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Abstract 

Pan-tilt-zoom (PTZ) cameras are widely used in surveillance systems. They are capable of remote directional 

control to direct the attention to objects. In the paper, we consider that PTZ cameras form a visual sensor network to 

monitor target objects. Each object is associated with a minimum monitoring time, where it has to be monitored by 

cameras in a period. As the monitoring quality of an object by a camera depends on the object’s location in the 

camera’s field of view (FoV), we propose a concept of splitting vision. Specifically, the FoV of a camera is sliced 

into three parts based on its viewing angle. A different weight is given when the object is in each part of FoV. Let the 

monitoring grade of a camera with respect to an object be the product of its weight, monitoring time, and the object’s 

priority. Our problem asks how to schedule the rotation of cameras to monitor each object, such that the total grade is 

maximized, under the constraint of minimum monitoring time of objects. We develop an efficient camera rotation 

scheduling (ECRS) heuristic to support cooperative monitoring of objects by exploiting FoV overlap of cameras. 

Experimental results show that ECRS achieves a higher grade than other methods, which implies that it helps PTZ 

cameras provide better monitoring quality of objects with longer time. In addition, we implement a prototype system 

to realize the ECRS heuristic and also demonstrate the system for the scenario of security surveillance. 

 
Keywords: Cooperative monitoring, PTZ camera, scheduling, surveillance, visual sensor network. 

 

1. Introduction 

Wireless sensor network (WSN) plays a key role in IoT (Internet of Things) [1], which helps people acquire data from the 

environment handily. A WSN comprises a large number of tiny but autonomous devices called sensors, each capable of 

detecting events, reporting its findings to a sink, and possibly reacting to events [2]. Owing to their flexibility and convenience, 

a variety of applications are developed for WSNs, for example, mobile surveillance [3], intelligent buildings [4], grocery 

shopping [5], health care [6], light control [7], and pollutant monitoring [8]. 

Recently, pan-tilt-zoom (PTZ) cameras are popularly applied to surveillance applications, which form a visual WSN to 

monitor target objects [9]. Due to its hardware nature, the sensing coverage of a PTZ camera, also known as field of view (FoV), 

is directional. In particular, the FoV is often described as a sector with a radius (i.e., sensing distance) 𝑟𝑟𝑠𝑠 and a viewing angle 𝜃𝜃. 

Moreover, with the help of machinery (e.g., a stepper motor), a PTZ camera can rotate a lot horizontally, which allows it 
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adaptively directing the attention to the monitoring objects. Thus, a PTZ camera can be treated as a rotatable and directional 

(R&D) sensor, whose rotation capability offers spatiotemporal monitoring of the environment [10]. 

In this paper, we are interested in studying how to schedule the rotation of PTZ cameras to make them cooperatively 

monitor a set of target objects and provide better monitoring quality. Specifically, the time axis is sliced into periods, during 

which each object needs to be monitored by at least one PTZ camera for a minimum time. Since the monitoring quality of an 

object with respect to a PTZ camera depends on the object’s position in the camera’s FoV, we propose a concept of splitting 

vision, where the FoV of a camera is divided into three parts by its viewing angle. A different weight is associated with each 

part. Then, we define the monitoring grade of a PTZ camera for an object as the product of its weight, monitoring time, and the 

object’s priority. Our problem asks how to schedule the rotation and also staying time of PTZ cameras to monitor each object, 

such that the total grade can be maximized, under the constraint of minimum monitoring time of objects. 

To solve the problem, we propose an efficient camera rotation scheduling (ECRS) heuristic, which first finds out possible 

FoVs for each PTZ camera based on the locations of objects. Among these candidate FoVs, ECRS iteratively picks one FoV to 

maximize the monitoring grade and decides the time that its camera stays in the FoV to monitor objects. Through simulation, 

we show that our ECRS heuristic achieves a higher monitoring grade than other methods, so it can provide better monitoring 

quality of objects with longer time. Moreover, a prototype system is also implemented to verify the practicability of ECRS, 

which can be used in the scenario of security surveillance. 

The rest of this paper is organized as follows. The next section surveys related work. We formulate the PTZ camera 

scheduling problem and propose the ECRS heuristic in Sections 3 and 4, respectively. Then, Section 5 presents performance 

evaluation, followed by system implementation in Section 6. Finally, Section 7 concludes the paper and gives future work. 

