
Lightweight Scheduling of Data Collection Paths for
Mobile Data Ferries in Long-term IoT Applications

You-Chiun Wang and Kuan-Chung Chen
Department of Computer Science and Engineering,

National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
Email: ycwang@cse.nsysu.edu.tw; m043040017@student.nsysu.edu.tw

Abstract—Many IoT (Internet of things) applications rely on
wireless sensors for long-term monitoring of the environment.
Sensors need to relay their data to a sink via multihop transmis-
sions, which consumes lots of energy and shortens their lifetime.
Using a mobile data ferry (MDF) to visit sensors and collect their
data can well address this issue. How to schedule a data collection
path for the MDF is a challenge, and it is usually viewed as a
variation of the traveling salesman problem (TSP). However, some
existing methods iteratively select a sensor for visiting and repeat
TSP solutions many times, which incurs a high computation cost.
Besides, they assume that sensors have large buffer space to cache
data sent from others. By considering both computation overhead
and buffer constraint, we develop a lightweight and efficient path
scheduling (LEPS) scheme, whose idea is to select delegate nodes
(DNs) along a routing tree of sensors by their relative distances
and cached packets. Non-DN sensors send their data to the closest
DNs, and the MDF then visits each DN to collect data. Through
simulations, we show that LEPS spends less computation time to
find a good data collection path such that sensors can save more
energy and DNs better utilize their buffers to cache data, which
verifies its effectiveness on long-term IoT applications.

Index Terms—long-term monitoring, mobile data ferry, packet
loss, path scheduling, traveling salesman problem.

I. INTRODUCTION

Today, wireless sensor networks have been widely deployed
to support a variety of applications, from home surveillance
[1], [2] to smart buildings [3], intelligent vehicles [4], pol-
lutant monitoring [5], [6], precision agriculture [7], grocery
shopping [8], and health assessment [9]. They promote the
development of Internet of things (IoT), which allows objects
(e.g., appliances or devices) forming a network to collect and
transmit information by equipping with sensors or RFIDs [10].
To better offer IoT services, sensors should regularly report
their sensing data for a long time [11]. However, sensors are
powered by small batteries. Besides, it is not easy to replace
batteries owing to the large number of sensors. Consequently,
how to conserve energy of sensors on data transmissions (and
prolong their lifetime) is a critical issue [12].

There are three common approaches to deal with the above
issue. One is to adjust the duty cycle of each sensor, where
sensors can sleep to save energy [13]. Another is to let sensors
compress their sensing data, so as to decrease the amount of
data transmissions [14]. The other is to use a mobile data ferry
(MDF) to visit sensors and collect their data, so sensors need
not relay their data via many hops [15]. However, the first
two approaches may encounter the energy hole problem [16].

When a sensor is closer to the sink, it has to spend more energy
on forwarding the data generated by more upstream sensors.
Therefore, we aim at using the third approach to reduce energy
consumption of sensors on data transmissions.

Since sensing data may have the delay requirement in IoT
applications, how to schedule a short data collection path for
the MDF to visit sensors is a challenge. Some methods [17],
[18], [19] make the MDF call on each sensor to collect data,
and the problem will be the traveling salesman problem (TSP).
Due to its NP-complete property [20], these methods can work
well only with a small number of sensors. Given a large sensor
network, it would be better to select a subset of sensors as
delegate nodes (DNs) to cache data for others. Then, the MDF
visits these DNs to receive data. Thus, the problem becomes
how to find DNs such that sensors can spend the least energy
on communications with the shortest data collection path.

