
A Low-cost, High-efficiency SDN Framework to

Diminish Redundant ARP and IGMP Traffics in

Large-scale LANs

You-Chiun Wang

Department of Computer Science and Engineering

National Sun Yat-sen University

Kaohsiung, 80424, Taiwan

Email: ycwang@cse.nsysu.edu.tw

Han Hu

Department of Computer Science and Engineering

National Sun Yat-sen University

Kaohsiung, 80424, Taiwan

Email: m033040090@student.nsysu.edu.tw

Abstract—Ethernet is the predominant protocol in the data-
link layer of wired networks. It works based on the concept of
broadcast domain by using switches to connect hosts, which means
that every host in a local area network (LAN) will receive packets
sent from other nodes. Thus, Ethernet’s performance inevitably
degrades when LAN scale grows, as the LAN will be congested
by superfluous packets due to broadcast. Moreover, Ethernet
switches cannot support multicast protocols but realize them by
also broadcasting packets, which worsens the situation. To solve
the broadcast problem, we develop a low-cost, high-efficiency
framework based on software defined network (SDN), which
aims to diminish redundant traffics produced by the address
resolution protocol (ARP) and the Internet group management
protocol (IGMP). Through simulations by Mininet, we show that
our SDN framework not only greatly reduces broadcast packets
in Ethernet but also significantly saves the controller’s cost
as comparing with other SDN-based methods. In addition, the
proposed framework is also implemented in our campus network
to show its effectiveness.

I. INTRODUCTION

Ethernet is regulated by the IEEE 802.3 standard [1], and

it is extensively used in many huge LANs (e.g., campus, data

center, and enterpise networks). What lies behind Ethernet’s

achievements is its low overhead and ease of use. Hosts

can fast join an Ethernet network with simple configuration.

Nowadays, Ethernet interface cards are necessary to most hosts

for wired communications.

In Ethernet, hosts are linked together via switches and

form a broadcast domain accordingly. Consequently, most

protocols above Ethernet should use the broadcasting operation

for service or resource discovery. Let us take ARP [2] as

an example. It helps a host to find the mapping of MAC

(medium access control) address and IP (Internet protocol)

address of another host in the same domain by flooding its

query. Another example is IGMP [3]. Because an Ethernet

switch does not understand the multicast protocol defined in

the network layer, it simply transmits packets to every host in

the broadcast domain.

When the scale of a LAN is small, the broadcast mechanism

of Ethernet works well. However, when the number of hosts

increases, switches have to be organized hierarchically to

...

...

... ...

...

...

...

Ethernet switchbroadcast

domain

Fig. 1. A large-scale LAN formed by one single broadcast domain.

ARP, 67.0%

unicast data,

4.6%

others, 11.1%

IGMP, 15.1%

broadcast

data, 2.3%

ARP

IGMP

broadcast data

unicast data

others

Fig. 2. Ratios of different packets received by a host in one day.

form a large broadcast domain to connect these hosts, as

illustrated in Fig. 1. In this case, the LAN will be inevitably

full of broadcasting packets. To verify this argument, we

gather statistics of packets received by each host in our

campus LAN, whose network topology is similar to Fig. 1

and contains 9 class-C subnets. Fig. 2 presents the ratios of

different types of packets averagely received by a host in one

day. We can observe that ARP and IGMP traffics contribute

67.0% and 15.1% packets, respectively. In fact, most ARP and

IGMP packets are irrelevant to their capturing hosts (in other

words, these packets are redundant). The experimental result

shows that Ethernet becomes inefficient in a large-scale LAN,

because each host in fact requires a pretty small portion of its

receiving data.

Common solutions to the above broadcast problem are to

divide the LAN into multiple broadcast domains (e.g., by

routers or 802.1Q switches) to confine broadcasting packets to

each small domain. Unfortunately, these solutions have some

shortcomings. First of all, they usually incur a high cost in

terms of hardware (i.e., using routers) or manual configuration

(i.e., using 802.1Q switches). Second, if we do not use mobile

IP, the mobility of hosts or the migration of virtual machines

(in data center networks) across different domains will become

difficult. Third, the packets produced by some protocols such

as NetBIOS [4] cannot be disseminated to other broadcast

domains managed by routers.

Recently, the SDN technique is proposed to provide a novel

paradigm for network management [5]. It logically divides a

LAN into control and data planes. The core of the control

plane, namely the controller, coordinates switches and con-

ducts management jobs such as how to interpret packet headers

and where to forward them. The data plane is distributed

over switches to handle packet transmissions. Through SDN,

network administrators can easily manage traffic flows by

installing transmission rules to OpenFlow switches with the

help of the controller. SDN, together with the techniques of

wireless sensor network [6], RFID (radio frequency identi-

fication) [7], cloud computing [8], mobile network [9], and

intelligent vehicles [10], have been shaping the development

of the future Internet.

The objective of this paper is to develop an efficient

framework by taking advantage of SDN to automatically

set up transmission rules to diminish redundant traffics to

improve Ethernet’s performance in large-scale LANs. In our

proposed framework, the controller analyzes incoming packets

and learns the status of the ongoing protocol. Then, it sponta-

neously generates rules to prevent switches from broadcasting

superfluous packets produced by that protocol. We use both

ARP and IGMP to demonstrate how our framework operates,

which are two essential auxiliary protocols for IP but produce

numerous redundant packets (as shown by our experiment in

Fig. 2).

Our contributions are threefold. First of all, unlike most

SDN-based methods, the proposed framework helps the con-

troller smartly translate ARP addresses rather than forcing

it to serve as a proxy to process every ARP packet. In this

way, our SDN framework can significantly save the message

overhead and computation cost of the controller. Second,

the design of our SDN framework considers the issues of

backward compatibility and multicast, which are not addressed

by existing methods. Simulation results verify that our SDN

framework still performs well in a LAN which has Ethernet

switches. Finally, we implement the proposed framework in

our campus LAN, and the experimental result shows that it

can greatly improve Ethernet’s performance.

