
Exploring Load-Balance to Dispatch Mobile
Sensors in Wireless Sensor Networks

You-Chiun Wang, Wen-Chih Peng, Min-Hsien Chang, and Yu-Chee Tseng
Department of Computer Science, National Chiao Tung University, Hsinchu, 30010, Taiwan

Email:{wangyc, wcpeng, changms, yctseng}@cs.nctu.edu.tw

Abstract— In this paper, a hybrid sensor network consisting
of static and mobile sensors is considered, where static sensors
are used to detect events, and mobile sensors can move to event
locations to conduct more advanced analysis. By exploring the
load balance concept, we propose a CentralSD algorithm to
efficiently dispatch mobile sensors. Our algorithm is general in
that the numbers of mobile sensors and events can be arbitrary.
When mobile sensors are more than event locations, we transform
the dispatch problem to a maximum-matching problem in a
weighted bipartite graph. When there are fewer mobile sensors
than event locations, we propose an efficient clustering scheme to
group event locations so that the maximum-matching approach
can still be applied. To reduce message cost, we also develop a
distributed GridSD algorithm. Simulation results are presented
to verify the effectiveness of the proposed algorithms.

Keywords—Mobile sensor dispatching, sensor data manage-
ment, wireless sensor network.

I. INTRODUCTION

Recent advances in micro-sensing MEMS and wireless com-
munication technologies have promoted the development of
wireless sensor networks (WSNs). A WSN has many attractive
characteristics including context-aware capability and fast ad-
hoc networking configuration, so that it can be widely used
in various applications such as surveillance and environment
monitoring. However, sensor nodes are usually simple and
may provide rough descriptions of events. For example, in
a military application, pressure sensors may be deployed to
check if any enemy passes. However, these sensors can only
report something passing but cannot describe what passes
through them. In this case, we may prefer using more powerful
sensors like cameras to recognize the passing object. However,
it is too expensive to mount a camera on each node due to the
large number of sensors deployed. Alternatively, a better way
is to utilize mobile sensors equipped with powerful sensing
capabilities and dispatch these mobile sensors to visit event
locations [1], [2].

In this paper, a hybrid WSN consisting of static and mobile
sensors is considered, where static sensors are deployed to
detect events and mobile sensors equipped with more resources
such as sensing capability and computation power are dis-
patched to event locations to conduct more advanced analysis.
Since mobile sensors are operated by small batteries, one
important issue is to conserve their energies. In general, for a
mobile sensor, the moving energy cost is larger than that of
sensing and computing operations. Thus, we investigate how
to efficiently dispatch mobile sensors to visit event locations

with the purpose of maximizing the system lifetime, which is
defined as the time period until some event locations cannot
be reached by any mobile sensor.

Given a set of event locations round by round, one intuitive
solution is to minimize the total moving energy of mobile
sensors in each round. However, such an iteratively-optimized
method may lead some mobile sensors early to exhaust their
energies, thereby shortening the system lifetime. Consider an
example in Fig. 1, where two mobile sensors s1 and s2 are at
locations a and b, respectively. Both s1 and s2 have an initial
energy of 400 units. We consider only the energy consumption
of movements in mobile sensors. Assume that two events
occur at locations c and d (respectively, a and b) in each
odd (respectively, even) round. Fig. 1(b) shows the execution
of the above iteratively-optimized method. To minimize the
total moving energy, s1 and s2 are assigned to move between
the pair of locations (a, c) and (b, d), respectively, resulting
in a minimum cost of 95 units in each round. After seven
rounds, s2 almost runs out of its energy and stays at location
d. In the eighth round, no mobile sensor has enough energy to
reach the event location b so that the system lifetime is seven
rounds. Actually, to dispatch mobile sensors more efficiently,
we should not only reduce the total moving energy but also
balance the loads of mobile sensors. Fig. 1(c) shows that by
exploring load balance concept, s1 and s2 are assigned to move
between the pair of locations (a, d) and (b, c), respectively.
Although spending more energy (i.e., 100 units) in each round,
balancing loads of mobile sensors in dispatching can extend
the lifetime to eight rounds. It can be seen in Fig. 1 that
simply optimizing the solution in each one-round dispatch
could shorten the system lifetime because the early-exhausted
mobile sensors will burden other still alive ones, which in turn
drastically drains energy of alive mobile sensors.