2. Related Work 

2.1.   Deployment Strategies for Omnidirectional WSNs 

There have been many deployment strategies proposed for omnidirectional WSNs, as the event detection capability of a 

WSN highly depends on its distribution of sensors [11]. The work [12] divides the sensing field into grids and uses a simulated 

annealing method to deploy sensors such that the maximum distance error by the WSN is minimized. Wang et al. [13] deploy 

sensors in a strip-by-strip way, and [14] proves that such a deployment strategy spends the least number of sensors to provide 

full coverage. The study [15] considers deploying the fewest sensors in an indoor region that contains obstacles to guarantee 

sensing coverage and network connectivity. In [16], both Poisson and Gaussian distributions of sensors are evaluated, and a 

hybrid deployment solution is developed based on these two distributions. 

Some studies aim to offer k-coverage of a sensing field. Specifically, [17] adopts a hexagon-like pattern to deploy sensors, 

while [18] uses the combination of 1-coverage and 3-coverage deployment to achieve k-coverage deployment. Considering 

that different regions of a sensing field may have different coverage requirements, [19] picks the least number of sensors to 

monitor p-percent of the sensing field. The work [20] considers deploying a 3D WSN and follows the idea of embedding the 

surface network to a planar topology to provide greedy routing in the WSN. Boubrima et al. [21] find the optimal locations of 

sensors and sinks in a city such that they can use the minimum number of sensors to monitor air pollution. However, the results 

of these research efforts cannot be applied to our problem due to different coverage model of sensors. 

2.2.   Deployment and Rotation Scheduling Methods for Visual WSNs 



International Conference on Advanced Technology Innovation 2019 
 
 
 

3 

For visual WSNs, how to deploy sensors (i.e., cameras) is also critical [22]. The work [23] seeks to deploy the fewest 

cameras in a region such that the response time to detect the intrusion in the region is minimized. To do so, it models the FoV 

of each camera as a triangle and uses an approximating optimal visual sensor placement strategy [24] together with linear 

programming to deploy cameras. Phama et al. [25] give each subarea of the sensing field a different risk level, which depends 

on the event occurring in that subarea (e.g., detecting an intruder). Then, cameras are deployed in each subarea according to its 

risk level. The study [26] also divides the sensing field into subareas and assign each one a minimum coverage ratio. After 

randomly placing cameras, it adjusts the direction of each camera with the objective of meeting the coverage ratio of each 

subarea. In [27], a particle swarm optimization algorithm is proposed to solve the coverage problem of a visual WSN. It views 

cameras as a swarm and target objects as particles. Then, the direction of each camera is iteratively adjusted to maximize the 

coverage of all target objects. However, these studies do not take advantage of the rotation capability of PTZ cameras. 

A number of studies deal with rotation scheduling of PTZ camera in a visual WSN. Supposing that each object is assigned 

with a threshold of monitoring probability, [28] considers how to schedule the rotation of PTZ cameras so as to make sure that 

each object can be monitored with a probability higher than its threshold. Given a set of objects, [29] discusses how to deploy 

the minimum cameras and decide their rotation, such that each object is covered by a fixed ratio of time in a period. The 

problem is NP-hard and two heuristics are proposed based on the distributions of objects. Li et al. [30] adopt the game theory to 

schedule camera rotation, whose goal is to find a solution to the problem of direction set k-cover for minimum coverage breach 

in a visual WSN. The study [31] translates the scheduling problem of PTZ cameras into a maximum vertex-weight matching 

problem, so as to pair each camera with a target object. In [32], a generalized R&D sensor deployment (GRSD) problem is 

formulated to use cameras to monitor a set of heterogeneous objects. It considers how to use the fewest PTZ cameras to achieve 

temporal coverage by making each object be ti-time covered. The problem is also NP-hard, so a heuristic is developed based on 

the positions and coverage requirements of objects. Nevertheless, none of these studies addresses the concept of splitting vision. 

This motivates us to slice the FoV of each PTZ camera and associate each part a different weight, so as to provide different 

monitoring quality for objects. 

3. PTZ Camera Scheduling Problem 

3.1.   Environmental Assumptions 

In this paper, we use PTZ cameras that can freely rotate horizontally and direct their attention to target objects. During the 

monitoring process, a PTZ camera may stay in some FoVs briefly to monitor objects. Suppose that a set 𝐶̂𝐶 = {𝑐𝑐0, 𝑐𝑐1, 𝑐𝑐2 … , 𝑐𝑐𝑛𝑛} 

of PTZ cameras are installed in the sensing field. Each camera has the same working period 𝑇𝑇 (including both rotation and 

monitoring time) and can rotate 360 degrees. Let 𝛿𝛿 be the total rotation time for a camera ci in a period to switch among FoVs. 

