
Design and Implement a Priority-Based Mobile Sensor
Dispatch Scheme for Surveillance Applications

You-Chiun Wang, Wen-Chieh Wang, and Yu-Chee Tseng
Department of Computer Science

National Chiao-Tung University, Hsin-Chu, 30010, Taiwan
Email: {wangyc, wangwc, yctseng}@cs.nctu.edu.tw

Abstract

Wireless sensor networks provide a convenient way to
monitor the physical environments. However, it is not al-
ways possible to have a wireless sensor network in the re-
gion of interest. In this case, how to obtain the environ-
mental situations is a big challenge. In this paper, we pro-
pose to use mobile sensors to capture the events occurred
in a region without any deployment of sensor networks.
The idea is to first request mobile sensors to fully scan the
environment to find out where events occur and then dis-
patch mobile sensors to event locations to conduct more ad-
vanced data collections. We propose a priority-based dis-
patch scheme for mobile sensors to visit events’ locations
based on priorities of these events. In particular, events
with higher priorities and shorter moving distances will be
visited first. In this way, mobile sensors can fast finish their
jobs and the most important events can be analyzed first
before they disappear. We have implemented a prototyping
system to demonstrate our dispatch idea. Simulation results
are also presented to verify the effectiveness of the proposed
schemes.

Keywords: dispatch, mobile sensors, sensor applications,
surveillance, traveling salesman problem.

1 Introduction

Recently, mobile sensors have attracted a lot of attentions
by researchers. By mounting sophisticated sensing devices
on mobile platforms [1–3], we can move these mobile sen-
sors to conduct sensing missions at certain locations. With
mobility, mobile sensors can significantly extend the capa-
bility of sensor networks.

In this paper, we consider how to quickly obtain the
events occurred in a region without any pre-deployment of
sensor networks. This issue is quite important for those
surveillance applications in some emergent environments

where it is difficult to deploy static sensors in advance. Un-
der such a scenario, one possible solution is to dispatch mo-
bile sensors to collect rough environmental information and
then carefully analyze events later. In particular, we first re-
quest mobile sensors to fully scan the environment to collect
basic information of events (e.g., locations and priorities).
Then, we can dispatch mobile sensors to visit these events
to conduct more advanced analysis. For example, one can
imagine a surveillance application to detect gas leakage in
an airtight factory without deployment of sensor networks.
We can dispatch mobile sensors to fully scan the factory to
collect the densities of gas in different locations and find out
potential sources of leakage. Then, mobile sensors can be
dispatched to these sources to obtain more detailed infor-
mation.

Given the priorities of event locations, it is a critical is-
sue to efficiently dispatch a mobile sensor to visit event lo-
cations such that the total moving time of the mobile sensor
is minimized and the event locations with higher priorities
can have a shorter waiting time, where the waiting time of
an event location is defined as the duration until the mobile
sensor reaches that location. Clearly, we should reduce the
total moving time of the mobile sensor so that events can be
quickly analyzed to satisfy the requirements of surveillance
applications. On the other hand, since events may disap-
pear in a short time, the mobile sensor should visit event
locations with higher priorities earlier.

In the literature, a large amount of researches on mobile
sensors have focused on using mobile sensors to deploy a
sensor network [4–7], to enhance the network coverage [8],
and to improve the network connectivity [9]. The work
in [10] discusses how to move more mobile sensors close
to event locations, but it focuses on maintaining complete
coverage of the sensing field. Several studies [11,12] imple-
ment the pursuer-evader game by a sensor network, where
a pursuer (i.e., a mobile sensor) needs to intercept an evader
(i.e., a moving object) by the assistance of a static sensor
network. However, these works focus on how to quickly tell
the pursuer where the evader is through the sensor network.



Some works [13, 14] consider dispatching mobile sensors
to visit events in a sensor network consisting of both static
and mobile sensors. In [13], static sensors that have de-
tected events will invite and navigate nearby mobile sensors
to move to their locations. The mobile sensor that has a
shorter moving distance and more energy, and whose leav-
ing will not cause a large coverage hole, will be invited by
the static sensors. The work in [14] addresses how to bal-
ance the energy consumption of mobile sensors when dis-
patching them to visit event locations, so that the lifetime
of mobile sensors can be extended. However, these works
assume that events have the same priority, so their results
may not be directly applied in our sensor dispatch problem.

