
Cooperative Flow Management in Multi-domain

SDN-based Networks with Multiple Controllers

You-Chiun Wang

Department of Computer Science and Engineering

National Sun Yat-sen University

Kaohsiung, Taiwan

ycwang@cse.nsysu.edu.tw

En-Jui Chang

Department of Computer Science and Engineering

National Sun Yat-sen University

Kaohsiung, Taiwan

m073040019@student.nsysu.edu.tw

Abstract—The technology of software-defined networking (SDN)
facilitates network management by adopting a controller to direct
the operations of switches. This paper aims to efficiently manage
flows in a multi-domain SDN-based (MDS) network, where each
domain (i.e., subnetwork) is governed by a controller and there
exist links between domains. To improve MDS performance, a
cooperative flow management (CFM) framework is proposed in the
paper. Each controller finds paths for the flows in its domain such
that the loads of links can be balanced. When some links are still
congested but there is no substitute path, the controller seeks help
from neighboring domains. In this case, cross-domain paths will
be constructed to replace congested paths. Since each controller
finds paths based on only the local view of its own domain, CFM
builds cross-domain paths in a cooperative, distributed manner.
Through simulations, we verify that CFM can efficiently resolve
congestion and significantly improve throughput.

Keywords—congestion, flow management, multi-domain, path
selection, software-defined networking (SDN).

I. INTRODUCTION

A network can be divided into two parts. The control plane

determines how packets are routed and the data plane is the

actual forwarding process. In traditional networks, control and

data planes both reside in switches, which makes it not easy

for users to master traffic flows. Software-defined networking

(SDN) gives facilitation and flexibility to network management

by putting the control plane in a stand-alone controller. Thus,

users can handily apply their policies to the network, such as

dynamically changing routes [1] or discarding certain packets

[2]. This can be accomplished by implementing programs on

the controller, rather than configuring switches one by one.

SDN plays a key role in 5G and its successors, so one can

expect that SDN will be widely used to manage large networks

like campus and enterprise networks [3]. Such networks are

usually divided into multiple subnetworks called domains, as a

university or company is composed of many departments. Each

domain is managed by a controller and operates autonomously.

Since these domains belong to the same network, the coopera-

tion among domains (e.g., path borrowing) is allowed and even

encouraged. We call this type of network a multi-domain SDN-

based (MDS) network. Fig. 1 presents an example, where the

network has three domains, each ruled by a single controller.

As compared with the case of using one controller to govern

the whole network, using an MDS network has some benefits.

G

G G

G

G

G

h1

s1

h2

h3 h4

h10

h6h5

s2

s3

s4

s9
s11

h8

s10 s12

s8

s6

s7

s5

c1

c2

c3

Domain D2

Domain D1

Domain D3

G

Controller

OpenFlow 

switch

Gateway

switch

Host

G

G
~

~

~
h9

h7

Fig. 1. An MDS network with three domains.

First, each department has full autonomy in its own domain.

Second, the load of each controller can reduce, since it controls

only a domain instead of the whole network. Third, the failure

of a controller merely affects one domain.

This paper proposes a cooperative flow management (CFM)

framework to schedule paths of flows in an MDS network with

the objective of mitigating congestion and raising throughput.

Each controller monitors traffic loads in its domain and adjusts

weights of links accordingly. Then, it finds a minimum-weight

path for each flow in the domain to balance the loads of links.

However, if some links are still overloaded but no alternative

path can be found in its domain, the controller borrows some

links from nearby domains. In this way, a cross-domain path

can be built to replace the congested one. Since each controller

relies on the local view of its domain to find paths (i.e., without

the global knowledge of the overall network), the cross-domain

paths are constructed in a cooperative and distributed fashion.

Thus, our CFM framework is fit for MDS networks (i.e., there

is no central control on all domains and each domain is also

autonomous). Simulation results show that CFM can efficiently

mitigate congestion and increase network throughput.

II. RELATED WORK

Some studies consider using one SDN controller to manage

flows. In [4], the controller keeps watching utilization of links.



