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Abstract—We consider a hybrid wireless sensor network con-
sisting of static and mobile sensors, where each static sensor
can detect an event of only one type while each mobile sensor
can analyze events of multiple types. Static sensors monitor the
environment and report where events appear in the sensing field.
Then, mobile sensors are dispatched to reach these event locations
to perform more in-depth analysis. An interesting problem is
how to schedule mobile sensors’ traveling paths so that their
lifetime can be maximized. We thus formulate a multi-round
multi-capability sensor dispatch problem, which is shown to be
NP-hard. Through an economic viewpoint, we develop a heuristic
using the Pareto optimality to solve this problem. Simulation
results have verified the effectiveness of the proposed heuristic.
The paper contributes in defining a new sensor dispatch problem
and proposing efficient solution to it.

Index Terms—energy saving, mobile sensor, Pareto optimality,
sensor dispatch, wireless sensor network.

I. INTRODUCTION

Wireless sensor networks (WSNs) enrich our life by pro-
viding context-aware monitoring of the physical environment.
Hybrid WSNs consisting of static and mobile sensors possess
more flexibility than conventional WSNs containing only
static sensors [1], [2], [3]. On one hand, static sensors are
used to conduct environmental sensing and maintain network
communication. On the other hand, mobile sensors have more
resources such as sensing capability, computing power, and
energy. They can move to designated locations to carry out
missions such as analyzing events or replacing broken nodes.
Recently, hybrid WSNs have applications in [4], [5], [6], [7].

In this paper, we aim at the issue of dispatching “multi-
capability” mobile sensors to the locations of events appearing
in the sensing field. Static sensors will identify where suspi-
cious events appear and report them to mobile sensors so as
to carry out in-depth analysis. Consider a set of types 7 with
which events may appear. Each event is associated with one
type in 7. A sensor equipped with the sensing device used to
detect events of type t; € T is said to have the capability t;.
We consider single-capability static (SCS) sensors, where each
SCS sensor can detect an event of only one type. However, for
events of each type in 7, the sensing field is deployed with
sufficient SCS sensors to detect them. Therefore, SCS sensors
can always identify where events appear. On the other hand,
each mobile sensor is equipped with multiple sensing devices
so that it can analyze events of a subset of types in 7. We
call such sensors multiple-capability mobile (MCM) sensors.

MCM sensors may have different capabilities. When an event
of type t; € T appears, we can only dispatch an MCM sensor
that has the capability ¢; to analyze it. To ensure that we can
find a feasible schedule to dispatch mobile sensors, the union
of all MCM sensors’ capabilities should be equal to 7.

The above scenario is practical in some long-term, multi-
stage monitoring applications. For example, consider an air-
pollution monitoring application as follows: In the initial stage,
one may deploy static COs (carbon dioxide) sensors to monitor
the CO4 concentration. Then, he/she may decide to add static
SOs, (sulphur dioxide) sensors to improve the monitoring result
in the next stage. Thus, the WSN has two types of SCS
sensors to report different events (for example, high CO2 or
SO, concentration). On the other hand, mobile sensors can be
equipped with both CO2 and SO, sensing devices to reduce
the hardware cost. In this case, we have MCM sensors used
to analyze events of multiple types.

Since MCM sensors are usually batter-powered and the
moving cost dominates their energy consumption [8], [9],
our objective is to emphasize the path efficiency of MCM
sensors. Considering that events may appear anytime and
anywhere, it would be inefficient to dispatch one mobile sensor
immediately after an event appears. Therefore, we suggest
dividing time into multiple rounds and schedule the traveling
paths of MCM sensors in a round-by-round fashion. Then, we
propose an MCM sensor dispatch problem which determines
how to dispatch MCM sensors to the event locations given in
each round such that the system lifetime can be maximized.
Here, we define the system lifetime as the number of rounds
until some event locations cannot be reached by any suitable
MCM sensor due to lack of energy. In [10], it has been
proven that even if all static and mobile sensors have a single
capability (that is, the size of 7T is one), the problem of
dispatching mobile sensors in a round-by-round fashion such
that the system lifetime is maximum is still NP-complete. By
letting each MCM sensor possess all capabilities in 7, we can
reduce the above NP-complete problem to one of the instances
of our MCM sensor dispatch problem, thereby showing it to
be NP-hard.