In this paper, we propose a priority-based dispatch
scheme for mobile sensors to visit event locations. Given
an environment with obstacles, we first request mobile sen-
sors to fully scan the environment to obtain the locations
and priorities of events. Then, we dispatch mobile sensors
to visit and carefully analyze these events based on their
locations and priorities. In particular, the dispatch prob-
lem can be viewed as a variance of the traveling salesman
problem (TSP) that considers the priorities of visiting loca-
tions. Since TSP is NP-complete, we thus propose a heuris-
tic approach to efficiently calculate the dispatch schedule
of mobile sensors. We also develop a prototyping system
to demonstrate our dispatch idea. This prototype is used
to monitor the densities of carbon dioxide (CO2) in an in-
door environment. Specifically, we mount CO2 sensing de-
vices on a mobile platform and dispatch these mobile sen-
sors to monitor CO2 densities and to analyze potential CO2

sources. Simulations are also conducted to validate the effi-
ciency of our dispatch scheme in a large-scale scenario.

Major contributions of this paper are two-fold. First, our
proposed dispatch scenario allows people to monitor and
analyze important events occurred in a region with obsta-
cles, even though there is no infrastructure of sensor net-
works inside that region. By dispatching mobile sensors to
fully scan the region and visit event locations based on their
locations and priorities, we can quickly assess the whole
environment situation. This may be especially helpful for
rescuing applications in some hazardous regions. Second,
we implement a prototyping system to realize our dispatch
idea. This prototype system demonstrates a surveillance ap-
plication to monitor the CO2 densities in an indoor environ-
ment.

The rest of this paper is organized as follows: Section 2
formally defines the dispatch problem and reviews some re-
lated work. Section 3 proposes our priority-based dispatch
scheme. Section 4 gives our prototyping experiences. Sec-
tion 5 presents some simulation results. Section 6 concludes
this paper.

2 Preliminary

2.1 Problem Statement

We consider a sensing fieldA possibly with obstacles, as
shown in Fig. 1(a). We assume that these obstacles do not
partition A. Otherwise, full scanning wouldn’t be possible.
For convenience, we logically divide A into small squares
(called grids). In this way, obstacles can be modeled by
grids (marked by gray in Fig. 1(b)). Mobile sensors will pa-
trol inside A along these grids to conduct full scanning and
to visit event locations. Each mobile sensor has four unit
mobility patterns: east, west, north, and south, where the
mobile sensor will move toward the specified direction with
one-grid length. Moving from one grid to another will take
∆m time to finish. The other four diagonal directions can
be combined by any two unit mobility patterns. However,
it requires ∆t time for a mobile sensor to make a 90-degree
turn.

obstacles

mobile

sensor

grid

(a) (b)

Figure 1: An example to model the environment: (a) sens-
ing field A with obstacles and (b) logically dividing A into
grids.

We assume that after a mobile sensor fully scans
A, we can obtain a set of event locations L =
{(l1, p1), (l2, p2), · · · , (ln, pn)}, where li = (xi, yi) and
pi > 0 are the location and priority of an event i, respec-
tively. A smaller value of pi means a higher priority. Note
that two events may have the same priority. Our sensor dis-
patch problem is stated as follows: Given a mobile sensor
initially located at l0 = (x0, y0) and the set L, how can we
dispatch the mobile sensor to visit all locations in L such
that the total moving time of the mobile sensor is minimized
and event locations with higher priorities can have a shorter
waiting time?

Note that the above modeling does not consider the mov-
ing time to fully scan the sensing field A and the time to
detect events. Since it requires the mobile sensor to visit ev-
ery grid inside A to conduct the full scanning and the time
to analyze an event depends on the sensing capability of the



mobile sensor, we thus ignore these two times. In addition,
we aim at the dispatch problem of one mobile sensor. In
the case of multiple mobile sensors, we can partitionA into
multiple non-overlapped subregions and then dispatch one
mobile sensor to travel inside each subregion.

