our work develops a

lightweight CCSA scheme to efficiently resolve SHD attacks,

which considers reducing the controller’s overhead.

III. THE PROPOSED CCSA SCHEME

Let us consider a system model in Fig. 1, where the network

backbone is formed by SDN switches managed by a controller.

Both legitimate clients and zombies (i.e., members of a botnet)

coexist in the network. A hacker launches an SHD attack by

ordering zombies to send fragmented HTTP requests slowly

to the web server. On the other hand, some legitimate clients

may also submit fragmented requests to the server (e.g., due to

network congestion). The controller can obtain the information

of traffic flows from switches (e.g, by OpenFlow messages)

[18]. However, neither the controller nor the web server knows

who are zombies in the network.

The CCSA scheme contains four mechanisms. Specifically,

the request trimming mechanism checks if there are too many

requests submitted to the server, and suspends the connection

with the most requests to avoid overloading the server. The

client evaluating mechanism measures the credibility of each

client according to the number of fragmented requests sent by

it, and blocks those clients with low credibility. In the region

assessing mechanism, if the server has spent much resource,

the controller finds suspicious connections to be blocked based

on the credibility of their subnets. After that, the connection

limiting mechanism prevents some clients from setting up lots

of connections to cause DoS to the server. Below, we elaborate

on each mechanism, followed by the design rationale of the

CCSA scheme.

A. Request Trimming Mechanism

Since an attacker attempts to exhaust the resource of a web

server, excessive HTTP requests can be considered a symptom

of SHD attacks. In particular, let Û be the set of clients that

have connections with the server. We then check whether the

following condition obtains:
∑

∀ui∈Û
fR
i ≥ Nreq/2. (1)

where fR
i

is the frequency that a client ui produces requests

(measured in requests/second) and Nreq denotes the maximum

number of requests that the server can process every second.

If so, it implies that the instantaneous requests have consumed

more than one half of the server’s resource. Once some clients

increase their requests or new connections are built, the server

would not have sufficient resource to handle them. To prevent

this situation, the controller suspends the client ui that sends

the most requests (i.e., the largest fR
i

value, since ui is the

most suspicious) by installing an OpenFlow rule in the switch:

• Match:

eth type=ether types.ETH TYPE IP, /* IP packet */

ip proto=in proto.IPPROTO TCP, /* TCP packet */

ipv4 src=max(list,key=list.get), /* source: client ui */

ipv4 dst=server ip,tcp dst=80 /* target: web server */

• Action: drop

• Timeout: hard timeout=Ts

In the match field, we use “/* */” to give a comment on each

condition. The “drop” instruction in the action field indicates

that when a packet meets all conditions, it will be discarded by

the switch (so as to block the requests issued by ui). Besides,

a short timeout Ts is set for this rule. Thus, client ui will be

suspended for Ts seconds. After timeout, the rule is removed

and ui is allowed to send requests. Here, we use timeout Ts to

avoid blocking a legitimate client (i.e., false alarm) too long.

The suggested value of Ts is 60 seconds.

B. Client Evaluating Mechanism

Because SHD attacks take advantage of the vulnerability in

HTTP design by slowly sending fragmented requests to a web

server to exhaust its resource, we can evaluate the credibility

of each client according to the number of fragmented requests

submitted by it. Generally speaking, as there have been many

solutions proposed to mitigate network congestion [19], legiti-

mate clients would not transmit too many fragmented requests

due to congestion. Thus, if a client has sent many fragmented

requests, there is a good possibility that the client is generating

an attack. In this case, the controller commands the switch to

drop its subsequent requests to protect the web server.