This paper is outlined as follows: Section II briefly intro-

duces the SDN technique, and Section III presents related

work. In Section IV, we discuss the detailed design of our

SDN framework. Afterwards, Section V measures LAN per-

formance by simulations, followed by the discussion of our

implementation in Section VI. Finally, Section VII concludes

this paper and gives some future research directions.

controller

hello (OpenFlow version)

feature request

feature reply

listen

hello_wait

hello

feature_wait

establish

in
itia

l h
a

n
d

s
h

a
k
e

fe
a

tu
re

 d
is

c
o

v
e

ry

hello (OpenFlow version)

OpenFlow switch

closed

hello_wait

feature_wait

establish

TLS connection

Fig. 3. Message flowchart to negotiate with an OpenFlow switch.

II. SDN TECHNIQUE

To carry out the concept of SDN, the OpenFlow protocol

[11] replaces Ethernet switches by OpenFlow switches, which

are capable of executing commands sent from the controller.

The protocol defines not only the operations of an OpenFlow

switch but also how it communicates with the controller. To

do so, each OpenFlow switch refers to a flow table to process

incoming packets, which contains flow entries that give rules

and actions. On receiving a packet, the OpenFlow switch

searches for the first flow entry whose rules are matched.

It then transmits (or discards) the packet according to the

action indicated by that entry. In case that no entry can be

found, the OpenFlow switch triggers a table-miss event, which

makes it transmit a Packet In message along with the packet’s

information to the controller. Then, the controller replies a

flow entry to guide the OpenFlow switch how to process the

packet by sending a Packet Out message. In this way, the

controller can manage OpenFlow switches and master their

packet transmissions.

In our work, we adopt the Ryu platform [12] to implement

the controller, which is a popular open-source SDK (soft-

ware development kit) for SDN controllers. Ryu supports the

OpenFlow protocol and offers software components with well-

defined API (application program interface) in Python to help

programmers create network management and control applica-

tions. A programmer can implement the SDN application by

registering input events together with the handling functions

in Ryu. These events are stored in a queue and dispatched to

their functions in a first-in, first-served manner. Besides, Ryu

provides a packet-handling mechanism for the controller to get

the state of the ongoing protocol by analyzing the headers of

capturing packets.

Fig. 3 gives the message flowchart for the controller to

negotiate with an OpenFlow switch. In particular, when an

OpenFlow switch joins the LAN (e.g., start operating), it estab-

lishes a connection with the controller through transport layer

security (TLS) to trigger initial handshake. This connection

makes both the OpenFlow switch and the controller change

to the hello wait state and exchange hello messages with

router

subnet 1:

140.117.1.0/24

Ha

...

...

subnet k:

140.117.k.0/24

......

... ...

(a) Ethernet-based method by using routers

802.1Q switch

VLAN 1:

140.117.1.0/24

...

...

S1

VLAN k:

140.117.k.0/24

...

... ...

Sk+1

Sk

Ha

(b) Ethernet-based method by using 802.1Q switches

Fig. 4. Dividing a LAN into multiple broadcast domains.

their supported versions of OpenFlow. They will agree using

the lowest version and finish the initial handshake procedure.

Afterwards, the OpenFlow switch changes to the feature wait

state to invoke the feature discovery procedure, which also

sends a hello message to the controller to make it change to

the same state. Then, the controller sends a feature request to

the OpenFlow switch to ask for its parameters. After returning

the feature reply, both the OpenFlow switch and the controller

change to the establish state and finish the feature discovery

procedure. In this way, the controller can get the information

of each OpenFlow switch.

III. RELATED WORK

We survey existing methods in the literature to cope with

the broadcast problem in a large-scale LAN, which can be

categorized into Ethernet-based and SDN-based groups.

A. Ethernet-based Methods

Past methods to solve the broadcast problem is to divide

the LAN into many small broadcast domains. One method is

to use more powerful routers, where each router deals with

packet transmissions in a broadcast domain (usually called

subnet), as illustrated in Fig. 4(a). Nevertheless, this method

puts constraints on the allocation of IP addresses, because a

router will check the legality of IP address of each host in its

subnet through the subnet mask. In addition, it is infeasible

to support host mobility across different subnets (unless we

use mobile IP). Fig. 4(a) gives an example, where a host Ha

with IP address of 140.117.1.2 cannot move into subnet k with

network segment of 140.117.k.0/24, since the router in subnet

k will discard all of its packets.

Using 802.1Q switches is another method, where each

switch consults a four-byte label in the Ethernet header to for-

ward the packet to the right port [13]. In this way, each 802.1Q

switch can divide its child switches into virtual LANs (VLANs),

each mapping into a broadcast domain, as Fig. 4(b) shows.

Comparing with the router-based method, 802.1Q switches

is able to support host mobility without mobile IP. Fig. 4(b)

gives an example, where host Ha wants to move to VLAN k.

In this case, switches S1, Sk, and Sk+1 should be manually

reconfigured to let host Ha become a member of VLAN k.

Apparently, this method is inefficient and uneconomic, as the

network administrator has to configure multiple switches to

support host mobility.

There are also a number of Ethernet-based methods devel-

oped. The work of [14] adopts specially made hardware to help

Ethernet switches know upper-layer protocols and transform

broadcast traffics into unicast ones. This method incurs extra

costs of using special hardware. Besides, each switch has to

record the information of all hosts. To address this issue, a hash

table is used in [15] to share host information among different

switches, so as to save their memory space. In [16], a gateway

is placed on the entrance of every broadcast domain to monitor

passing packets. Then, each broadcast packet is replaced by

multiple unicast packets to avoid wasting bandwidth. Similar

to NAT (network address translation), [17] divides a broadcast

domain into internal and exterior parts, and broadcast traffics

are limited in the internal part. However, this method will

encounter the same problem incurred by the router-based

method.