2.2 Related Work

Our dispatch problem can be viewed as a TSP variance
that considers the priorities of visiting locations. TSP is
one of the famous NP-complete problems and there have
been many approximation solutions proposed to solve it
and its variances [15]. Given an undirected weighted graph
G = (V, E), TSP asks how to find a Hamilton cycle C on
G such that the total edge weight of C can be minimized.
To solve TSP, Blaser [16] suggests that we can first find
the minimum spanning tree on G and then visit all vertices
in V by a preorder tree walk of the spanning tree. The
visiting sequence of vertices is the approximate solution
of TSP. Some works adopt more sophisticated methods to
solve TSP. For example, Zhu and Chen [17] solve TSP by
simulating ants’ behaviors. In particular, each time when
an ant passes through a path, it will leave pheromone along
that path. Such pheromone will attract other ants to walk
through this path. Thus, when a path is walked by more
ants, it will have a larger amount of pheromone. By adopt-
ing this concept, we can first try some paths to visit vertices
in the graph. When a good path is found, it will leave more
pheromone and thus attracts more ants to walk through it.
Finally, the path with the most pheromone will be the so-
lution. Other works use simulated annealing [18], genetic
algorithm [19], and tabu search method [20] to solve TSP.
Obviously, these methods can approximate a better solution,
but they may suffer from a higher computation cost.

On the other hand, several works consider the variances
of TSP. The work in [21] introduces the concept of time win-
dow to TSP, where each location is associated with a time
duration where we expect the salesman will visit that loca-
tion within the specified time duration. This can be applied
to some applications with timetables such as bus schedul-
ing or consignment of goods. The work [22] considers a
dynamic environment, where visiting locations may be dis-
appeared or changed as time goes by. This can be used in
some applications like realtime computing in satellite sys-
tems. Given a set of locations L, the work [23] considers
how to visit locations in L with a minimum cost, where a
subset L′ ⊆ L of locations may follow some probability
model. As can be seen, the solutions of these works could
not be directly applied in our dispatch problem.

3 A Priority-Based Dispatch Scheme

Given the sensing field A and a mobile sensor initially
located at l0, our priority-based dispatch scheme involves
the following steps:

1. Dispatch the mobile sensor to visit all grids in A to
collect locations and rough information of events L.
To conduct such a full scanning, we can adopt the so-
lution proposed in [24].

2. Calculate the shortest distance d(li, lj) between any
two locations li and lj , where li, lj ∈ L ∪ {l0}. Note
that the above calculation should consider the exis-
tence of obstacles. How to calculate d(li, lj) will be
discussed in Section 3.1.

3. Construct a weighted complete graph G = (V, E),
where V = L ∪ {l0}. For each vertex li ∈ L, we
associate it with a priority value pi. How to assign
the priority depends on the application requirement.
One possible assignment is based on events’ strengths
(e.g., gas’s densities). The weight wi,j of each edge
(li, lj) ∈ E is defined as the moving time for a mobile
sensor to move along the shortest distance d(li, lj).

4. Find a Hamilton cycle (l0, lv1 , lv2 , · · · , lvn , l0) on G to
minimize

w0,v1 +
n−1∑

i=1

wvi,vi+1 + wvn,0, (1)

such that

x−1∑

i=1

wvi,vi+1 ≤
y−1∑

i=1

wvi,vi+1 , ∀pvx ≤ pvy . (2)

Eq. (1) means that we should minimize the total mov-
ing time for the mobile sensor to visit all event loca-
tions, and Eq. (2) indicates that an event location lvx

with a higher priority should have a smaller waiting
time compared with another event location lvy with a
lower priority. Note that we eliminate the term w0,v1

from both the left and right parts of Eq. (2). How to
find such a Hamilton cycle will be discussed in Sec-
tion 3.2.

5. Dispatch the mobile sensor to visit event locations fol-
lowing the sequence of lv1 , lv2 , · · · , lvn and then come
back to l0. The mobile sensor will move along the
shortest path calculated in step 2 when visiting an
event location.

6. Go to step 1 to conduct the full scanning again after a
predefined period of time.



3.1 Calculating the Shortest Distance between
Two Locations

In this section, we discuss how to calculate the shortest
distance between any two locations, considering the exis-
tence of obstacles. Given the grid partition of the sensing
field and two locations lS and lD, the calculation of the
shortest distance between lS and lD involves the following
steps:

1. For each grid i that is not an obstacle, we associate it
with a grade gi. Initially gi = ∞ for all i.

2. We start from the grid with lD and set gD = 0. Then,
for each adjacent grid j (in the directions of north,
south, east, and west) of a grid i that has already been
assigned with a non-infinite grade, we set gj = gi + 1.
If such a grid j is an obstacle, we just ignore it.

3. Repeat step 2 until the grid with lS has been assigned
with a non-infinite grade.

4. We then start from the grid with lS . For the current
grid i, we always select the adjacent grid j that is not
an obstacle and gj = gi − 1 as the next grid to move.
If two or more such grids are found, we select the one
without changing the current moving direction. In the
case that all candidates for the next grid will change
the current moving direction, we randomly select one
grid to move.