At first glance, there seems to be a simple solution by han-
dling event locations of each type in 7 separately. Specifically,
we first divide event locations into groups according to their
types. Then, for the group of each type ¢; € T, we schedule
MCM sensors to visit all of its event locations such that



Fig. 1: An example of dispatching MCM sensors, where the
number on each dotted line is the distance between two nodes.

these MCM sensors can consume the least amount of energy.
Notice that only MCM sensors that have the capability ¢; can
participate in this schedule. The above procedure is repeated
until all groups are handled. Then, for each MCM sensor, it can
adopt any solution of the traveling salesman problem (TSP) to
reach all event locations assigned to that MCM sensor. Fig. 1
gives an example, where 7 = {¢1,t2,¢3} and we have two
event locations /; and [y (represented by circles) and two
MCM sensors s1 and sq (represented by rectangles). The types
of [y and l5 are ¢; and to, respectively. On the other hand,
s1 and so have capabilities {¢1,t2} and {ta,t3}, respectively.
According to the above solution, we first schedule an MCM
sensor to visit /1. In this case, we choose s; since only it has
the capability ¢;. Then, for [y, we still choose s; because it
has a shorter moving distance to l5 (compared with that of s5).
Thus, s; totally moves in a distance of 16 (= 5 + 11) while
59 does not move.

The above solution adopts a divide-and-conquer concept,
but it has two drawbacks. First, the overall moving distance
of all MCM sensors is not reduced, even though we try to
minimize the moving distance of MCM sensors for event
locations of each type in 7. Second, some MCM sensors (for
example, s1) are burdened with heavy loads (that is, moving in
a longer distance), leading them to exhaust energy quickly. In
fact, there is a better solution to the example in Fig. 1, where
s1 and sy are dispatched to [; and o, respectively. In this
case, the overall moving distance is reduced to 13 (= 7 + 6).
Meanwhile, the loads of MCM sensors are balanced so as to
extend the system lifetime [10]. Therefore, we should take all
MCM sensors into account when determining their dispatch
schedules, rather than just use a simple divide-and-conquer
solution.

Motivated from the above observation, we propose an
efficient solution to the MCM sensor dispatch problem by
adopting the concept of Pareto optimality, which is widely
used to address economic issues [11]. Given the event loca-
tions to be analyzed in each round, our solution calculates a
matching between MCM sensors and event locations such that
1) the number of event locations paired by MCM sensors is
maximum and 2) the matching is Pareto optimal. A matching
M is Pareto optimal if there is no other matching M’ such
that no MCM sensor is worse off (that is, moves in a longer
distance) in M’ than in M, and some MCM sensors are even
better off (that is, move in shorter distances) in M’ than
in M. In other words, we cannot swap two pairs of MCM

sensors and event locations in M to reduce the overall moving
distance of MCM sensors. Then, if there still exist unpaired
event locations, we can repeat the above procedure until all
event locations are assigned with MCM sensors. Compared
with the simple divide-and-conquer solution, our MCM sensor
dispatch solution takes all MCM sensors into consideration
when calculating the dispatch schedule, thereby reducing their
moving distances and extending the system lifetime.

In the literature, a large amount of research efforts [12],
[13], [14] have elaborated on the issue of adopting mobile
sensors to improve the sensing coverage of WSNs. The work
of [15] suggests moving more sensors close to the locations
of events predicted, while maintaining complete coverage of
the sensing field. Considering that an object’s trajectory may
be predicted, [16] addresses how to maneuver mobile sensors
to acquire data from that object in a real-time manner. The
study in [17] uses static sensors to estimate coverage holes.
Then, each mobile sensor selects the largest hole and moves
to fill it.

Some variations of the sensor dispatch problem are also
addressed. Given mobile sensors and target locations, [18]
adopts a matching idea to dispatch mobile sensors to these
target locations so that all mobile sensors can remain the
maximum energy to conduct other missions (such as sensing
or communication). On the other hand, [19] solves the similar
problem in a distributed manner by letting mobile sensors
compete to move to their nearest target locations. The above
two studies aim at one-round sensor dispatch, while our paper
considers multiple rounds of sensor dispatch. In [20], static
sensors detecting events will invite mobile sensors to visit
them to conduct more in-depth analysis. The mobile sensor
which is closer and remains more energy, and whose leaving
does not result in a big coverage hole, will be invited. Given
event locations in each round, [10] tries to dispatch mobile
sensors to visit all event locations such that their moving
energy can be minimized and balanced, so the system lifetime
can be prolonged. The above studies assume that all events
have the same type, while our paper relaxes this assumption
and allows events to have different types. The above features
distinguish this paper from others.