If the utilization tops 80%, new traffic requests will be declined

to avoid congestion. Liu et al. [5] find multiple paths to send

the packets of elephant flows to prevent them from consuming

much link bandwidth. The work [6] assigns a cost to each link.

In case of congestion, it replaces the old path by a new path

with the minimum link cost and traffic load. Lan et al. [7]

detect congestion by estimating the variance of links’ loads.

Then, the flows on top 10% of busiest links are passed to other

links whose utilization is low. The study [8] finds overloaded

links by a load-deviation factor, and uses the OpenFlow group

table to reroute their packets for load sharing. Breiki et al. [9]

adjust the amount of traffics sent on a link through the meter

table in OpenFlow. However, the above studies can be applied

to only a single domain and may not be fit for MDS networks.

Some issues for MDS networks are also discussed. When a

controller fails, [10] asks another controller to fast take over its

job, so as to reduce the service interruption time of its domain.

Hu et al. [11] divide a network into clusters (corresponding to

domains) such that their sizes will be as balanced as possible

[12]. In this way, the load of each controller can be similar. The

work [13] picks a controller to be master, which takes charge

of clustering other (slave) controllers and balancing their loads.

If the master is broken, the study [14] picks a controller with

the minimum load and high throughput to be the new master.

When the controller in a domain is too busy, the work [15]

moves some switches to other domains to reduce its load. As

can be seen, none of them handles flow management in MDS

networks. This motivates us to develop the CFM framework to

dynamically adjust routes of flows, so as to mitigate congestion

and increase MDS performance.

III. THE PROPOSED CFM FRAMEWORK

Let us consider an MDS network that consists of disjointed

domains, as shown in Fig. 1. Each domain has some switches

managed by a controller. The controller can use the OFPPort-

StatsRequest function in OpenFlow to query each switch inside

the domain about its status (e.g., load and topology). However,

neither switch status nor link topology outside the domain is

known by the controller. In other words, each controller has

only the local view of its own domain.

There may exist links between two domains. If a switch has

links to other domains, it is called a gateway. For example, s1
and s4 are the gateways of domain D̃1. Switches periodically

exchange Hello messages to update the neighboring relation-

ship, of which their controllers are also notified [16]. In this

way, a controller can know which switches serve as gateways

and the exterior domains that they connect with.

Our CFM framework has three mechanisms to manage flows

in the MDS network, including information table maintenance,

local path selection, and cross-domain path construction. We

then elaborate on each mechanism.

A. Information Table Maintenance

To keep updated with the status in a domain, the controller

maintains four tables. Specifically, the routing path table stores

the selected path for each pair of source and destination, which

will be discussed in Section III-B. When both hosts are located

in the domain, it stores a complete path. Otherwise, the path

will start from the source to the gateway that connects to the

exterior domain where the destination resides. Let us consider

controller c1 in Fig. 1. For hosts h1 and h4, it stores a complete

path h1 → s1 → s2 → s4 → h4. For hosts h2 and h6, the

path will be h2 → s3 → s1, as h6 resides in domain D̃2 which

is linked by gateway s1.

The host access table stores the information of hosts that a

controller has learned. Each entry has a format of (ai, si, pi),
where ai is the host’s IP address, si is the switch to contact

the host, and pi is si’s port that connects to the host. Take h2

as an example. Its entry will be (10.0.1.2, s3, 4), which means

that h2 (whose IP address is 10.0.1.2) is connected by s3 via

its port 4. If the host resides in an exterior domain, say, D̃x,

then si is the gateway that links to D̃x, and pi is si’s port that

connects to D̃x. Take h6 as an example, where its IP address is

10.0.2.6. Since h6 is not in c1’s domain but in domain D̃2, its

entry is (10.0.2.6, s1, 5), where gateway s1 uses its port 5 to

link to domain D̃2. Note that the controller can use the subnet

mask to ascertain which domain an exterior host resides in.

The switch load table keeps track of the amount of traffics

passing through a switch in the domain. The format of each

entry is (si, pj , d
T

j , d
R

j , cj), which means that for port pj of

switch si, d
T

j and dRj bytes of data have been sent and received

in the last period, respectively, and pj’s capacity is cj (in kbps).