In this paper, we propose a lightweight and efficient path
scheduling (LEPS) scheme to select DNs and compute the
MDF’s path with less computation overhead. Given a routing
tree of sensors, LEPS finds candidate DNs along the tree
based on their available buffer space. Among the candidates,
it iteratively selects DNs such that the distance between two
adjacent DNs is reduced. Afterwards, LEPS finds the data
collection path for the MDF to visit each DN through a TSP
solution. Comparing with existing methods, our LEPS scheme
has two novel designs. First, some methods seek to find out the
shortest data collection path by repeatedly picking a sensor and
using a TSP solution to check if it is suitable to serve as a DN.
Thus, they will incur a high computation cost. On the contrary,
LEPS selects DNs based on their relative distances and uses
the TSP solution only once. In this way, we can greatly save
the computation time. Second, existing methods assume that
sensors generate the same number of packets (for sensing data)
and have no limitation on buffer space. In practice, some DNs
may need to cache data for more sensors to reduce the path. In
this case, buffer overflow would occur on these DNs and the
sink cannot get the lost sensing data. To deal with this issue,
LEPS considers both available buffer space and the number
of packets generated by each sensor when selecting DNs.
Through simulations, we show that LEPS can decrease the
computation time, save energy of sensors on communications,
and prevent DNs from dropping packets. Therefore, it can
better support long-term IoT applications than other methods.

II. RELATED WORK

Some methods find the smallest set of DNs by restricting
the hop count from each non-DN sensor to its closest DN. For
example, [21] first organizes a shortest-path tree to link all
sensors. From each leaf, the ancestor k-hops away is selected
as a DN. Then, each DN collects data from all sensors in its
subtree, and the MDF moves to visit DNs for data collection.
Ma et al. [22] formulate a one-hop data collection problem
to find the fewest DNs such that every non-DN sensor can
directly forward its data to a one-hop DN. The problem is
NP-hard, so they propose a spanning-tree covering heuristic
to pick out DNs. In these methods, non-DN sensors can spend
less energy on data transmissions, but each DN has to cache
data for more sensors and spend more energy. Thus, some
DNs may still encounter the energy hole problem.

Given a routing tree of sensors, [23] computes a weight
for each tree edge by the number of sensors that use the
edge to relay data. Then, it iteratively picks a DN based on
edge weights and uses a TSP solution to modify the data
collection path. Specifically, the TSP solution is run ND times
in a iteration, where ND is the number of DNs. Thus, the
scheme has time complexity of O(N2

DξTSP), where ξTSP is
the cost to run the TSP solution. The work of [24] proposes
a weighted rendezvous planning (WRP) method by forming
a spanning tree from sensors. Each sensor is given a weight
wi = ni × h(i), where ni is the number of packets that si
sends to a DN and h(i) is the hop count from the sensor to its
nearest DN. Since WRP assumes that each sensor generates
only one packet, ni will be the number of the sensor’s children
plus one. Then, WRP selects a DN with the largest weight
and uses a TSP solution to schedule a path to visit each DN.
However, since it uses the TSP solution to recompute the path
to visit DNs in every iteration, WRP has time complexity of
O(N2ξTSP), where N is the number of total sensors.

Almiani et al. [25] propose a cluster-based scheme to select
DNs, which arbitrarily picks a subset of sensors to be cluster
heads and each of other sensors then joins the cluster whose
head is the closest. Afterwards, the scheme selects one DN
from each cluster, and calculates a data collection path to visit
all DNs (i.e., by using a TSP solution). The above procedure is
repeated until the path’s length is above a threshold. However,
since cluster heads are arbitrarily selected, some clusters may
contain more sensors, which forces their sensors spending
more energy on communications.

We can observe that the above methods run TSP solutions
many times to amend the path, which incurs high computation
overhead. In addition, none of them consider the limitation of
buffer space. It thus motivates us to develop a lightweight
scheme to find a data collection path for the MDF to collect
data from sensors in a computation-efficient manner, which
can be suitable for long-term IoT applications.