We organize the paper as follows: Problem definition is
given in Section II. Section III proposes our MCM sensor dis-
patch solution. Simulation results are presented in Section IV
while Section V concludes this paper.

II. PROBLEM DEFINITION

Suppose that there is a set of types 7 of which events
may appear in the sensing field. Each event is associated
with exact one type in 7. We say that a sensor equipped
with the sensing device which is able to detect events of type
t; € T has the capability ¢;. Consider a hybrid WSN deployed
with both SCS and MCM sensors, where each SCS sensor
has only one capability while each MCM sensor can have
multiple capabilities. Sensors are assumed to know their own
locations, which can be achieved by the global positioning
system (GPS) or some other localization schemes [21]. For



each type t; € T, t;-capability SCS sensors are dense enough
to fully cover the sensing field. In addition, all SCS sensors
can form a connected network. Therefore, they can cooperate
to identify events of different types which may appear in
arbitrary locations in the sensing field. However, we make no
assumption on the event distribution, and the occurrence of
any two events is independent.

MCM sensors are more resource-rich and can be dispatched
to event locations to conduct more in-depth analysis. Both the
moving speed of an MCM sensor and its energy consumption
to move a unit distance are considered as constants. In
addition, the sensing field is assumed to be obstacle-free so
that MCM sensors can move straight to their destinations.
However, the capabilities of any two MCM sensors may not
be necessarily the same. Therefore, when a location of ¢;-
type event is reported by SCS sensor(s), only those MCM
sensors that have the capability ¢; can be dispatched to that
location. To guarantee that we can dispatch MCM sensors to
analyze all possible events in the sensing field, the union of
the capabilities of all MCM sensors should be equal to 7.

Since events may appear on arbitrary locations at any time,
it would be efficient to gather the locations of events for
a while and then schedule MCM sensors to move to these
event locations. Therefore, we divide the time into multiple
rounds. In each round, an event only needs to be analyzed by
one MCM sensor. Our discussion thus aims at the dispatch
problem in each round. Specifically, given a set of m event
locations £ = {ly,l2,-+- ,ln} and a set of n MCM sensors
S = {s1, 82, -+, $n}, where each location [; € L is associated
with one type in 7T, our objective is to calculate a dispatch
schedule ®; for each s; € S, which contains a sequence of
event locations. Notice that s; should have the corresponding
capabilities to analyze all events in its ®;.

Let e; be the current energy of an MCM sensor s; and
® (k) be the kth event location in s;’s dispatch schedule @ .
The energy required to complete s;’s dispatch schedule is

Energy(®;)
|®;]-1

= ecost X | d(s;,®;(1)) + Z d(®;(k),®;(k+1)) |,
k=1

where ecqgt 1s the energy cost for an MCM sensor to move one
unit distance, <I>j| is the number of event locations in ®;, and
d(-,-) is the distance between two locations. Obviously, any
dispatch schedule ®; of each MCM sensor s; should always
satisfy that e; > Energy(®;). Assume that MCM sensors
cannot be rechargeable. Given the initial energy of each MCM
sensor in S, the MCM sensor dispatch problem determines
how to calculate the dispatch schedules of all MCM sensors
in each round, such that the system lifetime, which is defined
by the number of rounds until we cannot find any suitable
MCM sensor to visit some event locations, can be maximized.
Remark that when the remaining MCM sensors still have
sufficient energy but they do not have a certain capability,
say, t; € T, if £ has some event locations of type ¢;, then we

cannot dispatch any MCM sensor to visit these event locations
and thus the system lifetime is terminated.