5. Repeat step 4 until we arrive at the grid with lD.

Fig. 2 gives an example, where the sensing field is mod-
eled by a 5×5 grids. Two locations lS and lD are located at
grids (0, 0) and (1, 4), respectively. We start from the grid
(1, 4) and assign a grade to each grid, until to the grid (0, 0),
as shown by the numbers in Fig. 2(b). Then, we start from
grid (0, 0) and find the shortest path to grid (1, 4) following
the decreasing order of grades, as shown in Fig. 2(c). Note
that when we arrive at grid (0, 1), there are two grids (0, 2)
and (1, 1) that can be selected as candidates to move. Since
the current moving direction is east (from (0, 0) to (0, 1)),
we will select grid (0, 2) as the next grid because it does not
need to change the moving direction. The total moving time
for a mobile sensor to move along this shortest distance is
5∆m + 2∆t.

3.2 Finding a Suitable Hamilton Cycle

Recall that given a weighted complete graph G, our goal
is to find a Hamilton cycle starting from l0 such that both
Eqs. (1) and (2) can be satisfied. However, minimizing the
total moving time of the mobile sensor (that is, to satisfy
Eq. (1)) may not always guarantee that event locations with

5

4

4

3

4

3

2

3

2

1

2

3

4

0

1

2

3

(b) grade assignment (c) the shortest distance

0 1 2 3 4 0 1 2 3 4

0

1

2

3

4

0

1

2

3

4

5

4

4

3

4

3

2

3

2

1

2

3

4

0

1

2

3

¥

¥ ¥

¥

¥

¥ ¥

¥

lS

lD

(a) grid partition

0 1 2 3 4

0

1

2

3

4

Figure 2: An example to calculate the shortest distance be-
tween two locations lS and lD.

a higher priority can have a smaller waiting time (that is, to
satisfy Eq. (2)), and vice versa. Therefore, we use a cost C
to take care of the effects of both Eqs. (1) and (2):

C =f(v1) · w0,v1 + f(v2) · wv1,v2 + · · ·
+ f(vn−1) · wvn−2,vn−1 + wvn−1,vn + wvn,0, (3)

where f(·) ≥ 1. In particular, we should find a Hamilton
cycle with a minimum cost C. Here, the cost should take
both the total moving time of the mobile sensor and the pri-
orities of event locations into consideration. Thus, we use
a penalty function f(·) to reflect the effect of priority. Intu-
itively, f(vi) should return a larger value if an event location
lvi with a lower priority is selected. By f(·), those event lo-
cations with higher priorities could be selected first. How-
ever, to avoid the case that some nearer event locations are
not selected due to their lower priorities, which may cause
the mobile sensor to move in a too long distance, the return-
ing value of f(·) cannot be too large. Therefore, we suggest
setting the penalty function f(·) as follows:

f(vi) = 1 +
pvi − pmin

pmax − pmin
, (4)

where pmin = min
∀lj∈L−LV

{pj} and pmax = max
∀lj∈L−LV

{pj},

whereLV is the set of event locations that have already been
visited. In Eq. (4), we can observe that when an event lo-
cations lvi with a larger value of pvi (i.e., lower priority)
is selected, the value of f(vi) will be increased and thus
the cost C is also increased. On the other hand, because



1 ≤ f(·) ≤ 2, the effect of penalty function will not be too
violent. In this way, a nearer event location with a lower pri-
ority could be selected to minimize the total moving time.
Note that in Eq. (3), the term wvn−1,vn

is not multiplied by
the factor f(vn) because lvn is the only candidate to be se-
lected as the next visiting location.

It can be observed that finding a Hamilton cycle with a
minimum cost C is NP-hard because we can reduce TSP to
this problem by setting all f(·) = 1 in Eq. (3). Thus, we
propose a heuristic solution by adopting a simple greedy
idea. Specifically, we start finding the Hamilton cycle from
the vertex l0. Given the current location li, we select an
unvisited vertex lj as the next visiting location such that the
value of f(j) · wi,j can be minimized. We repeat the above
operation until all event locations are visited. With such
a greedy selection, we can obtain a Hamilton cycle with a
smaller cost.

Fig. 3 gives an example to show how to find the Hamil-
ton cycle with the minimum cost. By adopting the TSP so-
lution, we will obtain a Hamilton cycle 0 → 7 → 9 → 2 →
5 → 0, which has a total edge weight of 8+11+9+9+9 =
46. However, it will have a cost of

(1 +
7− 2
9− 2

)× 8 + (1 +
9− 2
9− 2

)× 11 + (1 +
2− 2
5− 2

)× 9

+ 9 + 9 = 62.71.