Besides, let 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 denote the time that camera ci stays in FoV 𝑓𝑓𝑖𝑖,𝑘𝑘. Then, we can derive that 

𝑇𝑇 =  𝛿𝛿 + 𝑇𝑇′ ≥  𝛿𝛿 + 𝛴𝛴�𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐�∀𝑓𝑓𝑖𝑖,𝑘𝑘 ∈ 𝐹𝐹�𝑖𝑖},                                      (1) 

where 𝑇𝑇′ is the total monitoring time and 𝐹𝐹�𝑖𝑖 is the set of ci’s FoVs. Fig. 1 shows an example. Since a PTZ camera will rotate 

360 degrees in a period, we have 𝛿𝛿 = 2𝜋𝜋/𝑉𝑉𝐴𝐴, where 𝑉𝑉𝐴𝐴 is the angular velocity of PTZ cameras. 

 
Fig. 1 The behavior of a PTZ camera in a period 
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A PTZ camera has to stop for a short time in order to capture a clear image to identify the monitoring object [33]. Besides, 

[34] points out that we should put an upper bound on the time that the PTZ camera switches between two monitoring objects, 

so as to avoid some objects uncovered for too long time. Thus, given a set 𝑂𝑂�  of target objects, we associate each object 𝑜𝑜𝑗𝑗 ∈ 𝑂𝑂�  

a minimum monitoring time 𝑡𝑡𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜 and also a priority 𝑝𝑝𝑗𝑗 to indicate its importance. Suppose that a subset  𝑂𝑂�′ ⊆ 𝑂𝑂�  of objects are 

covered by a subset 𝐶̂𝐶′ ⊆ 𝐶̂𝐶 of cameras. Then, we should guarantee that 

𝛴𝛴𝑐𝑐𝑖𝑖∈𝐶̂𝐶′𝑇𝑇
′ ≥  𝛴𝛴𝑜𝑜𝑗𝑗∈𝑂𝑂�′𝑡𝑡𝑗𝑗

𝑜𝑜𝑜𝑜𝑜𝑜 .                                   (2) 

In other words, the overall monitoring time of cameras in 𝐶̂𝐶′ cannot be shorter than the sum of the minimum monitoring time of 

each object in 𝑂𝑂�′, or the 𝑡𝑡𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜 constraint will be violated.  

3.2.   FoV and Splitting Vision 

For a PTZ camera, its current FoV is defined by the sector area whose bisector is aligned with the camera’s optical axis 

and has a viewing angle 𝜃𝜃. As the PTZ camera can rotate, it has multiple FoVs. Thus, we denote by 𝑓𝑓𝑖𝑖,𝑘𝑘 the 𝑘𝑘th FoV of a PTZ 

camera 𝑐𝑐𝑖𝑖, and 𝐹𝐹�𝑖𝑖 the set of 𝑓𝑓𝑖𝑖,𝑘𝑘. Besides, all cameras have the same viewing angle, so their FoVs have the same size. 

Since the FoVs of two cameras may overlap, some studies [35][36] encourage us exploiting this property to share the 

monitoring time of a target object by two or more cameras. We can take Fig. 2 as an example, where both cameras 𝑐𝑐1 and 𝑐𝑐2 

cover object 𝑜𝑜2. Either 𝑐𝑐1 or  𝑐𝑐2 cannot solely satisfy the minimum monitoring time 𝑡𝑡2
𝑜𝑜𝑜𝑜𝑜𝑜  of 𝑜𝑜2. In this case, we can make them 

cooperatively monitor 𝑜𝑜2 (at different times), so as to meet the 𝑡𝑡2
𝑜𝑜𝑜𝑜𝑜𝑜 constraint, as shown in Fig. 2(b). 