III. THE PROPOSED SOLUTION

We propose an MCM sensor dispatch algorithm, whose idea
is to take all MCM sensors into account when scheduling them
and to reduce their moving energy in each round. Without loss
of generality, we remove those MCM sensors that do not have
sufficient energy to reach any location in £ from S. Given £
and S in each round, our MCM sensor dispatch algorithm has
the following five steps:

« Step 1: Initially, we set ®; = & (that is, empty dispatch

schedule) for each MCM sensor s; € S.

o Step 2: From £ and S, we construct a weighted bipartite
graph G = {L U S, L x S}. All event locations and all
MCM sensors are converted into vertices. Edges only
connect vertices between £ and S. In particular, an edge
(I;,s5) exists if and only if event location [;’s type is
tr € 7 and MCM sensor s; has the capability ¢;. In
addition, we also associate edge (I;,s;) with a weight

w(li, s5) = ecost X d(li,s5),

to indicate the energy consumption for s; to move from
its current location to the event location [;.

o Step 3: We then calculate a maximum Pareto optimal
matching M from graph G. Obviously, M must be in the
form of pairs of event locations and MCM sensors (for
example, M = {(lay,58,), (las:885), -+ 5 (laws S8 ) 1
where k < min(m,n)). Then, for each MCM sensor s;
in M, we insert its paired event location into its dispatch
schedule ;. We then remove each event location I; € M
from £ because [; has been assigned with one MCM
sensor to analyze it.

o Step 4: Repeat steps 2 and 3 until £ becomes empty (in
other words, all event locations have been assigned with
MCM sensors to analyze them).

« Step 5: For each MCM sensor s;, we can adopt any TSP
(approximation) solution to arrange all event locations
in its dispatch schedule ®; so that s; can consume
the minimum amount of energy to complete the current
dispatch schedule.

The remaining issue in the aforementioned algorithm is how
to calculate a maximum Pareto optimal matching in step 3. To
calculate such a matching, we associate each event location
l; € L with a preference list which ranks all of the MCM
sensors acceptable to [; (in other words, these MCM sensors
have the corresponding capability to analyze [;). The rank of
an edge (l;,s;) is thus the rank that event location [; has
assigned to MCM sensor s;. We define that an event location
l; “prefers” another matching M to the matching M if any
one of the following two conditions is satisfied:

1) Event location [; is paired with some MCM sensor in

M but not in M.
2) Suppose that I; is paired with MCM sensors s; and
s in My and Mo, respectively. We have w(l;, sp) <



w(l;, s;). In other words, s can consume less energy to
reach [; compared with s; (and therefore [; “likes” sy,
better than s;).

However, if an event location is not paired with any MCM
sensor in both matchings, it is considered as no difference
between matchings M; and M. According to the above
definition, we say that a matching M is Pareto optimal if
there is no other matching M’ such that 1) at least one event
location prefers the MCM sensor paired in M’ to the MCM
sensor paired in M and 2) no event location prefers the MCM
sensor paired in M to the MCM sensor paired in M’. Notice
that given a weighted bipartite graph, it is possible to find
multiple Pareto optimal matchings with different sizes [22].
Therefore, in order to increase the calculation efficiency in
step 3 of our algorithm, we need to find the Pareto optimal
matching with the maximum size (that is, the number of paired
event locations and MCM sensors is maximum).

Based on [23], a three-step method to calculate the maxi-
mum Pareto optimal matching M from graph G is developed
as follows:

a) Given G, we first calculate a maximum matching M.
This can be achieved by the Hopcroft-Karp algorithm
proposed in [24].

b) For each event location I; in M, we conduct the follow-
ing check: Suppose that /; is currently paired with MCM
sensor s; in M. If there is an unpaired MCM sensor,
say, s such that w(l;, s;) > w(l;, si), we remove pair
(I3, s;) from M and then add pair (I;, sx) to M. When
there are multiple candidates, we select the MCM sensor
s such that w(l;, si) is minimum.

¢) We then check whether event locations can “trade”
with their currently paired MCM sensors in M so that
the overall energy consumption of MCM sensors can
be further reduced. In particular, if M contains a se-
quence of pairs (la,,58,), (las,S8,), -+, and (la,, s, )
such that w(la,,s8) > w(la,,$8,), W(lay,S8,) >
w(la27553)7 T 7w(lak—l786k—1) > w(lak—l’sﬂk)’ and
W(lay, $8.) > W(lay, S5, ), We remove pairs (o, , Sa, ),
(lag:88,)s ---» and (la,,S5,) from M and then
add pairs (la,,58,)s (lassS8s)s ~-+» (lag_1,$8,), and
(lay,88,) to M.