III. PROBLEM DEFINITION

We are given a wireless sensor network for the IoT applica-
tion, which contains a set Ŝ of sensors and a sink s0. Suppose
that there exists a routing tree T (e.g., the shortest-path tree) to

connect all sensors in Ŝ and s0. In the IoT application, each
sensor si ∈ Ŝ generates ni packets of sensing data, where
every packet has the same length of l bits. Initially, a sensor
can cache no more than β packets in its buffer, where β ∈ N.
When a sensor si forwards one packet to its neighbor sj , si
has to spend an amount (αT +αAL2(si, sj)) · l of energy [26],
where αT is the power taken by the transmitter circuit, αA is
the power taken by the amplifier circuit, and L(si, sj) is the
distance between si and sj . On the other hand, sj will spend
an amount αR · l of energy to get the packet, where αR is the
power taken by the receiver circuit.

There is one MDF initially located at s0. It will move to
visit a set D̂ of DNs to collect sensing data with a constant
moving speed, where D̂ ⊆ Ŝ ∪{s0}. Besides, we assume that
the communication time that the MDF spends to retrieve data
from DNs can be ignored, as compared with its moving time.
Then, our problem asks how to find the solution set D̂ and
compute a data collection path for the MDF to call on each
DN in D̂ and goes back to s0 to offload its collected data, such
that we can reduce the amount of communication energy spent
by sensors and also decrease the number of packets dropped
by DNs due to buffer overflow.

IV. THE PROPOSED LEPS SCHEME

In the LEPS scheme, each sensor si in Ŝ is associated with
a flag fi to indicate whether it has been designated as a DN
or selected a DN to relay its data. Obviously, fi is initially set
to false for all sensors. Since the MDF starts its journey from
s0, we have D̂ = {s0} in the beginning. Then, LEPS contains
the following three steps to find the data collection path:

• Step 1: Search candidates. We pick some sensors as the
beginning nodes and add them to a set B̂. Then, starting
from each sensor in B̂, we seek for candidates of DNs
along the tree T , and add these candidates to a set P̂ .

• Step 2: Designate DNs. Among potential candidates in
P̂ , we select DNs based on their relative distances to the
nodes in D̂. Afterwards, we add these DNs to D̂ and
update B̂ accordingly. In case that B̂ becomes empty,
which means that all DNs are found, we go to step 3.
Otherwise, we go to step 1 to search for new candidates.

• Step 3: Compute the path. We then use a TSP solution
to find a data collection path for the MDF to call on each
DN in the solution set D̂.

A. Step 1: Search Candidates

As the routing tree T decides the flow direction for sensors
to send their data to the sink, we traverse T from leaves to
the root. In particular, we add each sensor si ∈ Ŝ whose fi is
false to B̂ if either si is a leaf or all children of si have false
fi values (i.e., they have been checked by LEPS).

Then, starting from each sensor in B̂, we move towards T ’s
root (i.e., s0) and add up the number of packets generated by
the visited sensors (denoted by Ai). When we visit a sensor
si such that Ai = β (or Ak > β when visiting its parent
sk), which means that si is the last node which has enough
buffer space to cache data for the visiting sensors, it will be a

s3

s8

s2
s4

s6

(3)

s7

s5

s0s9

s1

(2)(2)(1)
(2)

(1) (2)

(1)
(4)

(2)
(1)

s10 s11
sink

Fig. 1: Searching candidates in step 1.

candidate of DN. In this case, we add si to P̂ . For convenience,
let us denote by Ĉi the set of sensors that si should cache their
data. Therefore, we can calculate that

Ai = ni +
∑

sj∈Ĉi

nj . (1)

Each element of P̂ is a two-tuple (si, Ĉi), so we can know
the set of sensors that will send their data to a candidate si.

When we traverse T , two cases should be considered for a
visiting sensor si. In case 1, si has 0 or 1 child. When Ai < β,
we then continue to check si’s parent (i.e., sk). However, if
either Ai = β or fk = false, si will be a candidate. In case
2, We use the depth-first search (DFS) to check si’s children.
Then, three conditions may occur:

• If the checking process terminates at any descendant, say,
sj of si (due to Ai ≥ β), si should be a candidate.

• When we visit each child of si and get the same result
of Ai ≥ β, si will be a candidate.