Consequently, by exploring the load balance concept, we
propose an algorithm CentralSD (Centralized Sensor Dis-
patching) to dispatch mobile sensors to maximize the system
lifetime. Assume that a server is to collect the locations
of mobile sensors and events. In CentralSD, we schedule
mobile sensors to visit event locations to reduce the total
moving distance. In addition, we balance the moving distance
of each mobile sensor so that they can have similar energy
costs to visit event locations and thus the system lifetime
can be extended. Furthermore, in CentralSD, the numbers of
mobile sensors and event locations are arbitrary and thus two
cases are considered. Explicitly, when the number of event

cost

a

b

c

d

a

0

85

40

50

b

85

0

50

55

c

40

50

0

85

d

50

55

85

0

a

b

c

d

s1

a

b

c

d

40

55

(a) the shortest paths and energy costs to reach event locations

a

b

c

d

12040

85 (fail)

s2

s1

s2

s1

s2

(b) minimizing the total moving energy in each round

a

b

c

d
50

50

a

b

c

d

after 8 rounds

(c) balancing the loads of s1 and s2 in each round

400

400

400

400

after 7 rounds

15

s1

s2

400

400

s1

s2

0

0

Fig. 1. Comparison of different dispatch methods.

locations is no larger than that of mobile sensors, we transform
the dispatch problem to a maximum-matching problem in
a weighted bipartite graph, where the vertex set contains
mobile sensors and event locations, and the edge set contains
the edges from each mobile sensor to each event location.
However, instead of finding the matching with a minimum
edge weight [3], we use a preference list and a bound to select
the matching. Specifically, the load-balance can be achieved
in that the preference list helps assign an event location with
a suitable mobile sensor, while the bound is to avoid selecting
edges with extreme weights. When event locations are more
than mobile sensors, we propose an efficient clustering scheme
to group locations into clusters, where the number of clusters
is the same as that of mobile sensors. In this way, we can adopt
the above matching approach to dispatch each mobile sensor
to a cluster of event locations. Then, mobile sensors can use
the traveling-salesman approximation algorithm [3] to reach
all event locations within clusters. Nevertheless, CentralSD
requires a server to collect information of mobile sensors
and events, which incurs a considerable amount of message
transmissions. To solve this problem, we develop an algorithm
GridSD (Grid-based architecture for Sensor Dispatching) to
dispatch mobile sensors in a distributed manner. In GridSD,
a grid structure is maintained and the loads of collecting
information and message exchanging are distributed into grids,
thereby reducing both message transmissions and computation
complexity.

A large amount of research [4]–[6] has elaborated on the
issue of using mobile sensors to enhance the sensing coverage
of a WSN. The authors in [7] consider how to move more
sensors close to the locations of events predicted, while
maintaining complete coverage of the sensing field. Assuming
that the object’s trajectory can be predicted and discusses how
to maneuver mobile sensors to acquire data from the object
in real-time, the authors in [8] use mobile sensors to track
a moving object. In [9], static sensors detecting events will
navigate nearby mobile sensors to move to their locations. The
mobile sensor with shorter moving distance and more energy

will be invited by the static sensors. In [10], static sensors
estimate the coverage holes close to them and use the hole
size to compete for mobile sensors. The mobile sensor will
select the largest one and move to fill the hole. Prior works
mainly utilize mobile sensors for coverage holes and object
tracking, but not to the general dispatch problem formulated
in this paper, let alone exploring load-balancing in dispatching
mobile sensors and developing two algorithms to deal with the
general dispatch problem. These features distinguish this paper
from others.

II. THE SENSOR DISPATCH PROBLEM

In this paper, a hybrid WSN consisting of static and mobile
sensors is considered. Static sensors form a connected network
and fully cover the area of interest to continuously monitor
the environment. When events are detected, there is a set of n
mobile sensors S = {s1, s2, . . . , sn} to be dispatched to the
event locations (as reported by static sensors) to provide higher
quality of sensing results. By existing localization techniques
[11], sensors are aware of their locations.