For practical implementation, each client ui ∈ Û is associ-

ated with a trust counter ζi for evaluating its credibility, where

ζi ∈ N and its initial value is ζini (e.g., ζini = 100). Every

time when ui sends one fragmented request to the web server,

its trust counter is decreased by one. If the value of ζi falls

below ⌊σL × ζini⌋, where 0 < σL ≤ 1/2, ui is considered an

attacker and its subsequent requests will be dropped. However,

to avoid blocking ui forever (which can be viewed as another

Algorithm 1: Region Assessing Mechanism

1 if Stot−Suse

Stot

< δS then

2 Bban ← false;

3 foreach ui ∈ Û such that ζi < ⌊σH × ζini⌋ do

4 Suspend client ui for Ts seconds;

5 Bban ← true;

6 if Bban = false then

7 Compute the credibility ck for each subnet;

8 Pick the subnet nk with the lowest ck value

and then suspend the client in nk with the

smallest trust counter ζi for Ts seconds;

type of DoS), we set a long timeout Tl for the rule (to ask

the switch to drop ui’s requests). The suggested value of Tl

is 300 seconds. After that, the rule will be discarded and ui’s

trust counter will be reset to ζini. In this way, the web server

can accept ui’s requests again after timeout Tl.

C. Region Assessing Mechanism

When the web server is being attacked or it has served too

many clients, the server will face resource shortage. Thus, the

region assessing mechanism is invoked to assure the server’s

availability, whose pseudocode is presented in Algo. 1. In line

1, we check whether the server’s residual sockets are enough

or not by the following equation:

Stot − Suse

Stot

< δS, (2)

where Stot is the total number of sockets offered by the server,

Suse is the number of used sockets, and δS ∈ (0, 1) defines the

threshold (for example, we can set δS = 0.2). If so, the server

will run out of sockets soon and the controller suspends those

clients whose values of trust counters are below ⌊σH × ζini⌋,
where σL < σH ≤ 3/4. The code is given in lines 2–5. Here,

a boolean variable Bban is used to indicate whether we can

find out such clients from Û .

If Bban is still false in line 6, it means all clients in Û have

relatively high credibility. In this case, we still have to choose

one client to be suspended in order to let the server get back

some sockets for the sake of availability. To do so, we estimate

the credibility of each subnet nk by

ck =

∑

∀ui∈Ûk
ζi

|Ûk|
, (3)

where Ûk ⊆ Û is a subset of clients whose IP addresses belong

to subnet nk, which can be easily checked by using IP mask

255.255.255.0. According to Eq. (3), the subnet’s credibility

is defined as the average value of trust counters of all clients

in that subnet. Then, in line 8 we pick the subnet nk that has

the lowest credibility and suspend the client in nk whose trust

counter has the smallest value. In case of a tie, we arbitrarily

select one client to be suspended.

D. Connection Limiting Mechanism

Sometimes, the hacker may command some zombies to set

up numerous connections with the web server, so as to exhaust

its resource in a very short time. In this case, the controller may

not have enough time to do reaction by the above mechanisms.

To solve this problem, we restrict the number of connections

that each client can set up to δC. Here, we suggest setting

δC =

⌊

Ncon

max{|Û |, τ}

⌋

, (4)

where Ncon is the maximum of connections supported by the

server, |Û | is the number of clients, and τ ∈ N is a coefficient

to give the upper bound on the number of connections set up

by each client (e.g., τ ≥ 5). In Eq. (4), when there are fewer

clients, each client is allowed to set up more connections (but

no more than ⌊Ncon/τ⌋ connections), and vice versa.

For practical implementation, let pS
i

and pF
i

be the number

of TCP packets issued from a client ui to the web server whose

synchronization (SYN) and finish (FIN) flags are set to 1 (also

called SYN and FIN packets), respectively. If pS
i
− pF

i
≥ δC,

the switch will drop subsequent SYN packets sent by ui, since

the number of its connections has reached the limit. In this

case, ui cannot set up new connections with the server (unless

it closes the old ones by sending FIN packets).

E. Design Rationale

In CCSA, the request trimming and client evaluating mech-

anisms are “precautions” against attacks, where the web server

still has sufficient resource. The request trimming mechanism

prevents clients from overusing the server’s resource by send-

ing many requests. Since some clients may do so accidentally,

the controller suspends them by using a short timeout Ts in the

flow rule. On the other hand, the client evaluating mechanism

blocks the clients that have sent a lot of fragmented requests

for a long timeout Tl, because they could be attackers. In this

way, the switch can filter out potentially malicious requests to

preserve the server’s resource.