B. SDN-based Methods

Several studies exploit SDN to improve Ethernet’s effi-

ciency. To facilitate the allocation process of IP addresses

by DHCP (dynamic host configuration protocol) [18], both

[19] and [20] ask the SDN controller to serve as a DHCP

server. When a host joins the LAN, the OpenFlow switch

forwards its DHCP discovery packet to the controller to get

an unused IP address. In [21], the SDN controller plays the

role of ARP proxy to reduce ARP traffics in a data center

network. Both IP and MAC addresses of each server should

be set in the controller beforehand. OpenFlow switches then

relay all ARP requests to the controller, and the controller

sends an ARP reply to each target server via unicast. In

the SEASDN (scalable Ethernet architecture using software

defined networking) framework [22], an independent DHCP

server is used to deal with the allocation of IP addresses.

SEASDN makes the controller do the job of ARP proxy,

and asks OpenFlow switches to forward DHCP packets to

the controller (to let it record the information of hosts).

Nevertheless, the above studies do not make good use of the

superiority of SDN to adaptively reroute packets, but just make

the controller act as a DHCP server or an ARP proxy to deal

with these traffics. Therefore, they will inevitably impose a

heavy load on the controller.

Kataoka et al. [23] develop an ETF (extensible transparent

filter) mechanism to diminish ARP and DHCP traffics. It asks

each OpenFlow switch to send ARP and DHCP packets to two

destinations: the controller and the target (e.g., DHCP server,

data planecontrol plane (controller)

Our framework

OFS

OFS

OpenFlow switch

jo
b

 a
s
s
ig

n
e
r

OFS

Packet_In message Packet_Out message

packet

table

default

transactor

Packet

_Out

O
p
e
n
F

lo
w

 p
ro

to
c
o
l

ARP

transactor

IGMP

transactor

Fig. 5. Architecture of our proposed SDN framework.

a host, or broadcast address). In this way, the controller can

know all hosts and the DHCP server. Then, it can instruct

OpenFlow switches to forward packets on the designate ports

accordingly. Since OpenFlow switches need to send a copy of

every broadcast packet to the controller, ETF will increase the

controller’s overhead. Besides, the issue of backward compat-

ibility is not addressed in ETF. In case that there are Ethernet

switches in the LAN, ETF will make them use broadcast to

deal with ARP and DHCP packets, which degrades network

performance.

Comparing with these methods, our proposed framework

not only substantially reduces the controller’s overhead by

sending only required packets to it, but also handles IGMP

multicast traffics that produce lots of superfluous packets in

the LAN. In addition, we will show that our SDN framework

supports good backward compatibility with Ethernet through

the experimental results discussed in Section V, where it can

significantly reduce redundant packets in a LAN that consists

of both Ethernet and OpenFlow switches.

IV. THE PROPOSED SDN FRAMEWORK

Our SDN framework works based on the OpenFlow pro-

tocol, whose architecture is given in Fig. 5. The controller

communicates with OpenFlow switches through Packet In and

Packet Out messages. As we do not modify the OpenFlow

protocol, our framework will focus on the design of the

SDN controller. Specifically, it contains four major modules

to help the controller learn the status of ongoing protocols

and generate flow entries to guide OpenFlow switches how

to process their packets. In particular, the job assigner takes

charge of dispatching each Packet In message to the right

transactor for further processing. If the message is related to

ARP or IGMP traffics, it is dispatched to the ARP transactor

or IGMP transactor, respectively, which helps the controller

install suitable flow entries in the OpenFlow switch. Other-

wise, the message is dispatched to the default transactor to

let the controller store the information of packets. Below, we

present the detailed design of each module.

A. Job Assigner

To make OpenFlow switches send necessary Packet In

messages to the job assigner, the controller installs three flow

entries in every OpenFlow switch as follows:

(1) Rules: dl dst=ff:ff:ff:ff:ff:ff, arp, arp op=1

Actions: actions=controller:6633

(2) Rules: igmp, nw dst=224.0.0.1

Actions: actions=controller:6633, flood

(3) Rules: igmp, nw dst=224.0.0.0/3

Actions: actions=controller:6633

The 1st flow entry asks the OpenFlow switch to send each

new ARP request whose MAC address is “ff:ff:ff:ff:ff:ff” (i.e.,

broadcast address) to the controller whose default port is

6633. Since the ARP request contains both the IP and MAC

addresses of the source host, the controller can store this infor-

mation to facilitate the process in the ARP transactor. Then, the

2nd flow entry instructs the OpenFlow switch to send IGMP

membership-query packets (with IP address of 224.0.0.1) to

not only the controller but also all other hosts (i.e. flood). In

this way, the controller can get the information of a multicast

group. Besides, hosts can also know the multicast group

through the membership-query packets. The 3rd flow entry

helps the job assigner get other types of IGMP packets such

as membership report and group leave. Unlike membership-

query packets, not every host requires these IGMP control

packets, so we do not add the flood command in the action of

the 3rd flow entry.

B. ARP Transactor

The objective of ARP is to allow a host to learn the

relationship between each IP address and its MAC address.

To get this information, there are four address fields indicated

in an ARP packet:

• Sender hardware address (SHA): The MAC address of

the host which sent the ARP request.

• Sender protocol address (SPA): The IP address of the host

which sent the ARP request.

• Target hardware address (THA): The MAC address of

the host that will send the ARP reply.

• Target protocol address (TPA): The IP address of the host

that will send the ARP reply.

Let us consider an example where one Ethernet switch con-

nects three hosts Ha, Hb, and Hc, whose addresses and con-

necting ports are given in Table I. Consider that host Ha wants

to send a packet to host Hc. It knows that Hc has IP address of

140.117.0.3 (e.g., through the domain name server). To send

out the packet, Ha must get Hc’s MAC address. In this case,

Ha consults its ARP table to search for any cached record of

Hc’s MAC address with respect to IP address of 140.117.0.3.