The problem of dispatching mobile sensors is modeled as
follows. We consider that there is a set of event locations
L = {l1, l2, . . . , lm}, each to be visited by a mobile sensor.
We allow an arbitrary relationship of m and n. The goal
is to determine a dispatch schedule Φi for each mobile
sensor si such that each location in L is visited exactly
once by one mobile sensor. Each schedule Φi is denoted by
a sequence of event locations, and the jth location to be
visited is written as Φi[j]. Let ei be si’s energy and c(Φi)
be the energy required to complete si’s schedule, c(Φi) =
∆move × (d(si, Φi[1]) +

∑|Φi|−1
j=1 d(Φi[j], Φi[j + 1])), where

∆move is the energy required to move a sensor one-unit
distance, d(si,Φi[1]) is the distance from si’s current position
to Φi[1], and d(Φi[j],Φi[j +1]) is the distance between Φi[j]
and Φi[j + 1]. Clearly, a schedule of a mobile sensor should
satisfy ei ≥ c(Φi).

For performance reason, the objective function of the dis-
patch problem is to minimize the total energy cost incurred
by movements, i.e., min

∑
si∈S c(Φi). To balance the energy

consumption of mobile sensors, we should also attempt to
reduce the standard deviations of energy consumption among
mobile sensors.

Note that the above modeling is only concerned about one
round of sensors’ dispatch schedules. In general, multiple
rounds of dispatch schedules need to be determined, where
each round contains those events being detected over a fixed
amount of time, and the goal is to extend mobile sensors’
lifetimes to the maximum number of rounds. The length of
a round depends on users’ real-time constraint. Since event
locations are unexpected, we only focus on the optimization
of one round in this paper.

III. MOBILE SENSOR DISPATCHING ALGORITHMS

We first propose a centralized solution, where there is a
central server that collects the sets L and S and computes
sensors’ schedules. Then, a distributed solution is developed.

Without loss of generality, we remove those mobile sensors in
S that do not have enough energy to reach any location in L.

A. CentralSD: A Centralized Dispatch Algorithm

When |S| ≥ |L|, we transform the dispatch problem to
a maximum-matching problem in a weighted bipartite graph.
When |S| < |L|, we partition L into |S| clusters so that each
mobile sensor only needs to visit one cluster of event locations.
Then a maximum-matching approach can be applied again.

1) Case of |S| ≥ |L|: We first construct a weighted
bipartite graph G = (S ∪ L, S × L) such that the vertex
set contains all mobile sensors and all event locations, and
the edge set contains the edge (si, lj) from each si ∈ S to
each lj ∈ L. The weight of (si, lj) is defined as w(si, lj) =
c(si, lj), where the energy cost c(si, lj) = ∆move × d(si, lj)
to move si to each location lj ∈ L. With G, our goal is to
find a matching P such that (1) the number of edges in P is
the largest, (2) the total edge weight of P is minimized, and
(3) the standard deviation of edge weights in P is minimized.

To find P , we associate a preference list Plist(si) to each
si, which ranks each location lj ∈ L by its weight w(si, lj) in
an increasing order. When edge weights are equal, events’ IDs
are used to break the tie. Similarly, for each lj , we associate
it with a preference list Plist(lj), which ranks each si ∈ S
by its weight w(si, lj) in an increasing order.