Here, the length of a period is set to 10 seconds. For example,

an entry (s1, 1, 4871, 3043, 10000) indicates that there were

4871 and 3043 bytes sent and received by s1’s port 1 in the

last 10 seconds, whose capacity is 10Mbps.

The flow load table helps the controller grasp the state of

each flow in its domain. For a flow fj , there is a corresponding

entry (aSj , a
D

j , ζTj , ζRj , ξj), where aSj is fj’s source, aDj is fj’s

destination, ζTj is the number of packets sent by aSj , ζRj is the

number of packets received by aDj , and ξj is the packet loss

rate. Both ζTj and ζRj are measured during a period. Moreover,

ξj is calculated as follows:

ξj = (1− ζRj /ζTj )× 100%. (1)

Suppose that host h1 (whose IP address is 10.0.1.1) generates

a flow to host h3 (whose IP address is 10.0.1.3). An entry

(10.0.1.1, 10.0.1.3, 4822, 2259, 53%) indicates that in the last

10 seconds, there were 4822 packets generated by h1, but only

2259 packets were gotten by h3. Thus, the packet loss rate is

(1− 2259/4822)× 100% ≈ 53%.

B. Local Path Selection

To reduce latency and alleviate congestion, we should select

a path for each flow such that it has fewer links and these links

are not burdened with heavy loads. To do so, each link lk is

assigned with a weight wk, which is defined as follows:

wk =
1

ck

∑
∀fj∈F̂k

(ζTj × ε)/t, (2)

where F̂k is the set of flows sent on lk, ε is the packet size,

and t is the period length. In Eq. (2),
∑

∀fj∈F̂k
(ζTj × ε)/t is



h7

s11

h8 h9

h10

s12

s10

0.8 0.8 0.8

0 0 0 0

8Mbps

(a) Adding f1 = 〈h8, h9〉

0��

�6���
h7

s11

h8 h9

h1�

s1�

s1�

0.8 0.8 0.8

8Mbps
0��

0�� 0��

(b) Adding f2 = 〈h7, h10〉

Fig. 2. Example of local path selection (a part of domain D̃3).

the total bandwidth consumption of the flows in F̂k, and ck
is lk’s capacity. The controller can refer to the routing path,

switch load, and flow load tables to obtain the values of F̂k,

ck, and ζTj , respectively.

When a new flow is generated (whose source and destination

are hu and hv , respectively), the controller finds a path from

hu to hv such that the sum of weights of its constituent links

is minimized. In Section III-C, we will further discuss how to

deal with the case when hu and hv reside in different domains.

There have been several solutions to find a minimum-weight

path. In particular, we adopt the popular Dijkstra’s algorithm

[17]. After finding the path, the routing path table is updated

and the controller will notify all switches on that path.

Fig. 2 gives an example, where each link has a capacity of

10Mbps and its initial weight is 0. Suppose that an 8Mbps flow

f1 is sent from h8 to h9 (let us denote it by f1 = 〈h8, h9〉).
The controller finds a path h8 → s11 → s12 → h9 for f1 and

updates weights of links (h8, s11), (s11, s12), and (s12, h9) to

8/10 = 0.8, as shown in Fig. 2(a). Then, a 6Mbps flow f2 =
〈h7, h10〉 is added. Although the path h7 → s11 → s12 → h10

has the minimum hop count, the controller picks an alternative

path h7 → s11 → s10 → s12 → h10 for f2, which bypasses

a heavily loaded link (s11, s12), as shown in Fig. 2(b). In this

way, we can balance the loads of links in a domain.

Once a flow transmits fewer packets and reduces bandwidth

consumption, its path need not change but the weight of each

link on that path will be recalculated. On the contrary, if the

flow raises bandwidth consumption by producing more packets

and makes some links overloaded (i.e., their weights wk ≥ 1),

the controller uses the above mechanism to select another path

in its domain to reroute the flow, so as to mitigate congestion.

C. Cross-domain Path Construction

Given a flow fj = 〈hu, hv〉, there are two cases to trigger

this mechanism: 1) hu and hv belong to different domains; 2)

hu and hv reside in the same domain but its controller cannot

find any internal path to replace congested links caused by fj .