• Otherwise, we use case 1 to continue the process.
We give an example in Fig. 1, where the number in each

pair of parentheses indicates the number of packet generated
by the corresponding sensor. In the example, β is set to 6 and
we have B̂ = {s1, s2, s5, s7}. Then, step 1 is run as follows:

• From s1: We first visit s1 and s4. By DFS, we then visit
s3 and find that A4 = n1 + n4 + n3 > β. Thus, s4 is a
candidate and Ĉ4 = {s1}.

• From s2: The visiting sequence is s2 ⇒ s3 ⇒ s4 ⇒ s5,
so s4 is a candidate and Ĉ4 = {s2, s3, s5}.

• From s5: The visiting sequence is s5 ⇒ s4 ⇒ s3 ⇒ s2,
so s4 is a candidate and Ĉ4 = {s2, s3, s5}.

• From s7: The visiting sequence is s7 ⇒ s8 ⇒ s9, so s9
is a candidate and Ĉ9 = {s7, s8}.

By combining the above results, we can calculate that P̂ =
{(s4, {s1}), (s4, {s2, s3, s5}), (s9, {s7, s8})}. Here, sensor s4
is included in multiple elements of P̂ , each with different Ĉ4

sets. It means that s4 can collect data from different sets of
sensors, so these elements should be treated as different cases.

B. Step 2: Designate DNs

Then, each candidate si (i.e., the sensor indicated in the first
tuple of each element in P̂) is assigned with a weight by

Wi = min{h(si, sj) | ∀sj ∈ D̂}, (2)

where h(si, sj) is the hop count from si to sj on the routing
tree T . Here, Wi reflects the relative distance (i.e., in hop
count) between si and its closest DN in D̂. Since we traverse

s5
s4

s1
s2

C3,1

15

s3

s0 sink

^

C3,2^ 18

3

(a)

s5
s4

s1
s2

18

36

s3

s0 sink

C3,1^

C3,2^

(b)

Fig. 2: Designating DNs in step 2: (a) Ĉ3,1 ∩ Ĉ3,2 = ∅ and
(b) Ĉ3,1 ∩ Ĉ3,2 = {s2}.

T from leaves to the root, we thus pick the candidate that has
the largest weight (i.e., the most upstream one) as a DN. Fig. 1
shows an example, where D̂ = {s0}. Since W4 = h(s4, s0) =
4 and W9 = h(s9, s0) = 3, we select s4 to be a DN.

From the discussion in Section IV-A, a candidate si may
have multiple Ĉi sets. However, si is allowed to choose only
one Ĉi set to collect data, or its buffer must overflow. In
this case, we should pick out “extra” DNs from other Ĉi sets
accordingly. For ease of explanation, let us denote by si’s Ĉi

sets Ĉi,1, Ĉi,2, · · · , Ĉi,k. Then, two cases are discussed below.
Case 1:

⋂k
j=1 Ĉi,j = ∅. It means that any two Ĉi,j sets are

disjointed. Thus, si can select one Ĉi,j set to collect data, and
the child(ren) of si in each of other sets must serve as DN(s)
to cache data for other sensors in the corresponding set. To
do so, each Ĉi,j set is also assigned with a weight by

Wi,j = min{L(sj , Ĉ ′
i,j) | ∀sj ∈ D̂}+ λ(Ĉ ′

i,j), (3)

where Ĉ ′
i,j is the set of all si’s children in Ĉi,j , L(sj , Ĉ ′

i,j) is
the shortest distance between a DN sj and set Ĉ ′

i,j , and λ(Ĉ ′
i,j)

is the length of a path to visit all sensors in Ĉ ′
i,j . Implicitly,

when a Ĉi,j set has a larger weight, it means that the MDF has
to move in a longer path to visit the DNs (i.e., si’s children) in
that set. Therefore, we will prefer letting si choose the Ĉi,j set
with the largest weight, so as to reduce the data collection path
of the MDF. Fig. 2(a) gives an example, where we select s3 as
a DN. In this example, we have Ĉ3,1 = {s1, s2} and Ĉ3,2 =
{s4}, so their weights are W3,1 = L(s0, s2) +L(s2, s1) = 21
and W3,2 = L(s0, s4) = 15, respectively. Therefore, s3 should
pick set Ĉ3,1 to collect data and s4 will be a DN. In this way,
we can reduce the MDF’s path.

