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Abstract—Wireless sensor networks provide a convenient man-
ner to monitor the physical environments. How to extend the
network lifetime by reducing the amount of message trans-
missions is a critical issue. In this paper, we propose a multi-
resolution compression and storage (MCS) framework to compress
and preserve sensing data in a wireless sensor network. Our MCS
framework adopts spatial and temporal compression schemes to
reduce the amount of message transmissions, so the network
lifetime can be prolonged and the network congestion can be
alleviated. In addition, we also develop a storage mechanism
to maintain sensing data in sensor nodes, so that users can
query more detailed data when necessary. Our proposed methods
consider the hardware limitations of sensor nodes. We also
implement a prototyping system on the MICAz Mote platform.

Index Terms—data correlation, message compression, perva-
sive computing, sensor data management, wireless sensor net-
works.

I. INTRODUCTION

Wireless sensor networks provide a new opportunity for per-
vasive and context-aware monitoring of physical environments.
Such a network consists of a large amount of sensor nodes,
where each node is a tiny wireless device that can continuously
collect information from its surrounding environment and
report to a remote sink through a multi-hop ad hoc manner.
A wireless sensor network is usually deployed in a region of
interest to observe abnormal phenomena or track objects inside
that region. Wireless sensor networks can enrich our daily life
through many applications, such as environment monitoring,
smart home, and surveillance [1]-[3].

Because sensor nodes are usually operated by small batteries
and it is infeasible to recharge them or deploy new nodes in
many scenarios, how to extend the network lifetime becomes
an important issue. In this paper, we consider wireless sensor
networks that possess the following characteristics. First, these
wireless sensor networks are deployed in some particular
regions to provide long-term monitoring of the regions. In
this case, because sensor nodes should continuously report
what they sense to the sink, the communication overhead
will dominate their energy consumption. Moreover, sensor
nodes close to the sink will suffer from heavy loads of
message transmissions. This will lead to network congestion
[4] and rapidly consume the energy of sensor nodes around

the sink. As these nodes exhaust their energy, the network
may be broken. Therefore, how to reduce the amount of
message transmissions of sensor nodes plays a leading role in
extending the network lifetime. Second, sensing data reported
from sensor nodes often exhibit a certain degree of data
correlation. In particular, the sensing readings of neighboring
sensor nodes may present high spatial correlation because
they collect data from the same environment. These sensor
nodes may detect either the same phenomenon or nothing
from the environment. In addition, the sensing data collected
by an individual sensor node may present high temporal
correlation when its surrounding environment remains stable.
With this observation, we can properly compress the sensing
reports from sensor nodes to reduce the amount of message
transmissions. Third, people may query different resolutions
of sensing data from a wireless sensor network [5]. They may
periodically request a rough report from the sink to obtain
an overview of the monitoring environment. Sometimes, they
could have interest to query more detailed information from
a subset of sensor nodes. With this requirement, sensor nodes
should not only simply report what they sense to the sink, but
also have to maintain the sensing data in their local memories
for further queries.

In this paper, we propose a multi-resolution compression
and storage (MCS) framework to provide message compres-
sion and multiple resolutions of sensing data in wireless
sensor networks. The basic concept of our MCS framework
is to organize the network into a hierarchical architecture
and then establish multi-resolution summaries of sensing data
by spatial and temporal compressions. These summaries of
sensing data will be maintained in the network for further
query. Specifically, we organize the sensor nodes into multiple
layers. Messages transmitted by nodes in a lower layer will
be compressed by a certain node in the upper layer through
the spatial coding technology. Meanwhile, each node can also
compress its sensing report by temporal coding method. In this
way, the amount of message transmissions can be significantly
reduced and thus the network lifetime can be prolonged.
Moreover, in the MCS framework, nodes in each layer will
maintain a copy of their historical sensing data. Therefore,
users can query different resolutions and views of sensing



data from different layers. In particular, they can obtain a
coarser resolution but broader view of sensing data from a
higher layer, and a narrower view but finer resolution from a
lower layer. Our proposed compression and storage schemes
consider the hardware limitations of sensor nodes. We also
implement a prototyping system on the MICAz Mote platform
[6] to evaluate the system performance.

In the literature, data compression for textual content has
been well studied. Huffman coding [7] and Lempel-Ziv-Welch
(LZW) scheme [8] are two well-known text-coding compres-
sion algorithms. They can provide lossless text compression,
in the sense that data can be completely recovered after
decompression. However, the results of these text-coding com-
pression algorithms cannot be directly applied to the message
compression in wireless sensor networks. This is because
the textual data are composed of a finite set of alphabets
whereas the sensing readings of a wireless sensor network
are usually continuous values. These algorithms cannot define
the alphabets of sensing readings and thus fail.