If the ARP table returns no result, Ha sends an ARP request

with SHA = 20:18:07:23:27:01, SPA = 140.117.0.1, THA

= ff:ff:ff:ff:ff:ff, and TPA = 140.117.0.3. When the switch

receives this ARP request, it then forwards the request to

all its ports (i.e., broadcast). After Hc gets the ARP request,

it transmits an ARP reply with SHA = 20:18:07:23:27:03,

SPA = 140.117.0.3, THA = 20:18:07:23:27:01, and TPA =

140.117.0.1. Therefore, the switch forwards the ARP reply to

Ha via its port 1. Then, Ha caches this information in its ARP

table. Next time when it wants to send a packet to Hc again,

TABLE I
PORTS AND ADDRESSES OF THREE HOSTS.

host port IP address MAC address

Ha 1 140.117.0.1 20:18:07:23:27:01
Hb 2 140.117.0.2 20:18:07:23:27:02
Hc 3 140.117.0.3 20:18:07:23:27:03

Ha will send an Ethernet frame with the destination MAC

address of 20:18:07:23:27:03 to the LAN.

Although ARP is simple, it unavoidably produces numerous

ARP requests when many hosts query their target MAC

addresses. Even when a host knows the MAC address of its

target (by consulting the ARP table), it still adopts broadcast to

send out the packet. Consequently, the LAN will be congested

by superfluous packets due to the ARP mechanism. To cope

with the above problem, our solution is to let the controller

learn the ARP information (including IP addresses, MAC

addresses, and ports) by analyzing ARP packets. Then, it

can install flow entries in OpenFlow switches to translate

ARP broadcast packets into unicast ones, which reduces the

amount of ARP data in the LAN. In our framework, when

one OpenFlow switch gets an ARP request, it consults the

flow table to seek to send the packet to the right port. If there

is no flow entry that has the IP address given in the ARP

request, the OpenFlow switch broadcasts the ARP request and

also sends a copy to the controller. On the other hand, the

controller adaptively learns a host’s IP and MAC addresses

from its first ARP request and also the target host’s IP and

MAC addresses from the corresponding ARP reply. It can be

done by referring to both the SPA and SHA fields of each

ARP packet. In this way, the controller can quickly learn the

IP and MAC addresses of all hosts in the LAN.

Table I gives an example to show how the ARP transactor

sets up flow entries for OpenFlow switches to process ARP

traffics. Assume that the controller has gotten the ARP request

from host Ha that queried the MAC address of host Hc. In this

case, the controller can know the IP and MAC addresses of

Ha. Therefore, it installs two flow entries in the corresponding

OpenFlow switch as follows:

(1) Rules: arp, tpa=140.117.0.1

Actions: actions=set field:20:18:07:23:27:01

->the dst, output:1

(2) Rules: arp, op=2, spa=140.117.0.3, tpa=140.117.0.1

Actions: actions=controller:6633, output:1

Here, the 1st flow entry asks the OpenFlow switch to unicast

each ARP packet whose TPA is 140.117.0.1 to Ha via its port

1. Based on the ARP mechanism, Hc will send an ARP reply

to Ha. So, the 2nd flow entry instructs the OpenFlow switch

to forward the ARP reply to the controller. In this way, the

controller can also know Hc’s MAC address. Note that the

2nd flow entry is not permanent, as it becomes useless once

the controller gets the ARP reply. Thus, we can set a short

lifetime (e.g., 10 seconds) for this flow entry. On the other

hand, when the controller receives the ARP reply, it will set

up a flow entry as follows:

• Rules: arp, tpa=140.117.0.3

Actions: actions=set field:20:18:07:23:27:03

->eth dst, output:3

The flow entry will make the OpenFlow switch to forward all

ARP (broadcast) packets whose TPA is 140.117.0.3 (i.e., Hc’s

IP address) to only its port 3. In this way, we can translate

ARP broadcast packets into unicast packets and save network

bandwidth accordingly.

We remark that there are two features in the ARP transactor.

First of all, it deals with only one pair of ARP request

and ARP reply for every unknown host. Consequently, unlike

most SDN-based methods mentioned in Section III-B, the

controller will not serve as an ARP proxy to process each

ARP packet, and its processing load and message overhead

can be substantially reduced. Second, when the ARP transactor

obtains the IP and MAC addresses of a host, it will install

a flow entry to allow the OpenFlow switch translating the

broadcast address into a unicast address. This design considers

the backward compatibility to Ethernet switches. In particular,

since the broadcast address has been translated into the unicast

address, the Ethernet switch will not send the ARP packet

to all its ports but only forward the packet to the port

connected with the target host. Therefore, we can significantly

diminish the number of superfluous packets caused the ARP

mechanism. Note that when IPv6 is adopted, we can replace

the IPv4 addresses (i.e., SPA and TPA) by IPv6 addresses in

the aforementioned flow entries.

C. IGMP Transactor

In a LAN, IGMP allows hosts managing dynamic mem-

bership of their multicast groups. To do so, IGMP defines

a special role, called querier, whose job is to keep sending

membership-query packets to maintain a multicast group. The

querier Hq has three actions, depending on the packet received

by it:

• When Hq gets a membership-query packet sent from

another host that has a smaller IP address, Hq gives up

the role of querier. In this way, each multicast group can

have just one querier to send membership-query packets.

• If Hq receives a membership-report packet before time-

out, it forwards multicast data packets to the members in

the group. Otherwise, Hq will stop sending data packets

(since there are no other members in the group).

• When Hq acquires a group-leave packet, it terminates the

transmission of multicast data packets.

When a host Hi in the multicast group gets a membership-

query packet, Hi has to reply a membership-report packet

to the querier. However, if Hi has ever heard membership-

report packet(s) sent from others in the same group, it need

not reply the membership-report packet. On the other hand, if

a new host wants to join the multicast group, it actively sends

a membership-report packet to notify the querier. In addition, a

host can leave the multicast group without sending any packet

to the querier. However, if the host is the last one that sent the

membership-report packet, it has to send a group-leave packet

to notify the querier to disband the multicast group.