 
(a) FoVs of two PTZ cameras 𝑐𝑐1 and 𝑐𝑐2 

 
(b) Rotation and monitoring scheduling of both 𝑐𝑐1 and 𝑐𝑐2 

Fig. 2 Cooperative monitoring of two PTZ cameras 

On the other hand, when the monitoring object locates in different parts of a FoV, the image quality provided by the PTZ 

camera may be different. Fig. 3 gives an example. When the object (marked as ‘X’) locates in 𝑜𝑜1, the camera can offer better 

monitoring quality (i.e., the image is clearer).  To reflect the above phenomenon, we propose the concept of splitting vision by 

dividing the FoV into three parts, as shown in Fig. 3(a). Moreover, we associate each part with a weight as follows: 

𝜔𝜔 =

⎩
⎨

⎧ 1, 𝑖𝑖𝑖𝑖 |𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � 𝑐𝑐𝚤𝚤𝑜𝑜𝚥𝚥��������⃑  ∙ 𝑣𝑣�⃑

�𝑐𝑐𝚤𝚤𝑜𝑜𝚥𝚥��������⃑ �|𝑣𝑣�⃑ |
� | ≤ 𝜑𝜑

2
              

𝛼𝛼, 𝑖𝑖𝑖𝑖 𝜑𝜑
2

< |𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � 𝑐𝑐𝚤𝚤𝑜𝑜𝚥𝚥��������⃑  ∙ 𝑣𝑣�⃑

�𝑐𝑐𝚤𝚤𝑜𝑜𝚥𝚥��������⃑ �|𝑣𝑣�⃑ |
� | ≤ 𝜃𝜃

2
 , 0 < 𝛼𝛼 < 1

                         

               (3) 
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Let us take Fig. 3(a) as an example, where 𝑣⃑𝑣 is the optical axis of a camera. Since the included angle between 𝑜𝑜1𝑐𝑐𝚤𝚤�������⃑  and 𝑣⃑𝑣 is 

smaller than 𝜑𝜑/2, 𝑜𝑜1 locates in part 2 and has a weight of 1. For 𝑜𝑜2, as the included angle is between 𝜑𝜑/2 and 𝜃𝜃/2, it locates in 

part 1 (or 3) and has a weight of 𝛼𝛼 ∈ [0,1]. 

 
(a) Splitting vision 

 (b) Object locates in 𝑜𝑜1 

 (c) Object locates in 𝑜𝑜2 

Fig. 3 Monitoring quality for an object when it locates in different parts of a FoV 

3.3.   Problem Formulation 

Suppose that a PTZ camera 𝑐𝑐𝑖𝑖 stays in each FoV 𝑓𝑓𝑖𝑖,𝑘𝑘 for 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 time. We define its monitoring grade by 

𝑔𝑔𝑖𝑖 = 𝛴𝛴𝑜𝑜𝑗𝑗∈𝑂𝑂�𝜔𝜔𝑖𝑖,𝑗𝑗 × 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑝𝑝𝑗𝑗 ,                                        (4) 

Where 𝜔𝜔𝑖𝑖,𝑗𝑗 is 𝑐𝑐𝑖𝑖’s weight for object 𝑜𝑜𝑗𝑗. Then, we formulate the PTZ camera scheduling problem as follows: 

Objective: Maximize 𝛴𝛴𝑐𝑐𝑖𝑖∈𝐶̂𝐶  𝑔𝑔𝑖𝑖 (5) 

Constraints:  

𝑡𝑡𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜 > 0,∀𝑜𝑜𝑗𝑗 ∈ 𝑂𝑂�  (6) 

𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 > 0,∀𝑓𝑓𝑖𝑖,𝑘𝑘 ∈ 𝐹𝐹�𝑖𝑖,∀𝑐𝑐𝑖𝑖 ∈ 𝐶̂𝐶 (7) 

𝐶̂𝐶 ≠ ∅,𝑂𝑂� ≠ ∅ (8) 

𝑇𝑇 =  𝛿𝛿 + 𝑇𝑇′ ≥  𝛿𝛿 + 𝛴𝛴�𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐�∀𝑓𝑓𝑖𝑖,𝑘𝑘 ∈ 𝐹𝐹�𝑖𝑖} (9) 

𝛴𝛴𝑐𝑐𝑖𝑖∈𝐶̂𝐶′𝑇𝑇
′ ≥  𝛴𝛴𝑜𝑜𝑗𝑗∈𝑂𝑂�′𝑡𝑡𝑗𝑗

𝑜𝑜𝑜𝑜𝑜𝑜 (10) 

Here, Eq. (5) means to maximize the overal minitoring grade. Eq. (6) indicates that each object has a positive 𝑡𝑡𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜 time. Eq. (7) 

points out that a camera will stay in each selected FoV for a non-zero time. Clearly, both 𝐶̂𝐶 and 𝑂𝑂�  cannot be empty, as shown in 

Eq. (8). The meanings of Eqs. (9) and (10) have been discussed in Section 3.1. In fact, the above formulation follows the format 

of mixed integer programming, so the PTZ camera scheduling problem is NP-hard in essence. 