In-network data aggregation [9]-[11] also discusses how to
reduce the amount of message transmissions in a wireless
sensor network with data similarity. These data aggregation
methods attempt to fuse a set of similar sensing reports and
generate one representative value to stand for these reports.
Nevertheless, unlike data compression, this fusion operation
is irreversible in the sense that the original sensing reports
cannot be recovered. Therefore, the subtle difference between
sensing reports cannot be reflected because they have been
fused together.

In [5], a storage architecture called DIMENSIONS is pro-
posed to support multi-resolution storage in a wireless sensor
network. DIMENSIONS organizes the network into multiple
levels and adopts a wavelet compression method in each level
to generate spatiotemporal summarization of data. Users can
obtain multiple resolutions of sensing reports from differ-
ent levels via drill-down queries. However, such a wavelet
compression requires a large cost of computation power and
memory size. [In DIMENSIONS, these high-cost wavelet com-
pression and decompression operations are performed in each
level, so sensor nodes may suffer from higher computation
and space complexity.

The rest of this paper is organized as follows. Section II
proposes our MCS framework. Section III presents the com-
pression and storage schemes. Section IV reports our proto-
typing experiences and some experimental results. Section V
concludes this paper.

II. MULTI-RESOLUTION COMPRESSION AND STORAGE
(MCS) FRAMEWORK

The system architecture of our MCS framework is illustrated
in Fig. 1. We consider that sensor nodes are homogeneous and
they are arbitrarily deployed in the region of interest. In MCS,
we recursively divide the network into « blocks. In this way,
the network will be organized into multiple /ayers, where a
block in layer ¢ + 1 contains « blocks in layer 7. In each layer,
we select a node in each block as the processing node to

collect and compress sensing reports from the corresponding
« blocks in its lower layer. The number of layers decides the
resolutions and message sizes of sensing reports, and it can be
adjusted by users depending on their application requirements.
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Fig. 1. System architecture of the multi-resolution compression and storage
(MCS) framework. There are three layers and o = 4.

In the lowest layer (i.e., layer 1), the processing node
is responsible for compressing sensing reports from sensor
nodes. In this layer, we further divide each block into k X k
grids (called pixels), where k is a small integer. Ideally, each
pixel should contain exact one sensor node and we use the
sensing report of this node as the pixel’s value. However,
because sensor nodes are arbitrarily deployed in the region
of interest, a pixel may possibly contain two or more sensor
nodes. In this case, we take the average of sensing reports
from these sensor nodes as the pixel’s value. One the other
hand, when a pixel contains no node, we can use the average
of values from the neighboring pixels as this pixel’s value.

In MCS, sensing data reported from sensor nodes are
transmitted to the sink layer by layer. Messages passed through
each layer will be compressed by the corresponding processing
node in each block, through the spatial compression scheme.
Sensor nodes and layer-1 processing nodes will also compress
their data along the time axis by the femporal compression
scheme. To help users query past data from the network, each
node will store the historical data in its local memory by the
storage scheme.

Since the spatial and temporal compression schemes will
cause some loss of data precision (depending on the compres-
sion ratio), processing nodes in different layers will provide
different resolutions of sensing data. In particular, users can



obtain a coarser resolution (but broader view) by querying
processing nodes in a higher layer. When users have interest
in accessing more in-depth data, they can query the processing
nodes in a lower layer. Note that each processing node stores
and reports compressed data and these data are decompressed
only at the sink. In this way, both the computation and space
complexity of processing nodes can be greatly reduced.

Next, we present our compression and storage schemes in
detail.

III. COMPRESSION AND STORAGE SCHEMES

A. Spatial Compression Scheme

The spatial compression scheme is performed by each
processing node to compress sensing data from its lower layer.
Users can specify a compression ratio vy, 0 < v < 1, which is
defined as the reduction in size relative to the uncompressed
size through each layer, that is,

compressed size

1= uncompressed size

Then a processing node will compress the sensing data based
on their spatial correlation. According to the layer number, the
spatial compression scheme contains three procedures: layer-1
compression, layer-i (i > 1) compression, and decompression
(at the sink).