Case 2:
⋂k

j=1 Ĉi,j
= ∅. Let us denote by Ôi,j the set of
overlapped sensors in Ĉi,j with others. In particular, no matter
which Ĉi,j set si chooses to collect data, si can always get
data from the sensors in Ôi,j . So, we need to select extra DNs
from the sensors not in Ôi,j . Similarly, each Ĉi,j set is given
a weight as follows:

Wi,j = min{L(sk, sj) | ∀sj ∈ D̂}, (4)

where sk ∈ Ĉi,j − Ôi,j such that h(sk, sj) (i.e., the hop count
between sk and sj) is minimized. Afterwards, si selects the
Ĉi,j set with the largest Wi,j value, and in each of other sets,
we select the sensor sk that does not belong to Ôi,j and has

the smallest hop count to si to be a DN. Let us take Fig. 2(b)
as an example, where s3 is also selected as a DN. Thus, we
have Ĉ3,1 = {s1, s2} and Ĉ3,2 = {s2, s4}. Since W3,1 =
L(s1, s0) = 36 and W3,2 = L(s4, s0) = 18, s3 selects set
Ĉ3,1 to collect data and s4 becomes a DN accordingly.

After selecting si and some sensors in its Ĉi,j sets to be
DNs, we then do the following actions: 1) add these sensors to
the solution set D̂, 2) mark the flag fi of each of these sensors
as true, 3) remove the elements whose candidate is si from P̂ ,
and 4) update B̂ by the rules in step 1. Note that when B̂ = ∅,
it means that all sensors in Ŝ have been checked, so we can
go to step 3 to compute the data collection path. Otherwise,
we return to step 1 to find out other candidates of DNs.

C. Step 3: Compute the Path

We use a TSP solution by local search [27] to find a data
collection path for the MDF to visit each DNs in D̂, whose
time complexity is O(|D̂|3). Fig. 1 gives an example to show
how LEPS works, where β = 6. Let us denote by F̂ the set of
sensors whose fi flags are false. Then, the example contains
three iterations as follows:

1. F̂ includes all sensors in Ŝ, so B̂ contains all leaves in
T (i.e., s1, s2, s5, and s7). By step 1, we derive that
P̂ = {(s4, {s1}), (s4, {s2, s3, s5}), (s9, {s7, s8})}. Then,
we select both s1 and s4 to be DNs. Therefore, we can
get the result of D̂ = {s0, s1, s4}.

2. Then, only sensors s6 ∼ s11 remain in F̂ . Thus, we have
B̂ = {s6, s7} and P̂ = {(s9, {s7, s8}), (s10, {s6, s9})}.
By step 2, we thus add s9 to D̂.

3. As F̂ = {s6, s10, s11}, we obtain that B̂ = {s6}. In this
case, we compute that P̂ = {(s11, {s6, s10})}. Although
s11 should be selected as a DN, it actually can directly
send its collected data to the sink s0. Consequently, we
need not add s11 to D̂.

The solution set D̂ includes s0, s1, s4, and s9. By the TSP
solution, the path will be s0 ⇒ s1 ⇒ s4 ⇒ s9 ⇒ s0.

V. SIMULATION STUDY

We develop a simulator in Java for performance evaluation.
The sensing field is a square whose length is 200m, and there
are 100–200 sensors deployed. A sensor has the communica-
tion distance of 20m and randomly generates 1 to 5 packets of
sensing data, where the length of each packet is 134 bytes. We
adopt the energy model in Section III, where αT = 50 nJ/bit,
αA = 100 pJ/bit per m2, and αR = 50 nJ/bit. We compare LEPS
with both WRP [24] and the cluster-based scheme [25], and
apply the same local-search TSP solution [27] to them.