Case 1: Suppose that hosts hu and hv belong to domains

D̃x and D̃y , whose controllers are cx and cy , respectively. By

the host access table, cx realizes that hv is an exterior host, so

Algorithm 1: Cross-domain path construction (case 2)

Data: D̃x: local domain, D̃y: neighboring domain

1 Let F̂k be a set of flows on a congested link in D̃x

and F̂ ′
k ⊆ F̂k contain all flows whose bandwidth

consumption ≥ δB.

2 Pick a flow fj = 〈hu, hv〉 from F̂ ′
k with the least

bandwidth consumption. If F̂ ′
k = ∅, we pick a flow

from F̂k that consumes the most bandwidth.

3 Find the gateway sα1 that is closest to hu and build a

path P1 from hu to sα1. Here, sα1 is an outgoing

gateway to D̃y whose incoming gateway is sβ1.

4 In D̃y , we find a path P2 from sβ1 to an outgoing

gateway sβ2 back to D̃x.

5 Let sα2 be the incoming gateway in D̃x that links to

sβ2. Then, we find a path P3 from sα2 to hv .

6 Build a new path for fj by concatenating P1, P2, P3.

it chooses a gateway to D̃y , say, sα to be its representative.

Afterward, cx finds a path from hu to sα in domain D̃x based

on the local path selection mechanism. Here, sα is called an

outgoing gateway. On the other hand, let sβ be the gateway

in D̃y that is a neighbor of sα, and we call it an incoming

gateway. Since the source hu is an exterior host, cy picks sβ
to stand for hu and finds a path from sβ to the destination

hv . Therefore, a cross-domain path hu → · · · → sα → sβ →
· · · → hv is built in a cooperative, distributed manner, as cx
and cy do not know link topology outside their domains. Note

that the controller that directs the outgoing gateway (i.e., cx)

takes charges of adding the link (sα, sβ) to the path. Take

Fig. 1 as an example. For flow 〈h2, h5〉, controller c1 picks

a path h2 → s3 → s1 → s7 for it. After that, controller c2
builds the residual path s7 → s5 → h5.

Case 2: When there are many flows or parts of flows have

long paths in a domain, some links may become bottlenecks.

Fig. 1 presents an example, where there are two flows f3 =
〈h1, h4〉 and f4 = 〈h2, h3〉 in domain D̃1. As can be seen,

link (s2, s4) is the bottleneck, as both flows must go through

this link. Suppose that f3 and f4 consume 6Mbps and 8Mbps

bandwidth, respectively, and each link has capacity of 10Mbps.

Thus, the weight of link (s2, s4) will be (6+8)/10 = 1.4, which

means that it is congested. However, we cannot find any other

path inside domain D̃1 to replace link (s2, s4) for f3 or f4. In

this case, controller c1 should seek help from nearby domains

(e.g., D̃2). More concretely, Algorithm 1 details our method

for a controller to borrow paths from an exterior domain and

build a cross-domain path to replace the congested one. For

example, suppose that δB = 1Mbps. Thus, F̂ ′
k = {f3, f4}. As

f3 consumes less bandwidth than f4, controller c1 chooses to

reroute f3. Based on Algorithm 1, we can have P1 : h1 → s1,

P2 : s7 (via different ports), and P3 : s4 → h4. Thus, the new

path for f3 will be h1 → s1 → s7 → s4 → h4.

In Algorithm 1, the reason why we select a flow in F̂ ′
k that

has the least amount of bandwidth consumption for rerouting



TABLE I
GENERATION OF FLOWS IN THE SIMULATION.

flow bandwidth start time end time duration

〈h3, h2〉 9Mbps 0 100 100
〈h4, h1〉 6Mbps 40 130 90
〈h5, h6〉 6Mbps 110 180 70
〈h1, h3〉 9Mbps 135 300 165
〈h2, h4〉 9Mbps 180 330 150
〈h6, h3〉 6Mbps 260 400 140
〈h3, h1〉 6Mbps 360 480 120
〈h4, h2〉 9Mbps 420 580 160
〈h9, h5〉 9Mbps 500 600 100

is that the controller has no idea about the status in the exterior

domain D̃y . If we simply reroute the largest flow (which may

send volumes of data), its packets may cause congestion in D̃y .