The region assessing mechanism is applied when the server

is about to use up its resource. In this case, even though there is

no attack, some clients need to be suspended to guarantee the

server’s availability. Therefore, this mechanism takes a more

rigorous threshold (i.e., σH) on the trust counter ζi for each

client. Moreover, it also picks some connections to be blocked

according to the subnet’s credibility. However, since there may

be more false alarms, the controller sets a short timeout Ts for

these flow rules to avoid blocking legitimate clients for a long

time. For the future direction, we will consider developing a

more sophisticated method to select connections to be blocked

to ensure fairness among legitimate clients and maximize their

satisfaction (i.e. achieving the Pareto optimality [20]). Finally,

the connection limiting mechanism dynamically adjusts the

maximum number of connections set up by clients according

to Eq. (4). In this way, we can prevent some malicious clients

from creating many connections to paralyze the server.

TABLE I
THE SLOWHTTPTEST OPTIONS USED IN THE SIMULATION.

option description

-H Start an SHD attack by sending fragmented HTTP requests.
-c Specify the maximum number of connections in the attack.
-r Specify the number of connections added per second.
-l Specify the duration of the attack (in seconds).
-i Specify the interval between two fragmented HTTP requests.

IV. EXPERIMENTAL RESULTS

In this section, we build our simulation on Mininet [21] for

performance evaluation. To support the OpenFlow protocol,

the controller and switches are implemented by the Ryu SDN

framework [22] and the Open vSwitch module in Linux [23],

respectively. Fig. 1 gives the network topology, where a hacker

orders some zombies to launch SHD attacks against the web

server. Moreover, there are six legitimate clients that establish

connections with the server. Due to network congestion, these

clients may also send fragmented HTTP requests to the server

occasionally. As mentioned earlier in Section III, neither the

controller nor the server knows who are zombies.

To simulate SHD attacks, we use the slowhttptest instruction

provided by Ubuntu [24], where Table I lists the options taken

in the simulation. There are three attack scenarios considered,

where the attack lasts for 300 seconds (i.e., “-l 300”):

A1. slowhttptest -H -c 20 -r 4 -l 300 -i 1:

Four zombies participate in the attack. Each zombie adds

four connections per second, until the number of connec-

tions reaches 20. A connection produces one fragmented

request every second.

A2. slowhttptest -H -c 120 -r 3 -l 300 -i 50:

Two zombies launch the attack. Each of them builds three

connections in a second, until 120 connections have been

built. A connection submits one fragmented request every

50 seconds.

A3. slowhttptest -H -c 300 -r 20 -l 300 -i 30:

The attack is originated by a zombie. It sets up 20 con-

nections per second, until there are 300 connections. A

connection sends a fragmented request every 30 seconds.

In addition, there will be 15 connections set up by legitimate

clients in the duration of the attack.

We compare our CCSA scheme with two SDN-based meth-

ods in Section II. The timeout shortening and requests limiting

(TSRL) method [16] blocks the client that establishes the most

connections to save the server’s resource. In the slow HTTP

DDoS defense application (SHDA) [17], the controller stores

fragmented requests in its buffer and then relays complete ones

to the server. Besides, we also observe how an Apache-based

server reacts to SHD attacks, which blocks a connection if it

cannot get the rest of a fragmented HTTP request after a fixed

timeout (in particular, 60 seconds). The maximum number of

connections supported by the server (i.e., Ncon) is set to 100.

A. Attack Scenario A1

Fig. 2(a) shows the number of HTTP connections that the

web server processes in scenario A1. There will be no more

0

25

50

75

100

125

150

175

200

0 30 60 90 120 150 180 210 240 270 300

time (second)

n
u

m
b

e
r

o
f

c
o

n
n

e
c
ti
o

n
s

Apache

TSRL

SHDA

CCSA

(a) number of HTTP connections

0

20

40

60

80

100

120

0 30 60 90 120 150 180 210 240 270 300

time (second)
m

e
m

o
ry

 u
s
a

g
e

 (
1

0
0

b
y
te

s
)

TSRL

SHDA

CCSA

(b) memory usage by the controller

Fig. 2. Performance evaluation in scenario A1.

than 95 connections in the network (i.e., 80 SHD connections

built by four zombies and 15 connections set up by legitimate

clients), which is fewer than the maximum connections sup-

ported by the server (i.e., 100 connections). In other words,

the server still has enough resource to offer services. In this

case, both TSRL and SHDA will not react to the attack, so they

have a similar number of connections with the Apache method.