4. The Proposed ECRS Heuristic 

Our ECRS heuristic contains four steps. In step 1, we identify all FoVs of each PTZ camera based on the distribution of 

objects in 𝑂𝑂� . Then, step 2 picks an object from 𝑂𝑂�  and finds the corresponding FoV, while step 3 decides its 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 and updates 
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the available monitoring time of the camera. Both steps are repeated until the termination conditions are met in step 4. Below, 

we discuss the detailed design in each step. 

4.1.   Step 1: Identify FoVs of a Camera 

For each PTZ camera 𝑐𝑐𝑖𝑖, we first find out all of its FoVs, where each FoV should cover at least one object in 𝑂𝑂� . To do so, 

we model the pontential sensing coverage of the camera as a disk whose center locates at the camera’s position and radius is 

the sensing distance 𝑟𝑟𝑠𝑠. Then, for each object 𝑜𝑜𝑗𝑗 ∈ 𝑂𝑂�  located in the disk, we expand the sector area from 𝑐𝑐𝚤𝚤𝑜𝑜𝚥𝚥������⃑  with an angle of 

(𝜃𝜃 − 𝜑𝜑) 2⁄  clockwise (denoted by 𝐴𝐴1) and the sector area from 𝑐𝑐𝚤𝚤𝑜𝑜𝚥𝚥������⃑  with an angle of (𝜃𝜃 + 𝜑𝜑) 2⁄  counterclockwise (denoted by 

𝐴𝐴2). In this way, a FoV is found by combining both 𝐴𝐴1 and 𝐴𝐴2. Then, we record the objects covered by the FoV.  

Fig. 4(a) gives an example. For object 𝑜𝑜1, we expand sector area 𝐴𝐴1 from 𝑐𝑐1𝑜𝑜1��������⃑  with an angle of (𝜃𝜃 − 𝜑𝜑) 2⁄  clockwise and 

also sector area 𝐴𝐴2 from 𝑐𝑐1𝑜𝑜1��������⃑  with an angle of (𝜃𝜃 + 𝜑𝜑) 2⁄  counterclockwise. Then, FoV 𝑓𝑓1,1 will be the union of 𝐴𝐴1 and 𝐴𝐴2. 

Fig. 4(b) shows the four FoVs found by the above procedure. 

 
(a) Identify FoV 𝑓𝑓1,1 

 
(b) The final result 

Fig. 4 An example of finding FoVs of a PTZ camera 

4.2.   Step 2: Pick an Object and Find the Corresponding FoV 

For each object 𝑜𝑜𝑗𝑗 ∈ 𝑂𝑂� , we define 𝑡𝑡𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 as its residual required time to be monitored by PTZ cameras. In the beginning, 

𝑡𝑡𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is set to 𝑡𝑡𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜 (i.e., the minimum monitoring time). On the other hand, for each camera 𝑐𝑐𝑖𝑖 ∈ 𝐶̂𝐶, we also define 𝑇𝑇𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

to be its available monitoring time. From the discussion in Section 3.1, 𝑇𝑇𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is initially set to 𝑇𝑇𝑖𝑖′.  

We then pick an object and find the corresponding FoV based on a greedy approach. In particular, among all objects in 𝑂𝑂�  

that have positive 𝑡𝑡𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  values, we choose the object 𝑜𝑜𝑗𝑗 whose priority 𝑝𝑝𝑗𝑗  is the largest. In case of tie, we select the object 

with the maximum 𝑡𝑡𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 value. Then, among all cameras in 𝐶̂𝐶 whose FoVs can cover 𝑜𝑜𝑗𝑗, we select the camera 𝑐𝑐𝑖𝑖 that has the 

maximum 𝑇𝑇𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 time. Afterwards, if 𝑜𝑜𝑗𝑗 is covered by multiple FoVs of 𝑐𝑐𝑖𝑖, we then select the FoV as follows: 

𝑓𝑓𝑖𝑖,𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑖𝑖,𝑘𝑘∈𝐹𝐹�𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝜔𝜔𝑖𝑖,𝑗𝑗 × 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑝𝑝𝑗𝑗𝑜𝑜𝑗𝑗∈𝑂𝑂�𝑖𝑖,𝑘𝑘 ,    (11) 

where 𝑂𝑂�𝑖𝑖,𝑘𝑘 denotes the set of objects covered by 𝑓𝑓𝑖𝑖,𝑘𝑘. In other words, we will select the FoV 𝑓𝑓𝑖𝑖,𝑘𝑘 that achieves the highest 

monitoring grades. However, since we do not know 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 yet (this paramter will be calculated in step 3), we can replace 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 

in Eq. (11) by 𝑚𝑚𝑚𝑚𝑚𝑚 {𝑡𝑡𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑇𝑇𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟} (i.e., the minimum value between the residual required monitoring time of object 𝑜𝑜𝑗𝑗 and 

the available monitoring time of camera 𝑐𝑐𝑖𝑖). 