Unfortunately, an Ethernet switch cannot well support

IGMP but simply sends multicast data packets to all of its

ports (i.e., broadcast). It is obvious that not every host wants

to receive such packets. However, these hosts still need to

process the irrelevant packets by their network-layer protocols,

which results in extra processing loads. The IGMP snooping

mechanism [24] uses a table for the Ethernet switch to map

between ports and multicast traffics, so as to filter out irrelevant

multicast data packets. However, it assumes that there is

a multicast router to keep on generating membership-query

packets, and these packets must be forwarded by all switches.

In addition, not every Ethernet switch can offer the functions

of IGMP snooping, as it is an optional mechanism.

In IGMP snooping, each switch should decide the relation-

ship between ports and multicast packets on its own. Com-

paring with IGMP snooping, our IGMP transactor provides

a more efficient mechanism to let the controller install flow

entries learned from IGMP packets in OpenFlow switches

to filter multicast traffics. Below, we discuss how the IGMP

transactor process each type of IGMP packets.
1) Membership Query: Since this packet is transmitted by

a querier Hq , the IGMP transactor can obtain its IP and

MAC addresses, along with the port that Hq connects to the

OpenFlow switch. Therefore, the IGMP transactor installs a

flow entry to the OpenFlow switch to ask it to send subsequent

IGMP packets to the controller and Hq:

• Rules: igmp, nw dst=224.0.0.0/3

Actions: actions=controller:6633, output:3

Specifically, this flow entry instructs the OpenFlow switch to

send all IGMP packets with IP address of 224.0.0.0 to not only

the controller but also the querier Hq which connects to the

switch’s 3rd port. Consequently, the controller can also get the

information of the multicast group based on the subsequent

IGMP packets. Moreover, the OpenFlow switch can relay

IGMP packets such as membership reports to just Hq and the

controller, which further reduces superfluous IGMP packets in

the LAN.
2) Membership Report: Thanks to the flow entry men-

tioned in Section IV-C1, the controller can also acquire the

membership-report packet transmitted from a member in the

multicast group. However, to allow the controller getting the

information of all members in the group, each member must

reply the membership-report packet for the first time that it

receives the membership-query packet. Then, the controller

adopts a group table for the OpenFlow switch to record every

member that the switch connects. Each group is assigned with

one unique group identification (ID). In OpenFlow, the group

ID can be calculated by converting the multicast IP address of

the group into a decimal number. For example, if a multicast

group is associated with IP address of 233.0.0.2, its group ID

will be 3909091330. Suppose that the group has three hosts

Ha, Hb, and Hc whose MAC addresses are 87:02:16:88:03:02,

87:02:16:88:03:04, and 87:02:16:88:03:06, respectively. Let

Ha, Hb, and Hc connect to ports 2, 3, and 5 of the OpenFlow

switch. Then, the controller adds an entry in the group table

for the switch:

• Group ID: group id=3909091330

Bucket:

bucket=actions=set field:87:02:16:88:03:02

->eth dst,output:2

bucket=actions=set field:87:02:16:88:03:04

->eth dst,output:3

bucket=actions=set field:87:02:16:88:03:06

->eth dst,output:5

The above entry will guide the OpenFlow switch to transmit

multicast data packets to only the members in the multicast

group (i.e., via its ports 2, 3, and 5).

3) Multicast Data: To avoid sending multicast data packets

to the hosts that do not join the multicast group, the controller

installs the following flow entry to ask the OpenFlow switch

referring to the group table to transmit these packets:

• Rules: ip, nw dst=233.0.0.2

Actions: actions=group:3909091330

Since a multicast address can be adaptively translated into

the unicast address of each member in the multicast group,

the OpenFlow switch can forward multicast data packets to

merely the ports that connect with member hosts. In this way,

we can eliminate redundant multicast traffics. On the other

hand, when the OpenFlow switch has child Ethernet switches,

these Ethernet switches will get data packets with unicast IP

addresses. Therefore, our IGMP transactor can also support

backward compatibility with Ethernet.

4) Group leave: As discussed earlier, the group-leave

packet is transmitted by the last member of the multicast

group. Thus, when the controller gets the packet, the IGMP

transactor removes the corresponding record in the group table

(in other words, the multicast group is disbanded).

D. Default Transactor

The major job of the default transactor is to record the

information of packet transmissions in the LAN. In particular,

when an OpenFlow switch receives a packet that its flow table

has no rules to be matched, an event of table miss will occur.

In this case, the OpenFlow switch sends a Packet In message

to the controller. Then, the default transactor uses a packet

table to store the information of that packet, including its data

path identification (DPID), MAC address, and port number.

Here, each device is associated with one unique DPID by the

OpenFlow protocol to help the controller distinguish different

devices in the LAN. The packet table provides statistics for

network administrators to monitor traffic flows in the LAN.

Besides, it also helps us develop other transactors to deal with

different types of traffics in the future.

After recording the packet’s information, the default trans-

actor will reply a Packet Out message to the OpenFlow switch

to tell it how to process that packet. For example, suppose that

the packet’s destination is host Hi that has MAC address of

12:20:01:10:87:90 and connects to port 2 of the OpenFlow

switch. Then, a flow entry will be installed as follows:

• Rules: dl dst=12:20:01:10:87:90

Actions: actions=output:2

Therefore, the OpenFlow switch will forward the packet to Hi

via its port 2.

V. SIMULATION STUDY

In this section, we measure LAN performance of our SDN

framework through the Mininet simulator [25], which supports

both the OpenFlow protocol and the Ryu platform. Our

simulations consider a LAN with 50 hosts, where each host

uses an ARP table to record the relationship between IP and

MAC addresses that it obtains from ARP packets. According

to Linux’s configuration, each record in the ARP table will be

removed after 1 minute. On the other hand, we consider two

network topologies in our simulations:

• Flat topology: We connect all hosts by one switch. The

switch is an Ethernet switch if we do not adopt SDN;

otherwise, it is an OpenFlow switch. The flat topology is

used to imitate large switches in certain LANs such as

data center networks.

• Tree topology: We use three switches in this topology,

which form a tree structure. The root switch has two child

Ethernet switches, where each one connects 25 hosts.