Here, since some connections may be terminated and rebuilt,

the number of connections in these methods is kept around 80.

For the CCSA scheme, as zombies frequently send fragmented

requests, their credibility will decrease. Thus, after the 75th

second, most SHD connections are blocked by CCSA, and the

server handles no more than 18 connections. This experimental

result demonstrates that CCSA can efficiently find out SHD

attacks even though the server’s resource is not exhausted by

zombies, as compared with other methods.

Fig. 2(b) presents the amount of memory consumed by the

controller in scenario A1. As the Apache method is applied in

the web server (by using a fixed timeout to block connections),

there is no memory usage for the controller (so its result is

not shown). The TSRL method records merely the number of

fragmented requests and source IP addresses, so it can spend

less memory. Since the SHDA method does not find out any

attack, its protection mechanism is not triggered. That is why

SHDA has the least amount of memory usage. On the other

hand, our CCSA scheme keeps the amount of memory usage

below 4300 bytes in this scenario, which shows that it can

help the controller efficiently recognize SHD attacks without

consuming much memory.

0

25

50

75

100

125

150

175

200

0 30 60 90 120 150 180 210 240 270 300

time (second)

n
u

m
b

e
r

o
f

c
o

n
n

e
c
ti
o

n
s

Apache

TSRL

SHDA

CCSA

(a) number of HTTP connections

0

20

40

60

80

100

120

0 30 60 90 120 150 180 210 240 270 300

time (second)

m
e

m
o

ry
 u

s
a

g
e

 (
1

0
0

b
y
te

s
)

TSRL

SHDA

CCSA

(b) memory usage by the controller

Fig. 3. Performance evaluation in scenario A2.

B. Attack Scenario A2

Fig. 3(a) gives the number of HTTP connections handled by

the web server in scenario A2, where two zombies keep setting

up connections, until there are 240 SHD connections. Since the

Apache method does not block them, the number of connec-

tions continuously rises. After the 20th second, the number of

connections exceeds the Ncon threshold (i.e., 100 connections),

which means that the server becomes overloaded. Even worse,

the number of connections keeps growing rapidly. After the

115th second, there will be more than 200 connections, and

the server is obviously paralyzed. For the TSRL method, the

number of connections is kept in 83 during the 17th–67th

seconds, which means that TSRL finds out SHD connections

and blocks some of them to protect the server. However, during

the 81st–112nd seconds, there is no connection in TSRL. This

phenomenon indicates false alarms, where 15 connections set

up by legitimate clients are also blocked by TSRL. For the

SHDA method, there are more than 100 connections during

the 20th–70th seconds, which implies that it cannot fast block

SHD connections (as compared with TSRL). Thus, the server

is at stake and its availability cannot be guaranteed. Our CCSA

scheme avoids the drawbacks of both TSRL and SHDA. From

Fig. 3(a), CCSA not only quickly reacts to the attack but also

reduces false alarms, which verifies its effectiveness.

Fig. 3(b) compares the amount of memory consumption

of the controller in scenario A2. As mentioned earlier, the

TSRL method records less information (e.g., the number of

fragmented requests and IP addresses), so it has lower memory

0

25

50

75

100

125

150

175

200

0 30 60 90 120 150 180 210 240 270 300

time (second)

n
u

m
b

e
r

o
f

c
o

n
n

e
c
ti
o

n
s

Apache

TSRL

SHDA

CCSA

(a) number of HTTP connections

0

20

40

60

80

100

120

0 30 60 90 120 150 180 210 240 270 300

time (second)
m

e
m

o
ry

 u
s
a

g
e

 (
1

0
0

b
y
te

s
)

TSRL

SHDA

CCSA

(b) memory usage by the controller

Fig. 4. Performance evaluation in scenario A3.

consumption. For the SHDA method, since the controller has

to store fragmented requests on behalf of the server, it will use

lots of memory when many fragmented requests are submitted

(i.e., during the 7th–72nd seconds). In our CCSA scheme, the

amount of memory consumption is always below 3000 bytes,

which is much lower than SHDA.