4.3.   Step 3: Decide 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 and Update the Available Monitoring Time 
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After choosing FoV 𝑓𝑓𝑖𝑖,𝑘𝑘 and object 𝑜𝑜𝑗𝑗, we calculate the time 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 for camera 𝑐𝑐𝑖𝑖 to stay in 𝑓𝑓𝑖𝑖,𝑘𝑘 to monitor 𝑜𝑜𝑗𝑗. However,  

𝑓𝑓𝑖𝑖,𝑘𝑘 may include objects other than 𝑜𝑜𝑗𝑗. Thus, we consider the longest residual required monitoring time: 

𝑡𝑡𝑖𝑖,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑚𝑚𝑚𝑚𝑚𝑚𝑜𝑜𝑣𝑣∈𝑂𝑂�𝑖𝑖,𝑘𝑘{𝑡𝑡𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟}.                              (12) 

Then, the following pseudocode helps us decide 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 and also update the available monitoring time 𝑇𝑇𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  of 𝑐𝑐𝑖𝑖: 

 

Specifically, if the available monitoring time is larger than 𝑡𝑡𝑖𝑖,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚, we can directly set 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 to 𝑡𝑡𝑖𝑖,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 and also deduct 𝑇𝑇𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 by 

𝑡𝑡𝑖𝑖,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 . Otherwise, it means that there remains insufficient monitoring time for camera 𝑐𝑐𝑖𝑖. In this case, 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 should be set to 

𝑇𝑇𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and we then set  𝑇𝑇𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 to zero, so 𝑐𝑐𝑖𝑖 will not participate in the scheduling process in the next round. Since FoV 𝑓𝑓𝑖𝑖,𝑘𝑘 

covers each object 𝑜𝑜𝑣𝑣 in 𝑂𝑂�𝑖𝑖,𝑘𝑘, we need to update its residual required monitoring time 𝑡𝑡𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 . Note that when 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 is no 

smaller than 𝑡𝑡𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, it means that 𝑐𝑐𝑖𝑖 (possibly with other cameras) can satisfy the minimum monitoring time of 𝑜𝑜𝑣𝑣. Thus, we 

set 𝑡𝑡𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 to zero, so the object will not be considered in the next round. 

4.4.   Step 4: Termination Conditions 

Both steps 2 and 3 are repeated until 1) every camera has run out of monitoring time or 2) the minimum monitoring time 

of each object has been satisified. For the second condition, if a camera still has available monitoring time, it refers to Eq. (11) 

(by replaing 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 with 𝑇𝑇𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) to select the FoV 𝑓𝑓𝑖𝑖,𝑘𝑘 and then spends time 𝑇𝑇𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  on staying in 𝑓𝑓𝑖𝑖,𝑘𝑘, so as to maximize its 

monitoring grade. 

  
Fig. 5 FoVs of two PTZ cameras 𝑐𝑐1 and 𝑐𝑐2 

Let us use the example in Fig. 5 to show how ECRS works, where we have two cameras  𝑐𝑐1 and 𝑐𝑐2 to monitor six objects. 

Suppose that the working period 𝑇𝑇 is 10 seconds. Table 1 gives the status in each round by ECRS. Specifically, since objects 

if 𝑇𝑇𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 > 𝑡𝑡𝑖𝑖,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 
 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑡𝑡𝑖𝑖,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚; 
 𝑇𝑇𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑡𝑡𝑖𝑖,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚; 
else  
 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑇𝑇𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟; 
 𝑇𝑇𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0; 
 
for 𝑜𝑜𝑣𝑣 in O�i,k 
 if 𝑡𝑡𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 > 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 
  𝑡𝑡𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑡𝑡𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟- 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐; 
 else 
  𝑡𝑡𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0; 
end 
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𝑜𝑜1 and 𝑜𝑜5 have the largest priority (i.e., 10) but 𝑜𝑜5 has longer 𝑡𝑡𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 time, we choose FoV 𝑓𝑓2,1 to cover 𝑜𝑜5, with staying time 

of 6 seconds in round 1. Then, we select FoV 𝑓𝑓1,1 to cover 𝑜𝑜1. In round 3, we choose object 𝑜𝑜3 to monitor. Since both cameras  

𝑐𝑐1 and 𝑐𝑐2 can cover 𝑜𝑜3, we select 𝑐𝑐1 because it has longer available monitoring time. In round 4, we use FoV 𝑓𝑓1,4 to cover 

object 𝑜𝑜4. Finally, object 𝑜𝑜6 is covered by FoV 𝑓𝑓2,2 in round 5.Thus, the minimum monitoring time of each object can be met. 