Fig. 3(a) gives the amount of computation time taken by
each scheme. Since the WRP scheme repeatedly invokes the
TSP solution whenever finding new DNs, its computation time
grows exponentially when the number of sensors increases.
The cluster-based scheme can reduce the computation time
by grouping sensors into clusters and selecting one DN from
each cluster. The computation time of our LEPS scheme
grows very slowly as the number of sensors increases, since
it uses the TSP solution only once after finding all DNs. In

particular, when there are 200 sensors, the WRP and cluster-
based schemes respectively require around 78.4 and 10.8 times
of computation time than the LEPS scheme, which verifies that
LEPS is lightweight and computation-efficient.

Fig. 3(b) shows the amount of sensors’ energy consumed
on communications. The WRP scheme seeks to optimize the
data collection path of the MDF, so it achieves the lowest
amount of energy consumption. Although our LEPS scheme
is lightweight, it just slightly increases energy consumption
of sensors. Specifically, LEPS increases no more than 8.3%
of energy consumption than the WRP scheme. On the other
hand, LEPS further reduces sensors’ energy than the cluster-
based scheme. In particular, sensors can save more than 10%
of energy on communications in LEPS, as compared with the
cluster-based scheme. This experiment demonstrates that our
LEPS scheme can find a good data collection path to efficiently
save the energy consumption of sensors, thereby extending
their lifetime for long-term IoT applications.

Fig. 3(c) presents the number of packets dropped by DNs
because of buffer overflow. Both the WRP and cluster-based
schemes make DNs discard more packets when the number
of sensors grows. Since the cluster-based scheme arbitrarily
groups sensors into clusters to find DNs, some DNs may have
to collect data from the sensors in larger clusters, thereby
dropping more packets. On the contrary, our LEPS scheme
considers available buffer space when selecting DNs, so it
will not encounter packet loss on DNs. Moreover, LEPS
allows DNs to better utilize their buffer to cache data. In
particular, the average buffer utilization of DNs by the WRP,
cluster-based, and LEPS schemes is 59.8%, 64.0%, and 74.4%,
respectively, which shows that LEPS allows DNs caching more
packets in their buffers than other schemes.

VI. CONCLUSION AND FUTURE WORK

In long-term IoT applications, it is important to extend the
lifetime of sensors by conserving their energy. Using an MDF
to visit sensors and collect their data can help sensors save
energy on communications, especially for those sensors close
to the sink. This paper thus proposes the LEPS scheme to
schedule the data collection path of the MDF. By considering
buffer space of sensors and their relative distances, LEPS
can efficiently pick out DNs and then use a TSP solution
to compute the path in a short time. Through simulations,
we show that LEPS is computation-efficient and can reduce
communication energy of sensors while prevent DNs from
discarding packets due to running out of buffer space, as
comparing with both the WRP and cluster-based schemes.

We then discuss future directions. First, it is interesting to
address transmission fairness of sensors [28] in the selection
of DNs, especially when sensing data are heterogeneous [29].
Second, if sensors generate video streaming of sensing data
[30], we have to consider their delay constraint. Third, we
can apply data compression to DNs [31] to improve their
efficiency of data collection. Finally, how to support secure
data collection [32] deserves further investigation.

0

2

4

6

8

10

12

100 120 140 160 180 200

number of sensors

c
o

m
p

u
ta

ti
o

n
ti
m

e
(x

1
0

0
0

) WRP

cluster-based

LEPS

(a)

0

10

20

30

40

50

60

100 120 140 160 180 200

number of sensors

c
o

m
m

u
n

ic
a

ti
o

n
e

n
e

rg
y

(m
J
)

WRP

cluster-based

LEPS

(b)

0

10

20

30

40

50

60

70

80

100 120 140 160 180 200

number of sensors

lo
s
t
p

a
c
k
e

ts
b

y
D

N
s

WRP

cluster-based

LEPS

(c)

Fig. 3: Experimental results: (a) computation time, (b) energy consumption, and (c) packet loss.