Similarly, the root switch is an Ethernet switch if we

do not adopt SDN; otherwise, it is an OpenFlow switch.

The tree topology is used to imitate a scenario where

the network administrator wants to add some OpenFlow

switches in a LAN. It can also help evaluate the degree of

backward compatibility by different SDN-based methods.

Except for Ethernet, we also compare our SDN framework

with two SDN-based methods, SEASDN and ETF, discussed

in Section III-B. The simulation time is set to 300 seconds.

We first measure the number of ARP packets produced per

second in the flat topology, whose simulation results are given

in Fig. 6(a). Because the expiration timer of each record in

the ARP table is set to 1 minute, the number of ARP packets

in Ethernet gradually decreases before the first 60 seconds

and then keeps bumpy. For SEASDN, ETF, and our SDN

framework, there is a small impulse in the beginning. The

reason is that the controller has no host information initially,

so it needs to receive ARP packets to get the information. After

the controller collects each host’s information (which spends

no more than 2 seconds), it can ask the OpenFlow switch to

diminish most ARP traffics (as they are redundant) to improve

LAN performance.

Then, Fig. 6(b) presents the number of ARP packets

produced per second in the tree topology. Since the two

child Ethernet switches do not understand the flow entries

set by the controller, they still broadcast each ARP packets.

Consequently, the number of ARP packets sent by SDN-

based methods increase accordingly. Since SEASDN asks

the controller to serve as the ARP proxy, its performance

is quite similar to that of Ethernet. ETF allows switches

forwarding ARP packets to only the ports that link to target

hosts. However, it does not convert the MAC address of these

packets. Thus, the Ethernet switches still broadcast these ARP

packets as usual. Comparing with both SEASDN and ETF, our

SDN framework adaptively translates the broadcast address of

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

0 50 100 150 200 250 300

second

n
u

m
b

e
r

o
f
A

R
P

p
a

c
k
e

ts
(x

1
0

0
0

)

Ethernet SEASDN ETF ours

(a) flat topology

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

0 50 100 150 200 250 300

second

n
u

m
b

e
r

o
f
A

R
P

p
a

c
k
e

ts
(x

1
0

0
0

)

Ethernet SEASDN ETF ours

(b) tree topology

topology SEASDN ETF ours

flat 92.03% 91.98% 92.37%
tree -1.15% 24.80% 47.45%

(c) saving ratios of total ARP packets

Fig. 6. Comparison on ARP packets produced by different methods.

each ARP packet into the unicast address of the target host.

In this way, the Ethernet switches can forward these ARP

packets to the right ports, which further reduces unnecessary

ARP broadcasting traffics.

In Fig. 6(c), we compare the saving ratio of ARP packets by

each SDN-based method on the basis of Ethernet. Obviously,

a higher ratio means that the method can diminish more

redundant ARP traffics and improve Ethernet’s performance

accordingly. In the flat topology, since the only switch can

support the OpenFlow protocol, all of the three SDN-based

methods can save more than 90% ARP packets, which demon-

strates the superiority of using SDN. However, when there

exist two Ethernet switches in the tree topology, SEASDN

performs even worse than Ethernet. The reason is that these

Ethernet switches simply forward the ARP packets produced

by the controller to all of their ports. With the help of the

address translation mechanism by the ARP transactor, our

SDN framework can ask Ethernet switches to forward ARP

packets (produced by the OpenFlow switch) to only the ports

linking to target hosts. Therefore, it can save nearly 50%

0

50

100

150

200

250

300

0 50 100 150 200 250 300

second

n
u

m
b

e
r

o
f
S

D
N

m
e

s
s
a

g
e

s

SEASDN ETF ours

(a) flat topology

0

50

100

150

200

250

300

0 50 100 150 200 250 300

second

n
u

m
b

e
r

o
f
S

D
N

m
e

s
s
a

g
e

s

SEASDN ETF ours

(b) tree topology

topology SEASDN ETF

flat 98.74% 97.58%
tree 98.20% 97.30%

(c) saving ratios by our framework

Fig. 7. Comparison on the message cost of the SDN controller.

redundant ARP traffics in the tree topology, which verifies

that our SDN framework supports much better backward

compatibility than both SEASDN and ETF.

We then evaluate the cost of the controller imposed by

SEASDN, ETF, and our SDN framework, which is mea-

sured by the number of SDN messages (i.e., Packet In and

Packet Out) produced by these methods. Apparently, a large

number of SDN messages implies that the SDN method gives

a large burden to the controller. Fig. 7 gives the experimental

results. In particular, SEASDN forces the controller to play

the role of an ARP proxy, so it uses Packet In messages

to forward ARP requests to the controller and Packet Out

messages to forward ARP replies to the target hosts. In

other words, each ARP procedure will produce 2 Packet In

messages and 2 Packet Out messages in SEASDN, which

imposes a heavy load on the controller. On the other hand,

ETF also uses Packet In messages to forward ARP packets

to the controller, so it produces 2 Packet In messages for

each ARP procedure. In this case, ETF can save the message

cost as comparing with SEASDN. In our SDN framework,

the controller uses Packet In messages to learn all hosts in

the LAN and then adopts Packet Out messages to set flow

TABLE II
COMPARISON ON IGMP TRAFFICS (IN PACKETS).

host IGMP control multicast data

ID Ethernet ours Ethernet ours

H1 305 3 300 300
H2 305 220 300 0
H3 305 0 300 0
H4 305 3 300 300
H5 305 219 300 0
H6 305 0 300 0

entries in OpenFlow switches in the beginning. That is why

there exists an impulse (during the 6th to 9th seconds) in

Fig. 7(a) and (b). Afterwards, our SDN framework produces

very few SDN messages, because the controller has learned the

mapping of IP and MAC addresses of each host in the LAN.

Consequently, our SDN framework can save more than 98%

and 97% message cost than SEASDN and ETF, respectively.

Through the experimental results from both Fig. 6 and Fig. 7,

we show that our SDN framework indeed provides a low-

cost, high-efficiency approach to solve the broadcast problem

caused by ARP.