On the other hand, our greedy approach will obtain a Hamil-
ton cycle of 0 → 2 → 5 → 7 → 9 → 0, which has a total
edge weight of 9 + 9 + 8 + 11 + 12 = 49. This greedy
approach will result in a cost of

(1 +
2− 2
9− 2

)× 9 + (1 +
5− 5
9− 5

)× 9 + (1 +
7− 7
9− 7

)× 8

+ 11 + 12 = 49.

As can be seen, although our greedy approach will find a
Hamilton cycle with a total edge weight larger than that of
the TSP solution, it can result in a quite smaller cost. In this
way, event locations with higher priorities can be visited
first.

0

5 7

2 9

9

9

9

11

8

9
8

12

7 14

Figure 3: An example to show how to find the Hamilton
cycle with the minimum cost.

3.3 Time Complexity Analysis

Next, we analyze the time complexity of our priority-
based dispatch scheme. Let n be the number of event lo-
cations, and k be the number of grids in the sensing field,
excluding those grids used to model obstacles. In step 1,
conducting a full scanning takes O(k) time because the mo-
bile sensor has to travel all grids. In steps 2 and 3, we need
to calculate the shortest distance between any two locations.
This operation takes O(k) time to assign grade to each grid
and requires at most O(k) time to calculate the shortest path
since the worst case is to pass through all grids. The above
operation will be repeated

(
n+1

2

)
times. So, it takes totally(

n+1
2

) · O(k) = O(n2 · k) to conduct steps 2 and 3. Step
4 takes O(n) time due to the greedy selection, and step 5
requires at most O(k) time for the mobile sensor to visit
all event locations (because the worst case is to travel all
grids). Therefore, the total time complexity of our priority-
based dispatch scheme is

O(k) + O(n2 · k) + O(n) + O(k) = O(n2 · k).

4 Prototyping Experiences

We have implemented a prototyping system to monitor
CO2 densities in an indoor environment. This system con-
sists of a control server and a mobile sensor. The mobile
sensor will fully scan the environment to collect CO2 den-
sities inside the room. Then, the control server will iden-
tify some locations with higher CO2 densities (that is, po-
tential CO2 sources) and request the mobile sensor to visit
these locations, according to our priority-based dispatching
scheme. Below, we give our prototyping experiences, in-
cluding the implementation details and the user interface at
the control server.

4.1 Implementation Details

Fig. 4 shows our mobile sensor, which consists of the
following components:

• Stargate processing board: The Stargate [25] is the
processing platform of the mobile sensor. It is com-
posed of a 32-bits, 400-MHz Intel PXA-255 XScale
RISC processor with 64 MB main memory and 32 MB
extended flash memory. It also has a daughter board
with an RS-232 serial port, a PCMCIA slot, a USB
port, and a 51-pin extension connector. It drives the
CO2 sensor through a COM port, and an IEEE 802.11
WLAN card through its PCMCIA slot. The Stargate
controls the LEGO car via a USB port connected to a
LEGO infrared (IR) tower, as shown in Fig. 4.



• LEGO car: The LEGO car [26] supports the mobil-
ity of mobile sensor. It has an infrared ray receiver in
the front to receive commands from the tower (which
are passed from the Stargate processing board) and two
motors on the bottom to drive wheels. It also has sev-
eral light sensors for the navigation purpose, which
will be described later.

• CO2 sensor: The CO2 sensor is used to collect
the CO2 densities inside the room. Here, we adopt
TGS 4161 [27] as our CO2 sensor. TGS 4161 is a solid
electrolyte CO2 sensor that provides miniaturization
and low power consumption. It can detect a range of
350 to 5000 ppm of CO2 density.

• IEEE 802.11 WLAN card: The control server will
pass commands (e.g., full scanning or dispatching) to
the mobile sensor via the IEEE 802.11 WLAN card.
When collecting CO2 readings from the CO2 sensor,
the mobile sensor can also report the data to the control
server through the WLAN card.

Note that some more sophisticated sensing devices can be
attached to the mobile sensor to increase its sensing capa-
bility. For example, we can attach a webcam on the mobile
sensor so that it can take snapshot at the event locations to
provide image information. The size of the mobile sensor is
approximately 20 cm× 15 cm.