ACKNOWLEDGEMENTS

You-Chiun Wang’s research is co-sponsored by the Ministry
of Science and Technology under Grant No. MOST 106-2221-
E-110-022-MY2, Taiwan.

REFERENCES

[1] Y. C. Tseng, Y. C. Wang, K. Y. Cheng, and Y. Y. Hsieh, “iMouse:
an integrated mobile surveillance and wireless sensor system,” IEEE
Computer, vol. 40, no. 6, pp. 60–66, 2007.

[2] Y. C. Wang, Y. F. Chen, and Y. C. Tseng, “Using rotatable and
directional (R&D) sensors to achieve temporal coverage of objects and
its surveillance application,” IEEE Transactions on Mobile Computing,
vol. 11, no. 8, pp. 1358–1371, 2012.

[3] L. W. Yeh, Y. C. Wang, and Y. C. Tseng, “iPower: an energy con-
servation system for intelligent buildings by wireless sensor networks,”
International Journal of Sensor Networks, vol. 5, no. 1, pp. 1–10, 2009.

[4] Y. C. Wang, “Mobile sensor networks: system hardware and dispatch
software,” ACM Computing Surveys, vol. 47, no. 1, pp. 12:1–12:36,
2014.

[5] S. C. Hu, Y. C. Wang, C. Y. Huang, and Y. C. Tseng, “Measuring air
quality in city areas by vehicular wireless sensor networks,” Journal of
Systems and Software, vol. 84, no. 11, pp. 2005–2012, 2011.

[6] Y. C. Wang and G. W. Chen, “Efficient data gathering and estimation for
metropolitan air quality monitoring by using vehicular sensor networks,”
IEEE Transactions on Vehicular Technology, vol. 66, no. 8, pp. 7234–
7248, 2017.

[7] P. Tokekar, J. V. Hook, D. Mulla, and V. Isler, “Sensor planning for
a symbiotic UAV and UGV system for precision agriculture,” IEEE
Transactions on Robotics, vol. 32, no. 6, pp. 1498–1511, 2016.

[8] Y. C. Wang and C. C. Yang, “3S-cart: a lightweight, interactive sensor-
based cart for smart shopping in supermarkets,” IEEE Sensors Journal,
vol. 16, no. 17, pp. 6774–6781, 2016.

[9] M. Janidarmian, A. R. Fekr, K. Radecka, and Z. Zilic, “Multi-objective
hierarchical classification using wearable sensors in a health applica-
tion,” IEEE Sensors Journal, vol. 17, no. 5, pp. 1421–1433, 2017.

[10] Y. C. Wang and S. J. Liu, “Minimum-cost deployment of adjustable
readers to provide complete coverage of tags in RFID systems,” Journal
of Systems and Software, vol. 134, pp. 228–241, 2017.

[11] M. T. Lazarescu, “Design of a WSN platform for long-term environ-
mental monitoring for IoT applications,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 3, no. 1, pp. 45–54,
2013.

[12] N. A. Pantazis, S. A. Nikolidakis, and D. D. Vergados, “Energy-
efficient routing protocols in wireless sensor networks: a survey,” IEEE
Communications Surveys & Tutorials, vol. 15, no. 2, pp. 551–591, 2013.

[13] J. Hao, B. Zhang, and H. T. Mouftah, “Routing protocols for duty cycled
wireless sensor networks: a survey,” IEEE Communications Magazine,
vol. 50, no. 12, pp. 116–123, 2012.

[14] Y. C. Wang, “Data compression techniques in wireless sensor networks,”
in Pervasive Computing. Nova Science Publishers, 2012.

[15] Y. C. Wang, F. J. Wu, and Y. C. Tseng, “Mobility management
algorithms and applications for mobile sensor networks,” Wireless Com-
munications and Mobile Computing, vol. 12, no. 1, pp. 7–21, 2012.