In the above method, since step a) only finds a matching that
has the maximum size (without considering the weights of the
selected edges), we need additional two steps to “refine” the
matching. Specifically, in step b), although an event location
has already been assigned with one MCM sensor, the event
location can still test if there are free MCM sensors (that
is, these MCM sensors are not selected in M) which are
closer to it. If so, the event location can select the closest
free MCM sensor to reduce the overall energy consumption
of MCM sensors. On the other hand, step c) allows event
locations to exchange their currently assigned MCM sensors
to further reduce the overall energy consumption. Specifically,
if there is a sequence of event locations (lo,,las, " ;la,) I
M such that each event location [, prefers the MCM sensor
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Fig. 2: Comparison on the average system lifetime.

currently paired by I, (thatis, sg,_,) to its currently paired
MCM sensor (that is, 56,)s lap and lap . can make a trade by
exchanging their assigned MCM sensors. In this way, MCM
sensors can move in a shorter distance and therefore reduce
their moving energy consumption.

IV. SIMULATION RESULTS

We have developed a simulator using the C++ language
to evaluate the performance of our dispatch scheme. In our
simulations, the sensing field is a 550 meters x 450 meters
rectangle. Approximately 1000 static sensors are deployed in
a hexagon-like manner [25]. We set the sensing distance and
the communication distance of each static sensor to 10 meters
and 17.5 meters, respectively, so that all static sensors can form
a connected network. In each experiment, we randomly select
a subset of static sensors to be event locations (that is, £). In
addition, we set T = {t1, to, t3}. For each type ¢; € T, a third
of event locations are associated with ¢;. On the other hand,
the number of MCM sensors is 20 in each experiment, and
they have an initial energy of 10000 units used for movement.
When an MCM sensor moves one unit distance, it will spend
one unit of energy (that is, ecost = 1). Among these 20 MCM
sensors, five MCM sensors have the capabilities {¢1, 2}, five
MCM sensors have the capabilities {t, t3}, five MCM sensors
have the capabilities {t¢1,¢3}, and the remaining five MCM
sensors have all capabilities {t1,t2,¢3}. We compare our
proposed scheme in Section III (denoted by “MCM dispatch
scheme”) with the divide-and-conquer scheme mentioned in
Section I (denoted by “D&C dispatch scheme”).

We first investigate the average system lifetime under dif-
ferent dispatch schemes, as shown in Fig. 2. The number of
event locations is set to 15, 24, 33, 42, 51, and 60. When the
number of event locations grows from 15 to 24, the system
lifetime substantially reduces because the number of MCM
sensors becomes smaller than the number of event locations.
In this case, some MCM sensors have to take care of more than
one event location in every round, thereby exhausting their
energy quickly. By adopting the Pareto optimality and taking
all MCM sensors into account when determining their dispatch
schedules, our MCM dispatch scheme can significantly save
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the moving energy of MCM sensors, thereby extending the
system lifetime. Observing from Fig. 2, our MCM dispatch
scheme can extend approximately 47.71% of the system
lifetime compared with the D&C dispatch scheme in this
simulation.

We then measure the number of survived MCM sensors,
as shown in Fig. 3. The number of event locations is set to
60. We observe that the first MCM sensor exhausts its energy
at the 30th and 37th rounds under the D&C dispatch scheme
and the MCM dispatch scheme, respectively. After the first
MCM sensor dies, other MCM sensors are burdened with more
loads so that they will exhaust their energy soon. However,
our MCM dispatch scheme can postpone such a phenomenon,
which demonstrates its effectiveness. Interestingly, the D&C
dispatch scheme terminates its system lifetime at the 38th
round, but one MCM sensor still survives. This phenomenon
shows that the D&C dispatch scheme burdens MCM sensors
with imbalanced loads, which hurts the system lifetime.

V. CONCLUSIONS

In this paper, we have developed an efficient algorithm to
dispatch MCM sensors in a hybrid WSN from an economic
viewpoint. We formulate an MCM sensor dispatch problem
and show it to be NP-hard. By constructing a weighted bipar-
tite graph, we translate the MCM sensor dispatch problem to
a matching problem and then calculate the dispatch schedules
of MCM sensors by finding the maximum Pareto optimal
matching. Simulation results have shown that our proposed
dispatch solution can significantly extend the system lifetime
compared with the simple divide-and-conquer solution.
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