IR tower

LEGO car light sensor

WLAN card

USB hub

Stargate
CO2 sensor

Figure 4: The mobile sensor.

Fig. 5 gives the operating flowchart of the mobile sensor.
Once powering on, the Stargate processing board will con-
figure all corresponding hardwares, including the drivers of
the IEEE 802.11 WLAN card, USB ports, and the COM
port. Then, it will communicate with the control server to
obtain a dynamic IP (this can be done by setting a DHCP
server at the control server) and set up all necessary network
configurations. After establishing the communication link
with the control server, the Stargate processing board will

notify the CO2 sensor to start collecting data and then wait
commands from the control server (via the WLAN card).
When receiving a dispatching command from the control
server, the mobile sensor will move to the specified loca-
tions and report the CO2 densities of these locations to the
control server.

hardware
initialization

network setting

run program

power on

receive commands and
move to target locations

report sensing data
to the control server

Figure 5: The operating flowchart of the mobile sensor.

In our prototyping, an experimental 9× 5 grid-like sens-
ing field is implemented, as shown in Fig. 6. Black tapes
represent roads and golden tapes represent intersections.
One mobile sensor is placed on the sensing field. We use
some boxes to model obstacles. Red crosses on the sensing
field indicate the event locations, where we can put some
small piece of dry ice to simulate CO2 sources.

Figure 6: A 9× 5 grid-like sensing field in our experiment.

4.2 User Interface at the Control Server

We have also designed a user interface at the control
server for users to monitor the statuses of the sensing field
and to control the actions of the mobile sensor, as shown
in Fig. 7. It has four areas: information, monitor, status,



and control areas. The information area shows the current
status of the mobile sensor, including the readings of the
CO2 density, the location and direction of the mobile sen-
sor, and so forth. The monitoring area illustrates the state
of the sensing field, where the blue rectangle represents the
mobile sensor, the small yellow rectangles indicate event
locations, and the grids marked with oblique lines are ob-
stacles. The status area gives the server’s status, including
the contents of packets exchanged with the mobile sensor.
Finally, the control area provides an interface for users to
control the motion of the mobile sensors. Users can issue
a high-level command such as taking full scanning of the
sensing field, or a low-level command such as moving one-
grid length or making a 90-degree turning.

Figure 7: User interface at the control server.

At the control server, we also set up a DHCP server
to assign dynamic IPs to mobile sensors. Here, we use
DHCPD32 [28] (version 1.10) as our DHCP server, as
shown in Fig. 8. In addition, we also provide an interface for
users to edit the map, as shown in Fig. 9. Users can specify
the size of the map, where the minimum and maximum map
sizes are 2× 2 and 100× 100 grids, respectively. Obstacles
can be specified by clicking corresponding grids. With this
map editor, users can easily model the sensing field.

Fig. 10 shows some snapshots of the user interface when
executing our priority-based dispatch scheme. Fig. 10 (a)
illustrates the shortest path between two locations. Fig. 10
(b) gives the final cost matrix (with six locations), where the
number in each grid indicates the length of the shortest path
between two locations. Fig. 10 (c) shows the basic motion
operations of mobile sensor. For example, it takes four steps
for the mobile sensor to move to the event location with
priority 1. The mobile sensor should move to east with one
grid-length, move to south with three grid-lengths, move to
east with three grid-lengths, and finally move to north with
three grid-lengths. Fig. 10 (d) shows the final result of the

Figure 8: The DHCP server.

Figure 9: The map editor.

patrolling path of the mobile sensor.

5 Simulation Results

We also develop a simulator to evaluate the performance
of the proposed dispatch scheme. We set up a sensing field
as a 100 × 100 grids, on which there may be several ob-
stacles. We randomly pick up 50, 100, 150, 200, 250, and
300 grids (excluding those grids representing obstacles) as
event locations. The values of ∆m and ∆t are set to 1
and 2, respectively. We mainly compare our priority-based
dispatch scheme against the TSP approximate solution pro-
posed in [16].

Fig. 11 shows the comparison of the total moving time of
the mobile sensor under our priority-based dispatch scheme
and the TSP approximate solution. We can observe that the
TSP solution has a larger total moving time, because it is
only an approximate solution. Our priority-based dispatch
scheme adopts a greedy approach, so it can have a smaller
total moving time.