Status Round 1 Round 2 Round 3 Round 4 Round 5 
Object pj tjremain tjremain tjremain tjremain tjremain tjremain 

o1 10 4 - 4 f1,1 0 - 0 - 0 -  

o2 1 2 - 2 - 2 f1,2 0 - 0 -  

o3 5 4 - 4 - 4 f1,2 0 - 0 -  

o4 5 2 - 2 - 2 - 2 f1,4 0 -  

o5 10 6 f2,1 0 - 0 - 0 - 0 -  

o6 1 4 - 4 - 4 - 4 - 4 f2,2 0 

(a) Update tjremain of each object 

Status Round 1 Round 2 Round 3 Round 4 Round 5 
Camera 𝑇𝑇𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 FoV 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 FoV 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 FoV 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 FoV 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 FoV 𝑡𝑡𝑖𝑖,𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐 

𝑐𝑐1 10 - - 𝑓𝑓1,1 4 𝑓𝑓1,2 4 𝑓𝑓1,4 2 - - 

𝑐𝑐2 10 𝑓𝑓2,1 6 - - - - - - 𝑓𝑓2,2 4 
(b) Selected camera and FoV in each round 

 𝑜𝑜1 𝑜𝑜2 𝑜𝑜3 𝑜𝑜4 𝑜𝑜5 𝑜𝑜6 
𝑐𝑐1 4 4 4 2 × × 

𝑐𝑐2 × × × × 6 4 
(c) Monitoring time of objects by each camera 

Table 1. An example to show how ECRS works 

5. Performance Evaluation 

We develop a simulator in Python to evaluate performance of the ECRS heuristic. The sensing field is a square whose 

width is 400, inside which a number of target objects are randomly placed. We divide these objects into three groups, each with 

the same number of objects. For the objects in groups 1, 2, and 3, we set their priorities to 1, 5, and 10, respectively. Then, we 

use the Poisson-disk sampling algorithm [37] to deploy PTZ cameras, where the distance between any two cameras is kept in 

[𝑟𝑟𝑠𝑠/2, 𝑟𝑟𝑠𝑠]. Therefore, each camera can cover a similar number of objects. The working period 𝑇𝑇 of each camera is set to 10 

seconds. To find a feasible solution, we have to make sure that 

∑ 𝑡𝑡𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜

𝑜𝑜𝑗𝑗∈𝑂𝑂� ≤ 𝑇𝑇 × 𝑁𝑁𝐶𝐶 ,           (13) 

where 𝑁𝑁𝐶𝐶  is the total number of cameras. We compare ECRS with the GRSD heuristic [32] discussed in Section 2.2. Besides, 

we also create an ECRS-C method for comparison, where it finds each FoV by aligning the camera’s optical axis and an object 

in step 1. For each experiment, we repeat the simulation for 100 times and take their average. 

We first measure the effect of different numbers of objects and cameras on the monitoring grade. In this experiment, we 

set 𝜃𝜃 to 60 degrees and 𝜑𝜑 to 20 degrees. Besides, 𝛼𝛼 is set to 0.3 in Eq. (3) to decide the weight of each part in a FoV. Fig. 6(a) 

gives the result when there are 10 cameras to monitor 100 objects, while Fig. 6(b) presents the result when there are 30 cameras 
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to monitor 300 objects. Obviously, the monitoring grade increases as the number of objects grows (referring to Eq. (5)). Since 

the GRDS heuristic does not consider splitting vision, it always results in the lowest monitoring grade. On the other hand, our 

ECRS heuristic finds out FoVs of each camera by exploiting splitting vision. Besides, it greedily picks the object with the 

highest priority and also the largest 𝑡𝑡𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 value to serve first, so ECRS can achieve much higher monitoring grade than other 

methods. Such a phenomenon is more significant when there are 300 objects and 30 camera, as shown in Fig. 6(b). 