However, if the congested link in the local domain D̃x carries

many small flows, each using no more than δB bandwidth, we

can reroute the one with the maximum bandwidth consumption

to mitigate congestion in a more efficient manner.

After rerouting flow fj by Algorithm 1, the controller will

check if the packet loss rate of fj (by referring to the flow load

table discussed in Section III-A) can decrease. If not, it means

that the borrowing path (from the exterior domain) would be

also overloaded and thus cannot help reroute fj . In this case,

the controller will revert to the original path (i.e., the internal

path in the local domain) for fj .

IV. PERFORMANCE EVALUATION

We use the Mininet simulator [18] for performance evalua-

tion. To enable OpenFlow in Mininet, switches and controllers

are implemented by the OVS module [19] and the Ryu SDN

framework [20], respectively. Fig. 1 shows the topology of the

MDS network considered in our simulations, where each link

has a capacity of 10Mbps. During the 600-second simulation

time, there are nine flows generated, as listed in Table I.

We compare our CFM framework with two methods. One is

the local path selection (LPS) method. It uses the mechanism

in Section III-B to initialize and adjust paths of flows in each

domain. The other method is the traffic restrictions on heavily

loaded links (TRHL). If a link is congested, the switch allocates

bandwidth to each flow passing through that link based on its

size. This technique is widely used in many studies to mitigate

congestion or support QoS [6]–[9]. Since both LPS and TRHL

are designed for the one-controller environment, we apply case

1 discussed in Section III-C to them to deal with the situation

where the source and the destination of a flow are located in

different domains (e.g., 〈h6, h3〉 and 〈h9, h5〉 in Table I).

Fig. 3 compares network throughput by the three methods.

According to the generation of flows in Table I, there are three

time periods that some links will encounter serious congestion:

• 70th–100th seconds: congestion is caused by two flows

〈h3, h2〉 and 〈h4, h1〉.
• 210th–300th seconds: congestion is caused by three flows

〈h1, h3〉, 〈h2, h4〉, and 〈h6, h3〉.
• 440th–480th seconds: congestion is caused by two flows

〈h3, h1〉 and 〈h4, h2〉.

0

5

10

15

20

25

0 60 120 180 240 300 360 420 480 540 600

time (second)

n
e

tw
o

rk
 t

h
ro

u
g

h
p

u
t 

(M
b

p
s
)

LPS

TRHL

CFM

Fig. 3. Comparison on network throughput by the three methods.

When congestion occurs, LPS attempts to find other low-load

links in the local domain to replace the congested links, while

TRHL limits the amount of bandwidth that each flow can use

on a congested link. However, since some bottleneck links in a

domain may be congested by multiple flows, which makes LPS

hard to find replaceable links, it has slightly lower throughput

than TRHL (especially during 210th–300th seconds). On the

contrary, CFM allows a controller to borrow some links from

neighboring domains once it cannot find substitute links in its

domain. In this way, the loads of congested links can be shared

out, thereby significantly raising throughput. On the average,

our CFM framework improves 21.45% and 20.46% of network

throughput, as compared with LPS and TRHL, respectively.

To further investigate how each method deals with conges-

tion on a link, we generate two flows 〈h1, h3〉 and 〈h2, h4〉 in

domain D̃1 and observe their throughput and packet loss. Flow

〈h1, h3〉 is produced in the beginning, while flow 〈h2, h4〉 is

added on the 10th second. Based on the topology in Fig. 1,

the initial paths for both flows 〈h1, h3〉 and 〈h2, h4〉 will be

h1 → s1 → s2 → s4 → h3 and h2 → s3 → s2 → s4 →
h4, respectively. Since flows 〈h1, h3〉 and 〈h2, h4〉 consume

9Mbps and 6Mbps, respectively, they will cause congestion

on link (s2, s4). Fig. 4 shows the amount of throughput and

the packet loss rate of each flow by the three methods. For

LPS, flows 〈h1, h3〉 and 〈h2, h4〉 compete for the bandwidth

of the congested link (s2, s4), so their throughput would be

similar (in particular, 5.1Mbps and 4.3Mbps, respectively). In

this case, flow 〈h1, h3〉 incurs a higher packet loss rate than

flow 〈h2, h4〉 (i.e., around 43% and 28% after the 15th second,

respectively). On the other hand, TRHL allocates bandwidth to

both flows 〈h1, h3〉 and 〈h2, h4〉 proportionally to their sizes.