Fig. 12 shows the comparison of the costs in Eq. (3) of



(a) calculation of one path

(b) the cost matrix

(c) the basic motion operations of the mobile sensor

(d) the patrolling path of the mobile sensor

Figure 10: Snapshots of the user interface when executing
the priority-based dispatch scheme.

the Hamilton cycles found by our dispatch scheme and the
TSP solution. As can be seen, our priority-based dispatch
scheme can find a Hamilton cycle with a cost smaller than
that of the TSP solution. This indicates that event locations
with higher priorities could be visited first.

Fig. 13 shows the waiting time of event locations by
adopting our priority-based dispatch scheme. In this exper-
iment, we randomly select 100 locations as event locations.
In Fig. 13, we can observe that event locations with higher
priorities can have a shorter waiting time, which satisfy our
goal.

900

1100

1300

1500

1700

1900

2100

2300

50 100 150 200 250 300

number of event locations

to
ta

l
m

o
v
in

g
ti
m

e

priority-based scheme

TSP solution

Figure 11: Comparison on the total moving time of the mo-
bile sensor.

1000

1500

2000

2500

3000

3500

4000

50 100 150 200 250 300

number of event locations

c
o

s
t

priority-based scheme

TSP solution

Figure 12: Comparison on the costs of the Hamilton cycles.

6 Conclusions

In this paper, we have proposed a scenario to use mo-
bile sensors to detect events in a region without any deploy-
ment of wireless sensor networks. Mobile sensors will be
first requested to conduct full scanning of the region to col-
lect rough information of the environment and to identify



0

200

400

600

800

1000

1200

0 20 40 60 80 100

priority

w
a

it
in

g
ti
m

e

(a) waiting time of each event location

0

200

400

600

800

1000

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

priority

a
v
e

ra
g

e
w

a
it
in

g
ti
m

e

(b) average waiting time of each 10 event locations

Figure 13: Waiting time of event locations.

potential event locations. Then, mobile sensors will be dis-
patched to visit these event locations according to their pri-
orities. We have proposed a priority-based dispatch scheme
for mobile sensors to visit event locations. In particular,
our dispatch scheme can reduce the total time for the mo-
bile sensor to visit all event locations, while event locations
with higher priorities can be visited earlier. In this way,
event locations with higher priorities can have a smaller
waiting time. Simulation results have shown that our pro-
posed dispatch scheme outperforms the approximated solu-
tion of TSP, on both the total moving time of the mobile
sensor and the average waiting time of event locations with
higher priorities. In this paper, we have also implemented
a prototyping system to realize our dispatch idea. Such a
prototyping system can be used to monitor CO2 densities in
an indoor environment. The prototyping experience is also
reported in this paper.

Acknowledgment

Y.-C. Tseng’s research is co-sponsored by Taiwan
MoE ATU plan, by NSC grants 93-2752-E-007-001-
PAE, 96-2623-7-009-002-ET, 95-2221-E-009-058-MY3,
95-2221-E-009-060-MY3, 95-2219-E-009-007, 95-2218-
E-009-209, and 94-2219-E-007-009, by Realtek Semicon-
ductor Corp., by MOEA under grant number 94-EC-17-A-
04-S1-044, by ITRI, Taiwan, by Microsoft Corp., and by
Intel Corp.

References

[1] T. A. Dahlberg, A. Nasipuri, and C. Taylor, “Ex-
plorebots: a mobile network experimentation testbed,”
in ACM SIGCOMM Workshop on Experimental Ap-
proaches to Wireless Network Design and Analysis,
2005, pp. 76–81.

[2] D. Johnson, T. Stack, R. Fish, D. M. Flickinger,
L. Stoller, R. Ricci, and J. Lepreau, “Mobile Emu-
lab: a robotic wireless and sensor network testbed,”
in IEEE INFOCOM, 2006.

[3] Y. C. Tseng, Y. C. Wang, K. Y. Cheng, and Y. Y. Hsieh,
“iMouse: an integrated mobile surveillance and wire-
less sensor system,” IEEE Computer, vol. 40, no. 6,
pp. 60–66, 2007.

[4] Y. Zou and K. Chakrabarty, “Sensor deployment and
target localization based on virtual forces,” in IEEE
INFOCOM, 2003, pp. 1293–1303.

[5] G. Wang, G. Cao, and T. L. Porta, “Movement-
assisted sensor deployment,” in IEEE INFOCOM,
2004, pp. 2469–2479.

[6] N. Heo and P. K. Varshney, “Energy-efficient deploy-
ment of intelligent mobile sensor networks,” IEEE
Transactions on Systems, Man and Cybernetics - Part
A: Systems and Humans, vol. 35, no. 1, pp. 78–92,
2005.