1) Layer-1 Compression Procedure: A layer-1 processing
node collects the sensing data from the sensor nodes in its
block and will store them in a k x k matrix M = (8; ;) kxk>
where each element s; ; records the value of a pixel (¢, )
specified in Fig. 1. Then, the processing node can apply the
two-dimensional discrete cosine transform (2D-DCT) method
[12] on M to generate a new matrix M’ = (t; ;)kxk. In
particular, for each element ¢; ; € M’ we have
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k S 2k 2k
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where ¢(i) = % if ¢ = 0 and ¢(¢) = 1 otherwise. The 2D-
DCT method is widely used in the field of image processing.
It can transform an image from the spatial domain to the fre-
quency domain and extract significant values of the image. In
particular, the 2D-DCT method will compact those significant
values in the upper-left part of the transformed matrix M/,
while leaving other insignificant values in the opposite part. In
this way, we can still maintain most significant characteristics
of the original matrix M by preserving only the upper-left
part of the transformed matrix M’ and thus achieve message
compression. However, the cosine operations in Eq. (1) are
too complicated for sensor nodes to calculate. Fortunately, the
variable k in the cosine operation is a system constant (i.e.,
the length of matrix M) while the other four variables i, j, x,
and y are non-negative integers no larger than k. Since k is a
small integer, we can maintain a small table in each processing
node to record the results of cosine operations with different
pairs of inputs (¢,2) and (j,y). Therefore, the calculation

of Eq. (1) can be simplified as operations of additions and
multiplications.

After calculating the matrix M’, a reduced zigzag scan
(RZS) method is applied to translate M’ into an one-
dimensional array D to compress data. In particular, the RZS
method begins at the upper-left corner of M’ and sequentially
scan the diagonals of M, as shown in Fig. 2. The RZS method
stops when it has scanned [k? - \] elements of M’, where
A = 1 — ~ is the ratio of elements in M’ to be preserved.
Then, we transmit the array D to the layer-2 processing node.
With the property of 2D-DCT, the RZS method is guaranteed
to maintain most significant values of the matrix M in the
array D. Note that the compression ratio vy affects the data
precision after decompressing D to the original matrix M.
Specifically, we can maintain more information in the array
D as v becomes smaller. Therefore, the data precision can be
increased after decompressing D.
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Fig. 2. An example of the RZS method, where the compression ratio v = 0.1.
(a) Indices of matrix M’. (b) Reduced zigzag scan. (c) The result of one-
dimensional array.

2) Layer-i (i > 1) Compression Procedure: A layer-i
processing node further compresses the data from its corre-
sponding « blocks in the lower layer. Intuitively, one possible
method is to first decompress the data from the lower layer and
then apply the 2D-DCT method again on these decompressed
data to recompress them. Unfortunately, this intuitive method
has two drawbacks. First, because the 2D-DCT method and
its inversion are two expensive operations, the processing node
will suffer from high computation complexity. The situation
becomes worse in a higher layer because the processing node
needs to handle a large amount of data from many nodes.
Second, this intuitive method may not help compress more
data because in a large range of sensing field, the degree of
spatial correlation of sensing data will degrade.

Therefore, in layer-i compression, we reduce the length of
array D (passed from the layer i — 1) to [\? - k%] elements by
discarding the last [\71 - k? — \?. k2| elements of D. Recall
that the array D stores data in an decreasing order according
to the data importance. Therefore, we can reduce the size of
sensing data with a ratio of A\’ in layer 4 and still maintain the
significant values of these data.



3) Decompression Procedure: To reduce the computation
overhead of processing nodes, the decompression procedure
is performed only at the sink. In particular, once the sink has
collected the reports from the processing nodes in the highest
layer, it first recovers the spatial locations of blocks in each
layer (as shown in Fig. 1). Then, for each layer-1 block, the
sink recovers the corresponding array D to a two-dimensional
matrix M’ = (t; j)rxk. Since the array D contains only
[A4 - k2] elements of compressed data, where d is the num-
ber of layers in the network, we should fill the remaining
|k? — A% . k?| elements with zeros in the matrix M’. Finally,
we adopt the inverse 2D-DCT method to transform M’ to a
new matrix M" = (s; ;j)rxk. In particular, for each element
si; € M", we have
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Note that since the matrix M’ is incomplete, the transformed
matrix M” by the inverse 2D-DCT method may not be
necessarily equal to the original matrix M (that is, lose some
data precision). The compression ratio - decides both the size
and precision of sensing reports, which is a tradeoff between
each other.

B. Temporal Compression Scheme

The temporal compression scheme is performed by each
sensor node and layer-1 processing node. Users can specify
a small update threshold § to determine whether a node
should transmit its data or not. Specifically, for each sensor
node, every time it transmits the sensing report to the layer-1
processing node, the sensor node keeps the value of report
Ureference a8 a reference value. Then, when the sensor node
generates another sensing report with the value veyprent, it
checks whether |vreference — Veurrent| < 0. If so, it means
that the difference between the current report and the previous
report is insignificant. Therefore, the sensor node should not
transmit the new generated report to preserve its energy.
Otherwise, the sensor node has to transmit this report and
replace Vreference DY Veurrent fOr the following reference.