Thus, the ratio of the throughput of flows 〈h1, h3〉 and 〈h2, h4〉
will be close to that of their sizes (i.e., 9:6). In this case, both

flows also have similar packet loss rates (in particular, around

37% after the 25th second). In our CFM framework, when a

link becomes congested but there is no substitute path in the

domain, the controller will borrow links from a neighboring

domain, as discussed in Section III-C. Thus, the throughput

of each flow increases and its packet loss rate decreases after

the 25th second. Both flows 〈h1, h3〉 and 〈h2, h4〉 will have

no packet loss after the 35th second, which means that the



0

2

4

6

8

10

5 10 15 20 25 30 35 40

time (second)

th
ro

u
g
h
p
u
t 
(M

b
p
s
)

0

10

20

30

40

50

p�
�	

�
�

��
��
�

��
�

flow <h1,h3> - throughput flow <h2,h4> - throughput

flow <h1,h3> - packet loss flow <h2,h4> - packet loss

(a) LPS

0

2

4

6

8

10

5 10 15 20 25 30 35 40

time (second)

th
ro

u
g
h
p
u
t 
(M

b
p
s
)

0

10

20

30

40

50

p
a
c
k
e
t 
lo

s
s
 r

a
te

 (
%

)

flow <h1,h3> - throughput flow <h2,h4> - throughput

flow <h1,h3> - packet loss flow <h2,h4> - packet loss

(b) TRHL

0

2

4

6

8

10

12

5 10 15 20 25 30 35 40

time (second)

th
ro

u
g

h
p

u
t 

(M
b

p
s
)

0

10

20

30

40

50

p
a

c
k
e

t 
lo

s
s
 r

a
te

 (
%

)

flow <h1,h3> - throughput flow <h2,h4> - throughput

flow <h1,h3> - packet loss flow <h2,h4> - packet loss

(c) CFM

Fig. 4. Comparison on throughput and packet loss of two flows 〈h1, h3〉 and 〈h2, h4〉 in domain D̃1 by the three methods.

congestion on link (s2, s4) has been completely resolved. This

experiment shows the superiority of using cross-domain path

construction to mitigate congestion in our CFM framework.

V. CONCLUSION

In this paper, we propose the CFM framework to efficiently

manage flows in an MDS network which comprises connected

but autonomous domains. Each controller maintains four in-

formation tables to keep track of the status of its domain and

then finds a minimum-weight path for each flow to balance the

loads of links. If some links are still congested but there is no

substitute path in the domain, the controller borrows links from

a nearby domain to reroute the flows on the congested links.

Such cross-domain paths are constructed in a cooperative and

distributed way, which assures the autonomy of each domain.

Simulation results verify that our CFM framework can signif-

icantly increase network throughput and reduce packet loss,

as compared with both LPS and TRHL. For the future work,

we will consider managing flows with different priorities (e.g.,

based on their user levels [21]) in an MDS network. Moreover,

how to make multiple domains cooperate to jointly detect and

stop DDoS attacks [22] also deserves further investigation.

ACKNOWLEDGMENT

You-Chiun Wang’s research is co-sponsored by the Ministry

of Science and Technology under Grant No. MOST 108-2221-

E-110-016-MY3, Taiwan.

REFERENCES

[1] H. Xu, Z. Yu, X. Li, L. Huang, C. Qian, and T. Jung, “Joint route
selection and update scheduling for low-latency update in SDNs,”
IEEE/ACM Transactions on Networking, vol. 25, no. 5, pp. 3073–3087,
2017.

[2] Y. C. Wang and H. Hu, “An adaptive broadcast and multicast traffic
cutting framework to improve Ethernet efficiency by SDN,” Journal of

Information Science and Engineering, vol. 35, no. 2, pp. 375–392, 2019.