[7] Y. C. Wang, C. C. Hu, and Y. C. Tseng, “Efficient
placement and dispatch of sensors in a wireless sensor
network,” IEEE Transactions on Mobile Computing,
vol. 7, no. 2, pp. 262–274, 2008.

[8] G. Wang, G. Cao, T. L. Porta, and W. Zhang, “Sensor
relocation in mobile sensor networks,” in IEEE INFO-
COM, 2005, pp. 2302–2312.

[9] P. Basu and J. Redi, “Movement control algorithms
for realization of fault-tolerant ad hoc robot networks,”
IEEE Network, vol. 18, no. 4, pp. 36–44, 2004.



[10] Z. Butler and D. Rus, “Event-based motion control for
mobile-sensor networks,” IEEE Pervasive Computing,
vol. 2, no. 4, pp. 34–42, 2003.

[11] M. Demirbas, A. Arora, and M. Gouda, “A pursuer-
evader game for sensor networks,” in Sixth Symposium
on Self-Stabilizing Systems, 2003, pp. 1–16.

[12] C. Sharp, S. Schaffert, A. Woo, N. Sastry, C. Karlof,
S. Sastry, and D. Culler, “Design and implementation
of a sensor network system for vehicle tracking and
autonomous interception,” in IEEE European Work-
shop on Wireless Sensor Networks, 2005, pp. 93–107.

[13] A. Verma, H. Sawant, and J. Tan, “Selection and nav-
igation of mobile sensor nodes using a sensor net-
work,” in IEEE International Conference on Pervasive
Computing and Communications, 2005, pp. 41–50.

[14] Y. C. Wang, W. C. Peng, M. H. Chang, and Y. C.
Tseng, “Exploring load-balance to dispatch mobile
sensors in wireless sensor networks,” in IEEE Interna-
tional Conference on Computer Communications and
Networks, 2007, pp. 669–674.

[15] M. Bellmore and G. L. Nemhauser, “The traveling
salesman problem: A survey,” Operations Research,
vol. 17, no. 3, pp. 538–557, 1968.

[16] M. Blaser, “A new approximation algorithm for the
asymmetric TSP with triangle inequality,” in ACM-
SIAM Symposium on Discrete Algorithms, 2003, pp.
638–645.

[17] Q. B. Zhu and S. Y. Chen, “A new ant evolution al-
gorithm to resolve tsp problem,” in International Con-
ference on Machine Learning and Applications, 2007,
pp. 62–66.

[18] C. S. Jeong and M. Kim, “Fast parallel simulated an-
nealing for traveling salesman problem,” Neural Net-
work, vol. 3, pp. 947–953, 1990.

[19] A. Mohebifar, “New binary representation in ge-
netic algorithms for solving tsp by mapping permuta-
tions to a list of ordered numbers,” in WSEAS Inter-
national Conference on Computational Intelligence,
Man-Machine Systems and Cybernetics, 2006, pp.
363–367.

[20] N. Yang, P. Li, and B. Mei, “An angle-based crossover
tabu search for the traveling salesman problem,” in
International Conference on Natural Computation,
2007, pp. 512–516.

[21] E. Baker, “An extra algorithm for time constrained
traveling salesman problem,” Operations Research,
vol. 31, pp. 938–945, 1983.

[22] X. S. Yan, A. M. Zhou, L. S. Kang, and Y. P.
Chen, “Tsp problem based on dynamic environment,”
in Intelligent Control and Automation Fifth World
Congress, 2004, pp. 2271–2274.

[23] A. M. Campbell, “Aggregation for the probabilistic
traveling salesman problem,” Computers & Opera-
tions Research, vol. 33, no. 9, pp. 2703–2724, 2006.

[24] C. Y. Chang, H. R. Chang, C. C. Hsieh, and C. T.
Chang, “OFRD: obstacle-free robot deployment algo-
rithms for wireless sensor networks,” in IEEE Wireless
Communications and Networking Conference, 2007,
pp. 4371–4376.

[25] Crossbow, “SPB400 - Stargate Gateway,”
http://www.xbow.com.

[26] MINDSTORM, “Robotics Invention System,”
http://mindstorms.lego.com/eng/default.asp.

[27] TGS 4161, “The detection of Carbon Dioxide,”
http://www.tashika.co.jp.

[28] TFTPD32, “A free TFTP and DHCP server for win-
dows,” http://tftpd32.jounin.net.