C. Attack Scenario A3

In Fig. 4(a), we measure the number of HTTP connections

with the web server in scenario A3, where the zombie rapidly

builds many connections (i.e., 20 connections per second) to

exhaust the server’s resource. Thus, the DoS to the server is

accomplished very soon in the Apache method (i.e., after the

10th second). All other methods handle the attack during the

10th–70th seconds. As can be seen, the number of connections

in SHDA overtakes the Ncon threshold (i.e., 100 connections),

so the server is out of service during that period. The number

of connections is kept below 97 and 38 in TSRL and CCSA,

respectively, which means that CCSA can block SHD connec-

tions more efficiently than TSRL. Furthermore, TSRL blocks

all connections (including normal ones) during the 76th–111st

seconds, whereas CCSA can avoid these false alarms in the

same period. The experimental result in Fig. 4(a) validates that

our CCSA scheme is superior to both TSRL and SHDA.

Fig. 4(b) then evaluates the amount of memory consumption

of the controller in scenario A3. Similarly, the SHDA method

makes the controller consume much memory during the 6th–

75th seconds, as the controller has to store many fragmented

requests. On the other hand, the controller spends no more

than 3000 bytes in its memory by our CCSA scheme, which

shows its effectiveness in reducing the controller’s overhead.

V. CONCLUSION AND FUTURE WORK

Unlike DDoS attacks that fast overwhelm a server with nu-

merous packets, an SHD attack gradually depletes the server’s

resource by sending fragmented HTTP requests slowly. Thus,

existing solutions to DDoS attacks cannot be applied to resist

SHD attacks. In view of this, the paper proposes the CCSA

scheme by exploiting the SDN technology. It takes necessary

precautions against attacks by limiting the number of requests

and connections for each client and also blocking those clients

with low credibility. When the server is short of sockets, CCSA

further suspends some clients by referring to the credibility of

their subnets to make sure that the server can have sufficient

resource to provide services. Through simulations by Mininet,

we show that CCSA can correctly identify SHD attacks and

quickly block their connections in different attack scenarios.

Moreover, it can keep lower memory usage for the controller,

as compared with the SHDA method.

For the future work, we will consider extending our CCSA

scheme to a multi-domain SDN-based network composed of

connected but autonomous domains (i.e., subnetworks) [25].

Because each domain is managed by a stand-alone controller,

it is a challenge to make these controllers collaborate to fast

find out SHD attacks and eliminate false alarms. Besides, how

to exploit SDN to protect mobile networks [26] against SHD

attacks also deserves further investigation.

ACKNOWLEDGMENT

You-Chiun Wang’s research is co-sponsored by the Ministry

of Science and Technology under Grant No. MOST 108-2221-

E-110-016-MY3, Taiwan.

REFERENCES

[1] IETF, “Hypertext transfer protocol – HTTP/1.1.” [Online]. Available:
https://tools.ietf.org/html/rfc2616

[2] Apache. [Online]. Available: https://httpd.apache.org/

[3] E. Adi, Z. Baig, C. P. Lam, and P. Hingston, “Low-rate denial-of-service
attacks against HTTP/2 services,” in International Conference on IT

Convergence and Security, 2015, pp. 1–5.

[4] Y. C. Wang and H. Hu, “An adaptive broadcast and multicast traffic
cutting framework to improve Ethernet efficiency by SDN,” Journal of

Information Science and Engineering, vol. 35, no. 2, pp. 375–392, 2019.

[5] J. H. Cox, R. Clark, and H. Owen, “Leveraging SDN and WebRTC for
rogue access point security,” IEEE Transactions on Network and Service

Management, vol. 14, no. 3, pp. 756–770, 2017.

[6] C. Wang, Y. Zhang, X. Chen, K. Liang, and Z. Wang, “SDN-based
handover authentication scheme for mobile edge computing in cyber-
physical systems,” IEEE Internet of Things Journal, vol. 6, no. 5, pp.
8692–8701, 2019.

[7] Y. C. Wang and S. Y. You, “An efficient route management framework
for load balance and overhead reduction in SDN-based data center
networks,” IEEE Transactions on Network and Service Management,
vol. 15, no. 4, pp. 1422–1434, 2018.