For each layer-1 processing node, it should check a two-
dimensional matrix rather than a single value. In particular, let
Mieference = (Si,j)kxk be the matrix previously transmitted
to the layer-2 processing node. Once a layer-1 processing
node generates a new matrixX Meurrent = (fi,j)kxk, it first
calculates the average difference of pixels between M, eference
and Mcurrent:
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If 8 < 4, it means that the difference between M. cference
and M yrent 1S insignificant and thus the processing node
does not need to transmit the new generated matrix Mcyrrent
to the upper layer. Otherwise, the processing node should
report Mcyrent to the layer-2 processing node and replaces
Mreference by Mcurrent~

Note that a layer-: (¢ > 1) processing node will not conduct
the temporal compression scheme because it stores only the
matrix that has been transformed by the 2D-DCT method and
thus it is very difficult to calculate the difference between two
compressed matrices.

C. Storage Scheme

The aforementioned compression schemes will cause some
data imprecision when passing sensing reports through each
layer, so the data obtained from the sink would be a rough
overview of the environment. However, we can maintain the
historical data in processing nodes and sensor nodes, so users
can query multiple resolutions of sensing data from the nodes
in different layers. In this section, we propose a storage scheme
to help nodes to store historical data in their limited memories.
Let n; be the maximum number of frames that a node ¢
can store in its local memory, where a frame is the unit of
sensing data to be stored by node i. In particular, for a sensor
node, a frame is the generated sensing report. For a processing
node, a frame is the compressed matrix. Let us denote by f;
as the frame generated by a node at time ¢ € N. Our storage
scheme will maintain frames in an exponentially increasing
order from ¢. Specifically, for a node ¢, we will store frames
Jts fe—1, fi—3, fi—7, -+, and f;_on;-144. In this way, when
the sink queries a past frame f; (j € N,j < t) from node 1,
three cases will be considered:
1. If f; has been stored in node i’s local memory, node ¢
directly replies f; to the sink.

2.Ift—2"+1 < j <t—2-141, where | € N and
2 <1 < n; —1, node ¢ replies two frames f,_o-1,4 and
ft—ot41 to the sink.

3. If j <t—2"~1 41, node i replies a fail message to the
sink because f; is too old to be stored in node :.

When the queried node is a processing node, the sink will
adopt the inverse 2D-DCT method to decompress the received
matrices. Note that in the above case 2, the sink should adopt
a linear interpolation to calculate the queried frame f;, that
is,

(ficm141 — froop) X (G —t+2' = 1)
ol _9l—-1
There are two advantages in the above storage scheme. First,

a node can keep as old data as possible. Second, recent data
can be more precise compared with those very old data.

fi=fi—op +

I'V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We use the MICAz Motes [6] as sensor nodes and pro-
cessing nodes. A MICAz Mote is a 2.4 GHz, IEEE 802.15.4-
compliant module that can support a data rate of 250 Kbps. In
our current prototype, we deploy 16 Motes and implement an
one-layer architecture, as shown in Fig. 3. We set the system
parameters & = 4 and k = 2. In this way, there are four layer-
1 processing nodes, each being responsible for collecting and
compressing data from its neighboring three sensor nodes. We
apply the temporal compression scheme in the twelve sensor
nodes and apply both the spatial and temporal compression



schemes in the four processing nodes. We use this prototype
to collect indoor temperatures during 25 hours. The reporting
interval of each node is set to ten minutes. The compression
ratio ~y is set to 0.25 in the spatial compression scheme and the
update threshold ¢ is set to 0.2 °C in the temporal compression
scheme. For each sensor node, the packet size of sensing
report is set to 15bytes, which contains 11 bytes of header
and trailer and 4 bytes of payload. For each processing node,
it will compress the sensing data from itself and its three
corresponding sensor nodes. The size of packet reported from
a processing node is set to 19 bytes, which includes a payload
size of 8 bytes.

Oprocessing node — message flow -< blocks in layer-1

Fig. 3. A 16-mote prototype in our experiment.

Fig. 4(a) shows the total amount of messages transmitted
by the 16 Motes. As can be seen, the amount of message
transmissions can be significantly reduced when our MCS
framework is adopted. This is because the sensing reports
with high data correlations can be compressed by the proposed
spatial and temporal compression schemes. On the other hand,
from Fig. 4(b), we can observe that the most significant
characteristics of sensing reports can be preserved when the
MCS framework is adopted. The maximum error is limited
to 0.2°C because of the update threshold in the temporal
compression scheme.

V. CONCLUSIONS

In this paper, we have proposed the MCS framework to
provide multi-resolution data compression and storage in a
wireless sensor network. Our compression schemes can effec-
tively reduce message transmissions of sensor nodes so that the
network lifetime can be extended. Our storage scheme can help
sensor nodes to store as much data as possible in their small
memories. We have also implemented a prototyping system on
the MICAz platform. It is verified that our MCS framework
not only significantly reduces the message transmissions but
also preserves important characteristics of sensing reports.
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