[3] Z. Zaidi, V. Friderikos, Z. Yousaf, S. Fletcher, M. Dohler, and H. Agh-
vami, “Will SDN be part of 5G?” IEEE Communications Surveys &

Tutorials, vol. 20, no. 4, pp. 3220–3258, 2018.

[4] M. F. Ramdhani, S. N. Hertiana, and B. Dirgantara, “Multipath rout-
ing with load balancing and admission control in software-defined
networking (SDN),” in International Conference on Information and

Communication Technology, 2016, pp. 1–6.

[5] J. Liu, J. Li, G. Shou, Y. Hu, Z. Guo, and W. Dai, “SDN based load
balancing mechanism for elephant flow in data center networks,” in
International Symposium on Wireless Personal Multimedia Communi-

cations, 2014, pp. 486–490.
[6] U. Zakia and H. B. Yedder, “Dynamic load balancing in SDN-based data

center networks,” in IEEE Annual Information Technology, Electronics

and Mobile Communication Conference, 2017, pp. 242–247.
[7] Y. L. Lan, K. Wang, and Y. H. Hsu, “Dynamic load-balanced path

optimization in SDN-based data center networks,” in International

Symposium on Communication Systems, Networks and Digital Signal

Processing, 2016, pp. 1–6.
[8] Y. C. Wang and S. Y. You, “An efficient route management framework

for load balance and overhead reduction in SDN-based data center
networks,” IEEE Transactions on Network and Service Management,
vol. 15, no. 4, pp. 1422–1434, 2018.

[9] M. S. A. Breiki, S. Zhou, and Y. R. Luo, “Development of OpenFlow
native capabilities to optimize QoS,” in International Conference on

Software Defined Systems, 2020, pp. 67–74.
[10] Y. C. Chan, K. Wang, and Y. H. Hsu, “Fast controller failover for

multi-domain software-defined networks,” in European Conference on

Networks and Communications, 2015, pp. 370–374.
[11] T. Hu, P. Yi, J. Zhang, and J. Lan, “Reliable and load balance-aware

multi-controller deployment in SDN,” China Communications, vol. 15,
no. 11, pp. 184–198, 2018.

[12] Y. C. Wang, W. C. Peng, and Y. C. Tseng, “Energy-balanced dispatch of
mobile sensors in a hybrid wireless sensor network,” IEEE Transactions

on Parallel and Distributed Systems, vol. 21, no. 12, pp. 1836–1850,
2010.

[13] A. Muthanna, A. Ateya, M. Makolkina, A. Vybornova, E. Markova,
A. Gogol, and A. Koucheryavy, “SDN multi-controller networks with
load balanced,” in International Conference on Future Networks and

Distributed Systems, 2018, pp. 1–6.
[14] W. H. F. Aly, “Controller adaptive load balancing for SDN networks,”

in International Conference on Ubiquitous and Future Networks, 2019,
pp. 514–519.

[15] A. Filali, S. Cherkaoui, and A. Kobbane, “Prediction-based switch
migration scheduling for SDN load balancing,” in IEEE International

Conference on Communications, 2019, pp. 1–6.
[16] Y. C. Wang and H. Hu, “A Low-cost, high-efficiency SDN framework

to diminish redundant ARP and IGMP traffics in large-scale LANs,” in
IEEE Computer Software and Applications Conference, 2018, pp. 894–
903.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms. The MIT Press, 2009.
[18] Mininet. [Online]. Available: http://mininet.org
[19] Open vSwitch (OVS). [Online]. Available: https://www.openvswitch.org
[20] Ryu. [Online]. Available: https://ryu-sdn.org
[21] Y. C. Wang and T. Y. Tsai, “A pricing-aware resource scheduling

framework for LTE networks,” IEEE/ACM Transactions on Networking,
vol. 25, no. 3, pp. 1445–1458, 2017.

[22] Y. C. Wang and Y. C. Wang, “Efficient and low-cost defense against
distributed denial-of-service attacks in SDN-based networks,” Interna-

tional Journal of Communication Systems, vol. 33, no. 14, pp. 1–24,
2020.