To reduce the standard deviation of edge weights in P , we
use a bound Blj for each lj ∈ L to restrict the candidate
mobile sensors that lj can match. Specifically, lj can consider
a mobile sensor si only if w(si, lj) ≤ Blj . The initial value
of each Blj is set as 1

m

∑m
j=1 min∀(si,lj){w(si, lj)}. For each

lj ∈ L, we find a sensor si in Plist(lj) such that w(si, lj) is
minimized and w(si, lj) ≤ Blj to match with. If no any si is
available, we continue extending Blj with an increasing level
∆B until one sensor is discovered for lj . Note that the value
of ∆B should be carefully designed so that the weight of each
pair will not increase sharply while the number of operations
to extend the bound can be reduced. In particular, for each
event, we should derive the distance interval of the farthest
and the nearest mobile sensors. Those mobile sensors staying
in the distance interval should be taken into consideration
for dispatching. Furthermore, when more mobile sensors are
available, an event can easily find a mobile sensor in its
neighborhood. Otherwise, one should use a larger level to
increase the possibility of finding available mobile sensors.
Therefore, the increasing level ∆B is formulated as

δ

mn
× (

m∑

j=1

max
∀(si,lj)

{w(si, lj)} −
m∑

j=1

min
∀(si,lj)

{w(si, lj)}),

where δ is an adjustable coefficient.
As an unmatched location lj expands its bound Blj , more

candidates are included in its Plist(lj). If the first unvisited
candidate si in Plist(lj) is also unmatched, the pair (si, lj)
is added into P . Otherwise, si must be matched with another
location lo. With the bounds Blj and Blo , we can determine
to which location si should be dispatched. This is referred to

as a competition between lj and lo. In particular, si should be
matched to lj if one of the following cases is satisfied:

• Blj > Blo . Since enlarging the bound will increase the
risk of including an edge with an extreme weight into P ,
we will prefer matching si with lj to avoid expanding
the larger bound Blj .

• Blj = Blo and lj is prior to lo in Plist(si). As si prefers
lj , we match si with lj to reduce the total weight of P .

• Blj = Blo and si is the last candidate in Plist(lj) but
not in Plist(lo). Since lj cannot have another candidate
to pick in Plist(lj), si should be matched with lj .

Once si is matched with lj , the pair (si, lo) should be replaced
by the new pair (si, lj) in P , and lo should search for another
mobile sensor to match with. It is possible that lo competes
with other locations for mobile sensors.

Consider an illustrative example in Fig. 2, where δ is set to
2. The initial bound is 101+77+92

3 = 90 and the increasing level
∆B = 2×((213+234+229)−(101+77+92))

3×4 = 67.7. We start with
the event location l1. Since there is no available mobile sensor
in Plist(l1) with the initial bound, Bl1 is expanded by ∆B .
Accordingly, Bl1 is updated to 90+67.7=157.7. As a result, we
have three candidates s1, s2, and s3. Since l1 finds that the
first unvisited candidate s1 is unmatched, we add (s1, l1) to the
matching P . Following the same operation, the pair (s3, l2) is
determined shown in Fig. 2(b). However, after expanding Bl3 ,
l3 finds that the first candidate s1 has been matched with l1.
Thus, l3 competes with l1 for s1. It can be verified that case
2 is satisfied (i.e., Bl3 = Bl1 = 157.7 and l3 is prior to l1
in Plist(s1)). Consequently, (s1, l1) is replaced by (s1, l3) in
Fig. 2(c). Following the same procedure, l1 obtains s3 from
l2 and then l2 has to find an unmatched mobile sensor s4 to
pair with. Fig. 2(e) shows the final result.

Plist(l1) = {s1, s3, s2, s4}

Plist(l2) = {s3, s4, s1, s2}

Plist(l3) = {s1, s2, s4, s3}

(a) energy costs and preference lists

cost

l1

l2

l3

s1

101

142

92

s2

152

234

175

s3

131

77

229

s4

213

101

179

Plist(s1) = {l3, l1, l2}

Plist(s2) = {l1, l3, l2}

Plist(s3) = {l2, l1, l3}

Plist(s4) = {l2, l3, l1}

l1
s2

s4

l2

l3

s3

s1

l1
s2

s4

l2

l3

s3

s1

l1
s2

s4

l2

l3

s3

s1

(b) P = {(s1, l1), (s3, l2)} (c) P = {(s3, l2), (s1, l3)}

(d) P = {(s3, l1), (s1, l3)} (e) P = {(s3, l1), (s4, l2), (s1, l3)}

l1
s2

s4

l3

s3

s1 l2

Bl2

Bl1

Bl1

Bl2

Bl3

Fig. 2. An example to show how to find the matching P .