Next, we investigate the effect of IGMP traffics on LAN per-

formance. Since SEASDN and ETF do not address multicast

traffics, we compare our SDN framework with only Ethernet.

In the IGMP simulations, we use a multicast server and 6 hosts

linked together by an OpenFlow switch. The server transmits

multicast packets to the members of a multicast group G1

in each second. Besides, we divide these hosts (denoted by

H1 ∼ H6) into 3 clusters:

• H1 and H4 join group G1 at the 0th second and will not

leave the group until the end of simulation (at the 300th

second).

• H2 and H5 repeat the following operations in every 3-

second period: 1) randomly join a multicast group other

than G1 for 2 seconds, 2) leave that group, and 3) keep

idle for 1 second.

• H3 and H6 will not join any multicast group during the

simulation period.

Table II presents the number of IGMP control and mul-

ticast data packets received by each host. According to the

mechanism of Ethernet, the switch simply broadcasts each

packet to all hosts. In this case, even though H3 and H6

do not join any multicast group, they still need to receive

and process these irrelevant packets (since IGMP packets are

defined in the network layer). In contrast to Ethernet, our

SDN framework can help the controller adaptively learn the

members of a multicast group and translate the multicast

address into unicast address(es) accordingly. In particular,

these hosts have different behaviors in our SDN framework

as follows:

• Since H1 and H4 always join multicast group G1, the

OpenFlow switch transmits just 3 IGMP control packets

(e.g., membership query) to them in the beginning. Then,

each multicast packet will be sent to H1 and H4 via

unicast.

Ethernet

switch

OpenFlow

switch
SDN

controller

OFS

Campus LAN

Fig. 8. Implementation of our SDN framework on the campus network.

0

100

200

300

400

500

600

700

800

Ethernet OpenFlow

n
u

m
b

e
r

o
f
p

a
c
k
e

ts
(x

1
0

0
0

0
)

others

unicast data

broadcast data

IGMP

ARP

Fig. 9. Number of packets received by a host in each broadcast domain.

• As H2 and H5 randomly join a multicast group other

than G1 in every 3 seconds, the OpenFlow switch will

send them more IGMP control packets but no multicast

data packets. Note that our SDN framework can use fewer

IGMP control packets than Ethernet to keep membership

of both H2 and H5.

• Because H3 and H6 do not join any multicast group,

there is no need for the OpenFlow switch to transmit

IGMP control or multicast data packets to them.

From this experiment, we show that the IGMP transactor of

our SDN framework can send multicast data packets to only

the hosts which need them. Moreover, a host will not be both-

ered by the OpenFlow switch if it does not join any multicast

group. In this way, our SDN framework can substantially

reduce redundant multicast traffics, thereby saving network

bandwidth and improving LAN performance.

VI. FRAMEWORK IMPLEMENTATION

To verify the effectiveness of our SDN framework in a

practical LAN, we implement it on our campus network

discussed in Section I, whose network topology is given in

Fig. 8. Specifically, we update the firmware of a TP-LINK

WR1043NR switch by the OpenWrt module [26] to make it

support the OpenFlow protocol. Then, we monitor network

traffics in the two broadcast domains formed by the OpenFlow

switch and the Ethernet switch in Fig. 8.

We measure the number of packets averagely received

by one host in each domain during one day, whose results

are presented in Fig. 9. It can be observed that both ARP

and IGMP traffics produce a lot of packets in the broadcast

domain formed by the Ethernet switch. On the contrary, the

OpenFlow switch removes 99.93% and 89.74% of ARP and

IGMP packets in its broadcast domain, respectively. In this

experiment, we demonstrate that our SDN framework can

reduce around 80.44% of redundant packets in a broadcast

domain, which proves its effectiveness in a practical LAN.

VII. CONCLUSION AND FUTURE WORK

Ethernet is popularly used for wired communications but

produces many superfluous packets due to its broadcast nature.

In this paper, we show that a large-scale Ethernet-based LAN

will be inevitably flooded with ARP and IGMP traffics, and

thus propose an SDN framework to remove redundant packets

produced by these traffics. Through Mininet simulations, we

verify that our SDN framework significantly saves the con-

troller’s cost and provides better backward compatibility than

previous SDN-based methods including SEASDN and ETF.

Moreover, the effectiveness and practicability of the proposed

framework is also demonstrated by real implementation in our

campus network.

We then discuss some directions for future work. First, it

is also critical to provide fair transmissions in a LAN [27],

where we should avoid some flows occupying the bandwidth

so that other flows will not be starved. Thus, how to guarantee

user fairness by SDN is a challenging issue, especially in

a multi-rate environment [28]. Second, the DVB-H (digital

video broadcasting-handheld) service becomes more popular

to provide multimedia applications like mobile television [29].

It is interesting to apply the SDN technique to a DVB-H

network to improve performance, where we have to quickly

retransmit the lost DVB-H packets to support QoS (quality of

service) [30]. Third, it deserves further investigation on how

to adopt SDN to facilitate the management jobs of the core

network in an LTE-A (long term evolution-advanced) system,

including the issues of user billing [31], security management

[32], and resource allocation [33]. Finally, since Wi-Fi systems

have been widely deployed to form wireless LANs and provide

various applications such as interactive shopping [34] and

smart home [35], we will study how to use the SDN technique

to improve their performance in the future.

ACKNOWLEDGEMENT

Y.-C. Wang’s research is co-sponsored by the Ministry of

Science and Technology under Grant No. MOST 106-2221-

E-110-022-MY2, Taiwan.

REFERENCES

[1] IEEE, “IEEE Draft Standard for Ethernet,” IEEE P802.3/D3.2, 2018.

[2] IETF RFC 826, “An Ethernet address resolution protocol,” 1982.

[3] IETF RFC 3376, “Internet group management protocol,” 2002.

[4] Architecture Technology Corpor, NETBIOS Report and Reference. El-
sevier Science, 1991.