[8] H. C. Wei, Y. H. Tung, and C. M. Yu, “Counteracting UDP flooding
attacks in SDN,” in IEEE Conference on Network Softwarization, 2016,
pp. 367–371.

[9] P. Rengaraju, V. R. Ramanan, and C. H. Lung, “Detection and prevention
of DoS attacks in software-defined cloud networks,” in IEEE Conference

on Dependable and Secure Computing, 2017, pp. 217–223.

[10] K. Kalkan, G. Gur, and F. Alagoz, “SDNScore: a statistical defense
mechanism against DDoS attacks in SDN environment,” in IEEE Sym-

posium on Computers and Communications, 2017, pp. 669–675.
[11] K. Kalkan, L. Altay, G. Gur, and F. Alagoz, “JESS: Joint entropy-based

DDoS defense scheme in SDN,” IEEE Journal on Selected Areas in

Communications, vol. 36, no. 10, pp. 1–24, 2018.
[12] M. Xuanyuan, V. Ramsurrun, and A. Seeam, “Detection and mitigation

of DDoS attacks using conditional entropy in software-defined network-
ing,” in IEEE International Conference on Advanced Computing, 2019,
pp. 66–71.

[13] Y. C. Wang, Y. Y. Hsieh, and Y. C. Tseng, “Multiresolution spatial and
temporal coding in a wireless sensor network for long-term monitoring
applications,” IEEE Transactions on Computers, vol. 58, no. 6, pp. 827–
838, 2009.

[14] Y. C. Wang and Y. C. Wang, “Efficient and low-cost defense against
distributed denial-of-service attacks in SDN-based networks,” Interna-

tional Journal of Communication Systems, vol. 33, no. 14, pp. 1–24,
2020.

[15] J. Park, K. Iwai, H. Tanaka, and T. Kurokawa, “Analysis of slow read
DoS attack and countermeasures on web servers,” International Journal

of Cyber-Security and Digital Forensics, vol. 4, no. 2, pp. 339–353,
2015.

[16] T. Hirakawa, K. Ogura, B. B. Bista, and T. Takata, “A defense method
against distributed slow HTTP DoS attack,” in International Conference

on Network-Based Information Systems, 2016, pp. 152–158.
[17] K. Hong, Y. Kim, H. Choi, and J. Park, “SDN-assisted slow HTTP

DDoS attack defense method,” IEEE Communications Letters, vol. 22,
no. 4, pp. 688–691, 2018.

[18] Y. C. Wang and H. Hu, “A Low-cost, high-efficiency SDN framework
to diminish redundant ARP and IGMP traffics in large-scale LANs,” in
IEEE Computer Software and Applications Conference, 2018, pp. 894–
903.

[19] J. Luo, J. Jin, and F. Shan, “Standardization of low-latency TCP with
explicit congestion notification: A survey,” IEEE Internet Computing,
vol. 21, no. 1, pp. 48–55, 2017.

[20] Y. C. Wang, “A two-phase dispatch heuristic to schedule the movement
of multi-attribute mobile sensors in a hybrid wireless sensor network,”
IEEE Transactions on Mobile Computing, vol. 13, no. 4, pp. 709–722,
2014.

[21] Mininet. [Online]. Available: http://mininet.org/
[22] Ryu. [Online]. Available: https://ryu-sdn.org/
[23] Open vSwitch. [Online]. Available: https://www.openvswitch.org/
[24] Ubuntu manuals, “slowhttptest – Denial of service attacks simulator.”

[Online]. Available: http://manpages.ubuntu.com/manpages/trusty/man1/
slowhttptest.1.html

[25] Y. C. Wang and E. J. Chang, “Cooperative flow management in
multi-domain SDN-based networks with multiple controllers,” in IEEE

International Conference on Smart Communities: Improving Quality of

Life Using ICT, IoT and AI, 2020, pp. 1–5.
[26] Y. C. Wang and C. A. Chuang, “Efficient eNB deployment strategy for

heterogeneous cells in 4G LTE systems,” Computer Networks, vol. 79,
pp. 297–312, 2015.