2) Case of |S| < |L|: When the number of event locations
is larger than that of mobile sensors, we can group those
event locations whose distance are close to each other into a
cluster. This can be achieved by K-means [12]. Consequently,
by the previous matching scheme, each mobile sensor can be
dispatched to one cluster and then travels the event locations
within the assigned cluster. To facilitate the presentation of
this paper, we briefly describe how K-means works. In K-
means, event locations are randomly partitioned into n non-
empty clusters. For each cluster, we determine the mean from
the event locations assigned to the same cluster. Then, each
event location should join the cluster whose mean is the closest
one to it. After all event locations decide their corresponding
clusters, we should re-calculate the mean for each cluster. The
above procedure is repeated until no event relocation is needed.

To evaluate the energy cost of the clustering result, the cost
φ(ĉk) of each cluster ĉk is formulated as the total edge weight
of the minimum spanning tree in that cluster, where the weight
of an edge (li, lj) is the distance between two event locations
li and lj . For example, in Fig. 3(a), φ(A) = 50, φ(B) = 12,
φ(C) = 15, and φ(D) = 68. Unfortunately, K-means may
not minimize the total cost of the clusters derived, especially
when some sparse event locations are far away from others. In
this case, K-means groups these sparse locations into the same
cluster, thereby increasing the total cost of clusters. Consider
an example in Fig. 3(a), where four clusters are determined by
K-means. Since both clusters A and D consist of sparse event
locations (i.e., l1 and l10), the total cost of clusters is thus
increased. By properly splitting and merging some clusters,
the result of K-means is adjusted to reduce the total cost
of clusters. Intuitively, those clusters containing sparse event
locations should be split. However, in order not to change
the number of clusters, we should merge two clusters when
splitting a large one. In particular, let wintra

max be the maximum
edge weight among edges in all clusters and winter

min be the
minimum inter-cluster distance, where the distance between
two clusters ĉa and ĉb is the distance of the two closest
locations li ∈ ĉa and lj ∈ ĉb. If wintra

max > winter
min , we can split

the cluster with the edge whose weight is wintra
max (by removing

that edge) and then merge two clusters whose distance is winter
min

(by connecting them with the shortest edge). We can repeat
the above procedure until wintra

max ≤ winter
min . In this way, we

can avoid scenarios that some clusters have too large costs,
thus reducing the total cost of clusters. Fig. 3 illustrates an
example. In Fig. 3(a), wintra

max is 50 (in cluster D) and winter
min is

15 (between clusters A and B). We thus split cluster D into
two clusters D1 and D2, and then merge clusters A and B
into the same one, as shown in Fig. 3(b). Similarly, we can
further split cluster A and then merge clusters C and D1 to
reduce the total cost of clusters. The final result is shown in
Fig. 3(c).

After grouping event locations into n clusters Ĉ = {ĉ1, ĉ2,
. . . , ĉn}, we can use the matching scheme to dispatch mobile
sensors to these clusters. To assign edge weights of the graph
G = (S ∪ Ĉ, S × Ĉ), the energy cost is re-formulated as
c(si, ĉk) = ∆move × (d(si, lj) + φ(ĉk)), ∀si ∈ S and ĉk ∈ Ĉ,

40

10

15

12

20

15

50

18

cluster A

cluster B
cluster C

cluster D

50

40

10

15

12

15

18

cluster A

cluster D2

cluster C

cluster D1

10

15

20

15

18

cluster A1

cluster A2

cluster C

12

(a) total cost: 145

(b) total cost: 110 (c) total cost: 90

50 20 50

40

50

l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

l1

l2

l3

l4

l5

l6

l7

l8

l9

l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

cluster D2

50

l10

Fig. 3. An example to cluster event locations.

where lj ∈ ĉk is the closest event location to si. Specifically,
the total energy consumption for si to visit ĉk includes the
energy to move to the closest event location lj in ĉk and the
energy to reach all event locations in ĉk. When si is dispatched
to a cluster ĉk, it first moves to the closest event location lj in
ĉk and then exploits the solution of traveling salesman problem
[3] to reach other event locations with a minimum cost.