[5] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: a com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[6] Y. C. Wang, F. J. Wu, and Y. C. Tseng, “Mobility management
algorithms and applications for mobile sensor networks,” Wireless Com-

munications and Mobile Computing, vol. 12, no. 1, pp. 7–21, 2012.

[7] Y. C. Wang and S. J. Liu, “Minimum-cost deployment of adjustable
readers to provide complete coverage of tags in RFID systems,” Journal

of Systems and Software, vol. 134, pp. 228–241, 2017.

[8] A. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A survey
of mobile cloud computing application models,” IEEE Communications

Surveys & Tutorials, vol. 16, no. 1, pp. 393–413, 2014.

[9] Y. C. Wang and C. A. Chuang, “Efficient eNB deployment strategy for
heterogeneous cells in 4G LTE systems,” Computer Networks, vol. 79,
pp. 297–312, 2015.

[10] Y. C. Wang, “Mobile sensor networks: system hardware and dispatch
software,” ACM Computing Surveys, vol. 47, no. 1, pp. 12:1–12:36,
2014.

[11] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using
OpenFlow: a survey,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 1, pp. 493–512, 2014.

[12] Ryu. [Online]. Available: http://osrg.github.io/ryu/

[13] G. Parsons, “Ethernet bridging architecture,” IEEE Communications

Magazine, vol. 45, no. 12, pp. 112–119, 2007.

[14] A. Myers, E. Ng, and H. Zhang, “Rethinking the service model: scaling
Ethernet to a million nodes,” in ACM SIGCOMM Workshop on Hot

Topics in Networking, 2004, pp. 1–6.

[15] C. Kim, M. Caesar, and J. Rexford, “Floodless in SEATTLE: a scalable
Ethernet architecture for large enterprises,” ACM SIGCOMM Computer

Communication Review, vol. 38, no. 4, pp. 3–14, 2008.

[16] K. Elmeleegy and A. L. Cox, “EtherProxy: scaling Ethernet by sup-
pressing broadcast traffic,” in IEEE INFOCOM, 2009, pp. 1584–1592.

[17] C. H. Chiu and C. L. Lei, “Etheragent: scaling ethernet for enterprise
and campus networks,” International Journal of Innovative Computing,

Information and Control, vol. 9, no. 6, pp. 2465–2483, 2013.

[18] B. Kercheval, DHCP: A Guide to Dynamic TCP/IP Network Configu-

ration Hardcover. Prentice Hall, 1999.

[19] P. W. Chi, Y. C. Huang, J. W. Guo, and C. L. Lei, “Give me a broadcast-
free network,” in IEEE Global Communications Conference, 2014, pp.
1968–1973.

[20] J. Wang, T. Huang, J. Liu, and Y. Liu, “A novel floodless service
discovery mechanism designed for software-defined networking,” China

Communications, vol. 11, no. 2, pp. 12–25, 2014.

[21] H. Cho, S. Kang, and Y. Lee, “Centralized ARP proxy server over SDN
controller to cut down ARP broadcast in large-scale data center net-
works,” in IEEE International Conference on Information Networking,
2015, pp. 301–306.

[22] N. Jehan and A. M. Haneef, “Scalable Ethernet architecture using
SDN by suppressing broadcast traffic,” in International Conference on

Advances in Computing and Communications, 2015, pp. 24–27.

[23] K. Kataoka, N. Agarwal, and A. V. Kamath, “Scaling a broadcast domain
of Ethernet: extensible transparent filter using SDN,” in International

Conference on Computer Communication and Networks, 2014, pp. 1–8.

[24] IETF RFC 4541, “Considerations for Internet Group Management
Protocol (IGMP) and Multicast Listener Discovery (MLD) snooping
switches,” 2006.

[25] Mininet. [Online]. Available: http://mininet.org/

[26] OpenWrt. [Online]. Available: https://openwrt.org/

[27] Y. C. Wang, S. R. Ye, and Y. C. Tseng, “A fair scheduling algorithm with
traffic classification in wireless networks,” Computer Communications,
vol. 28, no. 10, pp. 1225–1239, 2005.

[28] Y. C. Wang, Y. C. Tseng, and W. T. Chen, “MR-FQ: a fair schedul-
ing algorithm for wireless networks with variable transmission rates,”
Simulation, vol. 81, no. 8, pp. 587–608, 2005.

[29] W. H. Yang, Y. C. Wang, Y. C. Tseng, and B. S. P. Lin, “A request
control scheme for data recovery in DVB-IPDC systems with spatial and
temporal packet loss,” Wireless Communications and Mobile Computing,
vol. 13, no. 10, pp. 935–950, 2013.

[30] Y. C. Wang, “Profit-based exclusive-or coding algorithm for data retrans-
mission in DVB-H with a recovery network,” International Journal of

Communication Systems, vol. 28, no. 9, pp. 1580–1597, 2015.

[31] Y. C. Wang and T. Y. Tsai, “A pricing-aware resource scheduling
framework for LTE networks,” IEEE/ACM Transactions on Networking,
vol. 25, no. 3, pp. 1445–1458, 2017.

[32] J. Cao, M. Ma, H. Li, Y. Zhang, and Z. Luo, “A survey on security
aspects for LTE and LTE-A networks,” IEEE Communications Surveys

& Tutorials, vol. 16, no. 1, pp. 283–302, 2014.

[33] Y. C. Wang and S. Y. Hsieh, “Service-differentiated downlink flow
scheduling to support QoS in long term evolution,” Computer Networks,
vol. 94, pp. 344–359, 2016.

[34] Y. C. Wang and C. C. Yang, “3S-cart: a lightweight, interactive sensor-
based cart for smart shopping in supermarkets,” IEEE Sensors Journal,
vol. 16, no. 17, pp. 6774–6781, 2016.

[35] H. Jiang, C. Cai, X. Ma, Y. Yang, and J. Liu, “Smart home based on
WiFi sensing: a survey,” IEEE Access, vol. 6, pp. 13 317–13 325, 2018.