[16] J. Ren, Y. Zhang, K. Zhang, A. Liu, J. Chen, and X. S. Shen, “Lifetime
and energy hole evolution analysis in data-gathering wireless sensor
networks,” IEEE Transactions on Industrial Informatics, vol. 12, no. 2,
pp. 788–800, 2016.

[17] B. Yuan, M. Orlowska, and S. Sadiq, “On the optimal robot routing
problem in wireless sensor networks,” IEEE Transactions on Knowledge
and Data Engineering, vol. 19, no. 9, pp. 1252–1261, 2007.

[18] R. Sugihara and R. K. Gupta, “Optimal speed control of mobile node
for data collection in sensor networks,” IEEE Transactions on Mobile
Computing, vol. 9, no. 1, pp. 127–139, 2010.

[19] L. He, J. Pan, and J. Xu, “A progressive approach to reducing data
collection latency in wireless sensor networks with mobile elements,”
IEEE Transactions on Mobile Computing, vol. 12, no. 7, pp. 1308–1320,
2013.

[20] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The Traveling
Salesman Problem: A Computational Study. Princeton Series in Applied
Mathematics, 2007.

[21] M. Zhao and Y. Yang, “Bounded relay hop mobile data gathering in
wireless sensor networks,” IEEE Transactions on Computers, vol. 61,
no. 2, pp. 265–277, 2012.

[22] M. Ma, Y. Yang, and M. Zhao, “Tour planning for mobile data-
gathering mechanisms in wireless sensor networks,” IEEE Transactions
on Vehicular Technology, vol. 62, no. 4, pp. 1472–1483, 2013.

[23] G. Xing, T. Wang, Z. Xie, and W. Jia, “Rendezvous planning in wireless
sensor networks with mobile elements,” IEEE Transactions on Mobile
Computing, vol. 7, no. 12, pp. 1430–1443, 2008.

[24] H. Salarian, K. W. Chin, and F. Naghdy, “An energy-efficient mobile-
sink path selection strategy for wireless sensor networks,” IEEE Trans-
actions on Vehicular Technology, vol. 63, no. 5, pp. 2407–2419, 2014.

[25] K. Almiani, A. Viglas, and L. Libman, “Tour and path planning methods
for efficient data gathering using mobile elements,” International Journal
of Ad Hoc and Ubiquitous Computing, vol. 21, no. 1, pp. 11–25, 2016.

[26] Z. M. Wang, S. Basagni, E. Melachrinoudis, and C. Petrioli, “Exploiting
sink mobility for maximizing sensor networks lifetime,” in IEEE Annual
Hawaii International Conference on System Sciences, 2005, pp. 1–9.

[27] W. Zhang, “Depth-first branch-and-bound versus local search: a case
study,” in National Conference on Artificial Intelligence, 2000, pp. 930–
935.

[28] Y. C. Wang, S. R. Ye, and Y. C. Tseng, “A fair scheduling algorithm with
traffic classification in wireless networks,” Computer Communications,
vol. 28, no. 10, pp. 1225–1239, 2005.

[29] Y. C. Wang, “A two-phase dispatch heuristic to schedule the movement
of multi-attribute mobile sensors in a hybrid wireless sensor network,”
IEEE Transactions on Mobile Computing, vol. 13, no. 4, pp. 709–722,
2014.

[30] W. H. Yang, Y. C. Wang, Y. C. Tseng, and B. S. P. Lin, “A request
control scheme for data recovery in DVB-IPDC systems with spatial and
temporal packet loss,” Wireless Communications and Mobile Computing,
vol. 13, no. 10, pp. 935–950, 2013.

[31] Y. C. Wang and C. T. Wei, “Lightweight, latency-aware routing for data
compression in wireless sensor networks with heterogeneous traffics,”
Wireless Communications and Mobile Computing, vol. 16, no. 9, pp.
1035–1049, 2016.

[32] Y. C. Wang and Y. C. Tseng, “Attacks and defenses of routing mecha-
nisms in ad hoc and sensor networks,” in Security in Sensor Networks.
CRC Press, 2006.