B. GridSD: A Distributed Dispatch Algorithm

Note that CentralSD needs a central server to collect the
information of mobile sensors and events, which results in a
large amount of message transmissions. In this section, we
propose a distributed algorithm GridSD that explores a grid-
based architecture to reduce the messages incurred.

As shown in Fig. 4, GridSD divides the sensing field into
grids. For each grid, we select a grid head to collect the
information of mobile sensors and event locations within its
territory. Specifically, each mobile sensor informs its location
and remaining energy to its corresponding grid head. When
detecting events, static sensors report to their grid heads. On
obtaining such information, a grid head performs CentralSD
to dispatch mobile sensors to the events occurred in its grid.
However, if there is no mobile sensor in the grid, the grid head
will search available mobile sensors in other grids.

To reduce the number of message transmissions when a grid
head searches for mobile sensors in other grids, we propose a
modified approach of the grid-quorum [5]. Specifically, each
grid head sends advertisement (ADV) messages containing the
number of mobile sensors in its grid to the same column of
grids. In this way, each grid head has the information of mobile
sensors in other grids located in the same column. When a grid
head wants to search mobile sensors in other grids, it sends
a request (REQ) message to the grid head in the same row.
Due to the grid structure, there must be a grid head receiving
both ADV and REQ messages. Consider an example in Fig. 4,

where the grid head in (0, 0) sends an ADV message to inform
the grids (0, 1), (0, 2), and (0, 3) that two mobile sensors are
available in grid (0, 0). Since there is no mobile sensor in grid
(1, 2) and its corresponding column, its grid head sends an
REQ message to the grids (0, 2), (2, 2), and (3, 2) to search
mobile sensors. Clearly, the grid head in (0, 2) will receive
both ADV and REQ messages and thus can reply the available
mobile sensors in grid (0, 0) to the grid head of (1, 2).

Unlike grid-quorum, we exploit a search length to limit the
number of grids to be queried in searching mobile sensors. In
particular, each REQ message is associated with two integers
α and Mgrid, where α is the search length and Mgrid is the
number of mobile sensors found so far. Initially, α > 0 and
Mgrid = 0 for each REQ message. When receiving the REQ
message, a grid head increases Mgrid by the number of mobile
sensors in the column. If α > 1, the grid head decreases α
by one and propagates the REQ message to the next grid in
the same row. However, if α = 1 and the value of Mgrid is
still zero, which means that there is no mobile sensor found
yet, the grid head sends the REQ message with α = 1 to the
next grid until at least one mobile sensor can be found. Fig. 4
illustrates the above scenario, where the grid head in (1, 2)
sends an REQ message with α = 1. On receiving the REQ
message, the grid head in (0, 2) increases Mgrid by two and
decreases α by one. Since α becomes zero, the REQ message
will not be propagated to the left-hand side. When the grid
head in (2, 2) gets the REQ message, since α = 1 and Mgrid is
still zero, the grid head in (2, 2) propagates the REQ message
with α = 1 to grid (3, 2) for searching mobile sensors. With
the search length, GridSD can reduce not only the message
complexity but also the competition of mobile sensors from
grid heads. Once obtaining the information of mobile sensors
and events, a grid head is able to perform CentralSD locally.

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

1a =

mobile sensor

grid head

event location

static sensor

REQ message

1a = 1a =

m

m

m
m

m

Fig. 4. An example to show how GridSD works.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performances of our algo-
rithms by simulations. We set up a sensing field as a 450 m
× 300 m rectangle, in which there are 400 static sensors and
several mobile sensors randomly deployed. Each mobile sensor
has an initial energy of 3960 J (joule) reserved for movement
and the moving energy cost per meter is set to 8.27 J.