 
(a) 10 cameras and 100 objects 

 
(b) 30 cameras and 300 objects 

Fig. 6 Comparison on monitoring grades under different numbers of cameras and objects 

        Then, we evaluate the effect of splitting vision by angle 𝜑𝜑. In this experiment, there are 20 cameras used to monitor 120 

objects, and the viewing angle 𝜃𝜃 is set to 120 degrees. Fig. 7(a) shows the effect of 𝜑𝜑 on the monitoring grade. It is obvious that 

the monitoring grade increases in each method when we enlarge 𝜑𝜑. The reason is that the central part (i.e., part 2 in Fig. 3(a)) of 

each FoV increases, so it can cover more objects and thus improves the monitoring grade, as shown in Fig. 7(b). In fact, ECRS 

can let more objects be covered by the central part of each FoV when 𝜑𝜑 increases, as comparing with other two methods. From 

Fig. 7(a), we observe that our ECRS heuristic always keeps the highest monitoring grade, even though we remove the effect of 

splitting vision by setting 𝜑𝜑 to 𝜃𝜃 (i.e., the ratio is 1). This result demonstrates the superiority of ECRS over other methods. 

 
(a) monitoring grade 

 
(b) percentage of objects in the central part 

Fig. 7 Effect of splitting vision by angle 𝜑𝜑 

6. System Implementation 

To implement the ECRS heuristic, three D-Link 5222L PTZ cameras [38] are installed to monitor five objects in an office, 

as shown in Fig. 8(a). Each camera provides megapixel HD 720p resolution and can be remotely controlled. In particular, we 

use multithreading along with HTTP request to synchronously control these cameras. However, the maximum rotation angle of 

a camera is limited to 340 degrees, so we design a zeroing mechanism. In the beginning, we make each camera rotate to the end 
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counterclockwise and set this direction as a reference of zero degree. After finishing one period of the monitoring job, we also 

ask a camera to rotate back to the above reference direction. In this way, we can imitate the behavior of rotating 360 degrees. 

 
 

(a) System deployment 
 

(b) GUI 

Fig. 8 System implementation of ECRS 

Fig. 8(b) illustrates our graphical user interface (GUI), which is implemented by the tkinter component in Python. In the 

GUI, we provide three separated screens to show the videos captured by each PTZ camera. In addition, a user can manually 

control each camera by asking it to rotate left (i.e., counterclockwise) or right (i.e., clockwise) with a certain degree. When the 

user presses the “scheduling” button (in the bottom right concern), these three cameras will automatically rotate to monitor 

each object, which follows the scheduling result of our ECRS heuristic. This system also provides a prototype for security 

surveillance in an indoor environment. 

7. Conclusion and Future Work 

Thanks to the rotation capability of PTZ cameras, they are widely used in indoor surveillance scenarios. By considering a 

new concept of splitting vision, this paper models the rotation scheduling problem of PTZ cameras in a visual WSN by linear 

programming and also develops the ECRS heuristic to efficiently solve the problem. ECRS first finds out FoVs of cameras to 

monitor objects and iteratively pairs objects and FoVs with the goal of increasing the monitoring grade. It also makes two 

cameras with overlapped FoVs cooperatively monitor the same objects. Simulation results in Python demonstrates that ECRS 

outperforms other methods in terms of the monitoring grade, which means that it can offer better monitoring quality for longer 

time. Moreover, we also implement ECRS by using three PTZ cameras to monitor objects in an office. 

We give some directions for future work. First, the transmission of video streaming consumes lots of network bandwidth. 

When some video frames are lost, we can partially retransmit necessary frames to improve the video quality [39]. In addition, 

different data compression techniques [40] can be also applied to save network bandwidth. Second, we consider only fixed 

objects in this paper. When objects will move inside the sensing field, how to efficiently track them is a challenge. There are 

two possible solutions. One is to assume that the mobility of objects follows some regular patterns [41], so we can schedule the 

rotation of cameras based on these mobility patterns. Alternatively, objects can be associated with RFID (radio frequency 

identification) tags [42], so as to notify cameras of the positions of objects. Third, since PTZ cameras are used in surveillance 

applications, how to provide secure transmission of sensing data is critical [43]. This security issue will be especially important 

for IoT scenarios, where the monitoring data will be continuously sent to a data center network for storage and processing [44]. 

Finally, as the technology of mobile platforms (e.g., robots or vehicles) is mature, it is interesting to mount PTZ cameras on 

these platforms to make them become mobile sensors [45]. Some challenging issues will be also arisen, for example, how to 
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tactically and quickly dispatch these mobile sensors to detect abnormal events [46]. 
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