The first experiment evaluates the system lifetime of dif-
ferent algorithms when dispatching 50 mobile sensors. In
each round, 10 to 15 static sensors are randomly selected as
event locations. Mobile sensors then move to these locations
based on the dispatch algorithm and stay at their last-visiting
locations to wait for the next dispatch schedule. When mobile
sensors are fewer than event locations, the proposed clustering
scheme is adopted to group event locations. We observe the
ratio of alive mobile sensors in each round. The system life-
time is referred as the round when all mobile sensors exhaust
their energies. We compare CentralSD and GridSD against the
iteratively-optimized method discussed in Section I.

Fig. 5 shows the system lifetimes of different methods.
Although dispatching mobile sensors with the minimal energy
cost in each round, the iteratively-optimized algorithm has the
shortest system lifetime. This is because it does not balance
the loads of mobile sensors, draining of the energy of some
mobile sensors. The situation becomes worse as the exhausted
mobile sensors burden the remaining alive ones with heavy
loads. Our proposed algorithms have a longer lifetime since
they not only reduce the total moving energy but also balance
the loads of mobile sensors. Note that CentralSD outperforms
GridSD since it has the global knowledge of the network.

0

20

40

60

80

100

25 30 35 40 45 50 55

number of rounds

ra
tio

o
f
a
liv

e
m

o
b
ile

s
e
n
s
o
rs

(%
)

CentralSD

GridSD
iterative optimization

Fig. 5. Comparison on system lifetime.

We further evaluate these algorithms in terms of the moving
energy and the load-balance metric (i.e., the standard devia-
tion) among mobile sensors. The event locations are randomly
selected from 5% to 40% of static sensors. To fairly compare
the standard deviation, we set the number of mobile sensors
as equal to that of event locations, so that each mobile sensor
is dispatched to exactly one location.

Fig. 6(a) illustrates the average energy consumption. Since
the iteratively-optimized algorithm always finds the optimal
solution, it has the smallest average of energy consumption.
By adopting the preference lists, the averages of our algorithms
are slightly higher than that of the optimal solution. Note
that in GridSD, with search lengths, grid heads with event
locations are able to search those mobile sensors nearby,
thereby having a smaller average compared with CentralSD.
Fig. 6(b) shows the standard deviation of energy consumption.
We can observe that the standard deviation of the iteratively-
optimized algorithm is almost twice than that of CentralSD,
indicating that the former results in seriously unbalance loads
among mobile sensors. Note that GridSD has a larger standard

deviation compared with CentralSD since each grid head only
has partial information of mobile sensors.

10

20

30

40

50

60

5 10 15 20 25 30 35 40

ratio of event locations to static sensors (%)

a
v
e
ra

g
e

e
n
e
rg

y
c
o
n
s
u
m

p
ti
o
n

(J
)

CentralSD

GridSD
iterative optimization

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40

ratio of event locations to static sensors (%)

s
ta

n
d

a
rd

d
e

v
ia

ti
o

n
o

f

e
n

e
rg

y
c
o

n
s
u

m
p

ti
o

n
(J

)

CentralSD
GridSD
iterative optimalization

(a) average energy consumption

(b) standard deviation of energy consumption

Fig. 6. Comparisons on energy consumption.

Although CentralSD outperforms GridSD in terms of sys-
tem lifetime, it incurs a large amount of message transmis-
sions. Fig. 7 shows the number of packet delivery of CentralSD
and GridSD. We can observe that the number of message
transmissions in CentralSD grows fast as the event locations
increase, while that in GridSD remains constant since the loads
of message exchange are distributed among grid heads.

0

500

1000

1500

2000

2500

3000

3500

5 10 15 20 25 30 35 40

ratio of event locations to static sensors (%)

n
u
m

b
e
r

o
f
p
a
c
k
e
t
d
e
liv

e
ry

CentralSD

GridSD

Fig. 7. Comparison on number of packet delivery.

When the number of event locations are larger than that
of mobile sensors, we group event locations into clusters and
dispatch mobile sensors to each cluster. Fig. 8 shows the effect
of our clustering scheme on the energy consumption. As can
be seen in Fig. 8, when the clustering scheme is adopted,
mobile sensors can have a lower energy consumption because
they do not need to travel around event locations far from each
other.

V. CONCLUSIONS

In this paper, a general problem of dispatching mobile
sensors is formulated. By exploring the concept of load
balance, we proposed CentralSD to efficiently dispatch mobile
sensors. A clustering scheme is developed to group event

50

100

150

200

250

300

1.2 1.5 1.8 2.4 2.7 3.0

ratio of event locations to mobile sensors

a
v
e

ra
g

e
e

n
e

rg
y

c
o

n
s
u

m
p

ti
o

n
(J

)

with clustering

without clustering

Fig. 8. The effect of clustering on energy consumption.

locations when the number of events is larger than that of
mobile sensors. To reduce message transmissions, we proposed
a distributed algorithm GridSD. Simulation results show that
the proposed algorithms can have a longer system lifetime
compared with the iteratively-optimized algorithm.

ACKNOWLEDGEMENT

Y. C. Tseng’s research is co-sponsored by Taiwan MoE ATU
Program, by NSC grants 93-2752-E-007-001-PAE, 96-2623-7-
009-002-ET, 95-2221-E-009-058-MY3, 95-2221-E-009-060-
MY3, 95-2219-E-009-007, 95-2218-E-009-209, and 94-2219-
E-007-009, by Realtek Semiconductor Corp., by MOEA under
grant number 94-EC-17-A-04-S1-044, by ITRI, Taiwan, by
Microsoft Corp., and by Intel Corp.

W. C. Peng is supported in part by Taiwan MoE ATU
Program and by the National Science Council, Project No.
NSC 95-2211-E-009-61-MY3 and NSC 95-2221-E-009-026,
Taiwan, Republic of China.

REFERENCES

[1] D. Johnson, T. Stack, R. Fish, D. M. Flickinger, L. Stoller, R. Ricci,
and J. Lepreau, “Mobile Emulab: a robotic wireless and sensor network
testbed,” in IEEE INFOCOM, 2006.

[2] Y. C. Tseng, Y. C. Wang, and K. Y. Cheng, “An integrated mobile
surveillance and wireless sensor (iMouse) system and its detection delay
analysis,” in ACM Int’l Symp. on Modeling, Analysis and Simulation of
Wireless and Mobile Systems, 2005, pp. 178–181.

[3] J. R. Evans and E. Minieka, Optimization Algorithms for Networks and
Graphs, 2nd ed. Marcel Dekker Inc., 1992.

[4] N. Heo and P. K. Varshney, “Energy-efficient deployment of intelligent
mobile sensor networks,” IEEE Trans. on Syst., Man and Cybern. A,
vol. 35, no. 1, pp. 78–92, 2005.

[5] G. Wang, G. Cao, T. L. Porta, and W. Zhang, “Sensor relocation in
mobile sensor networks,” in IEEE INFOCOM, 2005, pp. 2302–2312.

[6] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization
based on virtual forces,” in IEEE INFOCOM, 2003, pp. 1293–1303.

[7] Z. Butler and D. Rus, “Event-based motion control for mobile-sensor
networks,” IEEE Pervasive Computing, vol. 2, no. 4, pp. 34–42, 2003.

[8] M. D. Naish, E. A. Croft, and B. Benhabib, “Dynamic dispatching
of coordinated sensors,” in IEEE Int’l Conf. on Systems, Man, and
Cybernetics, 2000, pp. 3318–3323.

[9] A. Verma, H. Sawant, and J. Tan, “Selection and navigation of mobile
sensor nodes using a sensor network,” in IEEE Int’l Conf. on Pervasive
Computing and Communications, 2005, pp. 41–50.

[10] G. Wang, G. Cao, and T. L. Porta, “A bidding protocol for deploying
mobile sensors,” in IEEE Int’l Conf. on Network Protocols, 2003, pp.
315–324.

[11] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low-cost outdoor
localization for very small devices,” IEEE Personal Commun. Mag.,
vol. 7, no. 5, pp. 28–34, 2000.

[12] J. Han and M. Kamber, Data Mining: Concepts and Techniques, D. D.
Cerra, Ed. Academic Press, 2001.

